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In this text, we show how to apply the UE-analysis to a model network of binary neurons choosing
the parameters from Table 1. We also present the derivation of the ODEs for the �rst two moments,
we discuss the di�erent possibilities to de�ne a spike in a binary network and show how to handle
the complex phase jump induced by the usage of the sine-function as a perturbation. Furthermore,
we include the plots of the II- and EI-component of the covariances for the parameters of Table 1
and a plot of the mean activities and the EE-covariance for varying perturbation strength hext for
the same parameters.
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Figure A. Temporal modulation of Unitary Events. Covariance c(ϕ) (A) mean activity m(ϕ) (B) as functions of the phase ϕ of
the LFP cycle. C Probability PUE

λ (ϕ) for the appearance of a signi�cant number of Unitary Events as a function of the phase
of the oscillation. Solid curves show the exact expression App-Eq (2), dashed curves the corresponding approximation to linear
order in c, App-Eq (3). D PUE

λ (ϕ) for a constant n0, adjusted to the time-averaged mean activity. E PUE
λ (ϕ) for constant

mean activity and time-dependent covariance (solid curves) and vice versa (dashed curves). For the plots in A-E, black curves
always represent simulation results and gray curves Nbin = 10000 and p0 = 5 and f = 160Hz. The parameters for the network
simulation are given in Table 1. F Dependence of the lowest number required for a UE n0 on the average rate λ for di�erent
signi�cance level p0, λm indicates the stationary part of the rate used for the plots A-E.

I. APPLICATION OF THE UNITARY EVENT ANALYSIS TO CORRELATED NETWORK ACTIVITY

We will give a concise, but self-contained description of the main idea of a Unitary Event analysis and its application
to our setup. The observation of at least n0 simultaneous spikes in a time series of Nbin bins is called Unitary
Event (UE, [1�3]). We are therefore interested in the the time-dependence of the probability pij(t) that the pair of
neurons i and j �res together at time t, which causes a time-dependence of the covariance c(t). Concretely, because
the appearance of a spike is a binary event, the probability of the joint �ring is identical to the second moment
pij(t) = ⟨ni(t)nj(t)⟩ [see also 4, eq. 22] which, in turn, can be expressed as

pij(t) = ⟨ni(t)nj(t)⟩ = cij(t) +mi(t)mj(t). (1)

The covariance therefore enters this probability in an additive manner. The signi�cance test of the Unitary Event
analysis, depending on the momentary rate, aims to eliminate the contribution of the trivial second term. One
therefore expects that the modulation of the covariance in�uences also the probability to observe a Unitary Event.
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Concretely, one assumes that the number of joint �ring events is Poisson distributed, therefore the probability to
observe a UE is given by

PUE
λ (n0) = ∑

n>n0

e−λm
λnm
n!
,

where λ = m2Nbin for a uncorrelated system with mean activity m and the number of bins Nbin and n0 is chosen
minimal such that PUE (n0) < p0 for a given signi�cance level p0, in [5] for example, p0 = 0.05. In our setup, m
changes continuously in time, thus the limitation n0 ∈ N is unfavorable. Therefore, we replace the cumulative Poisson
distribution by a cumulative distribution yielding the same values on N, but being de�ned on R. That is ful�lled by

f (λ,n0) ∶= P
UE
λ (n0) =

γ (n0 + 1, λ)

Γ (n0 + 1)
=∶
∫
λ
0 tn0e−tdt

∫
∞
0 tn0e−tdt

.

Γ (n0) and γ (n0) are the Gamma- and the incomplete Gamma-function, respectively. This correspondence follows
from the third last equality in App-Eq (4) and Γ (n0 + 1) = n0! ∀n0 ∈ N. Here f is monotonous in n0, therefore we
can de�ne a function f−1 (λ, p0) via

f (λ, f−1 (λ, p0)) = p0.

Now, we want to determine the probability to observe a UE in a correlated system, that is λ = λm+λc =∶ (m
2 + c)Nbin

in case that n0 is determined assuming a uncorrelated system. For the systems described in this work, being in the
balanced state, we can safely assume that the covariance c is small and therefore enters in PUE

λ only in linear order:

f (λm + λc, f
−1

(λm, p0)) (2)

=f (λm, f
−1

(λm, p0)) + ∂1f (λm, f
−1

(λm, p0))λc +O (λ2c)

=p0 + ∂1f (λm, f
−1

(λm, p0))λc +O (λ2c) (3)

(∂1f means the derivative of f with respect to its �rst argument). The following computation

PUE
λ (n0 >X ≥ n0 − 1)

=PUE
λ (X ≥ n0 − 1) − PUE

λ (X ≥ n0)

=
∫
λ
0 tn0−1e−tdt

∫
∞
0 tn0−1e−tdt

−
∫
λ
0 tn0e−tdt

∫
∞
0 tn0e−tdt

P.I.
=

λn0e−λ

∫
∞
0 tn0e−tdt

=
∂

∂λ
Pλ (X ≥ n0) (4)

=∂1f (λm, f
−1

(λm, p0))

leads to an illustrative interpretation of App-Eq (3): For c > 0, λc is the number of additional joint �ring events
that one expects due to the positive covariance and ∂1f is the probability to observe one joint �ring event less than
the minimal number n0, that is required for a UE in the uncorrelated system. Therefore, in this approximation, the
required number of joint �ring events for the classi�cation as UE stays the same, only the probability to observe this
many joint �ring events is elevated by PUE

λ (s >X ≥ s − 1)λc.
If we neglect any time-dependence and determine just a constant n0 according to the time-averaged mean activity,

PUE
λ is misestimated for our network (Figure A, D). Determining n0, we therefore have to consider the time-dependence

of m. To this end, we can assume that the time-varying part is small compared to the stationary part, that is

λ = λm + δλm (t) + λc + δλc (t)

= (m2
+ 2mδm (t) + c + δc (t) +O (δm)

2
)T.

The qualitative e�ect of a time-dependent mean activity (which causes a instantaneous shift in n0) in a network
with constant positive covariance can now be seen by the following argument: Assume that one could instantaneously
adjust the covariance such that n0 (t) = λm (t) + λc (t), that is, we construct a system that produces on average the
number of joint �ring events required at the minimum to be classi�ed as a UE. Like that, the surprise of an observer
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knowing this covariance is always on the same level. Following this construction, a small deviation in λm (t) around
some stationary value λm will force us to also shift λc (t) a bit according to

δλc (t) = (
∂n

∂λ
− 1) δλm (t) .

From Figure AF, we can read o� that ∂n
∂λ

> 1 for small p0. We therefore need δλc (t) to modulate in phase with
δλm (t) to keep the surprise constant. In turn keeping λc constant will lower the probability for a UE, if λm is raised.
This argument explains that the UE-probability assuming constant, nonzero covariance modulates in antiphase with
m (t), as shown by the dashed curves in panel E. The solid lines in the same panel show that for a constant mean
activity, PUE

λ modulates proportional to λc (t) (or c (t), respectively), as expected from App-Eq (3). The actual
UE-probability, shown in C, is a superposition of both e�ects. The comparison to the linear approximation, shown by
the dashed curves, reveals that neglecting higher order contributions of λc is indeed appropriate. As expected from
App-Eq (1), the probability of Unitary Events is elevated because the covariance is positive. As the time-dependent
part of the covariance itself is dominated by the linear response, we overall get a dominating �rst harmonic in the
modulation of PUE(t). As a consequence, we cannot obtain a locking that is strongly localized at a certain phase of
the LFP, in contrast to the experimental observation (cf. Fig 6 of [5]).

A quantitative examination would require a Taylor expansion of ∂1f (λm, f
−1 (λm, p0)) in δλm (t), which gives

two contributions with di�erent signs. The �rst one is positive and arises because δλm > 0 causes a rise in
PUE
λ (n0 >X ≥ n0 − 1) for n0 kept constant, the second is negative and comes up because δλn > 0 causes a posi-

tive shift in n0 which lowers PUE
λ (n0 >X ≥ n0 − 1) for λm kept constant. Numerical checks seem to show that the last

contribution is dominant for the interesting parameter range leading to d
dλm

∂1f (λm, f
−1 (λm, p0)) < 0, as expected

because of the qualitative argument given before.

II. SOME THEORETICAL AND TECHNICAL DETAILS

A. Derivation of the moment equations using the Master equation

For completeness, we here derive the di�erential equations equations for the �rst and second moments Equation (15),
following previous work [4, 6�9].

We multiply the Master equation by nk or nlnk respectively and get

τ
d

dt
⟨nk⟩ (t) = ∑

n∈{0,1}N
d

dt
p (n, t)nk = ∑

n/nk
nlφk (n/nk, t)

= ∑
n∈{0,1}N

nk∑(2ni − 1)φi (n/ni, t)

= ∑
n∈{0,1}N

⎛
⎜
⎜
⎜
⎜
⎜
⎝

nkφ (n/nk, t) + nk
N

∑
i≠k

(2ni − 1)φi (n/ni, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= ∑
n/nk

[−p (nk+, t) + (p (nk−, t)Fk (nk−) + p (nk+, t)Fk (nk+))]

= − ⟨nk⟩ (t) + ⟨Fk (t)⟩
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and

d

dt
⟨nk (t)nl (t)⟩ = ∑

n∈{0,1}N
d

dt
p (n, t)nknl

= ∑
n∈{0,1}N

nknl
N

∑
i=1

(2ni − 1)φi (n/ni, t)

= ∑
n∈{0,1}N

(nknlφk (n/nk, t) + nlnkφl (n/nl, t)

+ nknl
N

∑
i≠k,l

(2ni − 1)φi (n/ni, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

)

= ∑
n/nk

nlφk (n/nk, t) + k↔ l

= ∑
n/nk

[−nlp (nk+, t) + nl (p (nk−, t)Fk (nk−) + p (nk+, t)Fk (nk+))]

+k↔ l

= {− ⟨nk (t)nl (t)⟩ + ⟨nl (t)Fk (t)⟩} + {k↔ l} .

B. Di�erent de�nitions for a spiking event of a binary neuron

In [10], van Vreeswijk et al. identify the transition 0→ 1 with a spike, which leads to the equation να =
mα(1−mα)

τ
for

the �ring rate. We think, however, that this identi�cation is inappropriate in our case, because the 0 → 1-transition
for a binary neuron has a di�erent meaning than a spike for a spiking neuron. In our opinion, it is decisive, for which
fraction of time a spiking neuron a�ects the downstream neurons. If it spikes with frequency να and the membrane
potential decays with the time constant τ , this fraction is given by τνα. This can be interpreted as the mean activity of
a spiking neuron, which leads to the de�nition of the �ring rate of a binary neuron να = mα

τ
in section Two populations

with inhomogeneous connections. In other words: If we want to identify a spiking event for a binary neuron, we will
have to count the 1→ 1-transition as spike as well. For small mean activities, however, the di�erence is small anyway.

C. Extracting the correct phase from complex solutions

Notice that there are a few subtleties to keep in mind when a discrete Fourier transform is applied to δmα. The
(in both senses) real-valued solution of the ODE is

δmα = I (M1
αe
iω0t) = I (∣M1

α∣ e
i(arg(M1

α)+ω0t)) = ∣M1
α∣ sin (arg (M1

α) + ω0t)

= ∣M1
α∣ (sin (arg (M1

α)) cos (ω0t) + cos (arg (M1
α)) sin (ω0t)) .

For clarity, we here named the driving frequency ω0. Therefore, if we calculate the Fourier transform (in a distributional
sense), we get

F [δmα] (ω = ω0)

= ∣M1
α∣ (sin (arg (M1

α))
δω0 + δ−ω0

2
+ cos (arg (M1

α))
δω0 − δ−ω0

2i
)

=
∣M1

α∣

2
(δω0

(sin (arg (M1
α)) − i cos (arg (M1

α))) + δ−ω0
(sin (arg (M1

α)) + i cos (arg (M1
α))))
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Thus, we get

∣F [δmα] (ω0)∣ = ∣F [δmα] (−ω0)∣ =
∣M1

α∣

2

and, because we take the imaginary part of the complex solution which leads to a π
2
-phase shift compared to the

complex phase

arg (F [δmα] (ω0)) =

⎧⎪⎪
⎨
⎪⎪⎩

arg (M1
α) +

3π
2
, for arg (M1

α) ∈ [−π,−π
2
]

arg (M1
α) −

π
2
, for arg (M1

α) ∈ (−π
2
, π) .

III. COMPARISON OF SIMULATION AND THEORY OF THE EI AND II-COVARIANCES AND

VALIDATION OF THE LINEAR PERTURBATION THEORY

For completeness, we include here the plots showing the dependence of the covariances between inhibitory and
inhibitory and excitatory on the driving frequency for the third network setup of the main text. In Figure D, we show
that the linear perturbation theory breaks down if the perturbation is of the same order as the input �uctuations.
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Figure B. Driven E-I network with biologically inspired parameters: II-Covariance. Response of the inh.-inh.-part
of the covariance to a perturbation with frequency ω in the Fourier space. A Zeroth order (time independent part) of the
covariance. B Absolut value of the �rst three Fourier components of the cII-covariances in loglog-scale. C Absolute value
of the �rst order of the time-dependent part of the covariance. D Phase angle in relation to the driving signal. E and F

analogous to C and D for the second Fourier modes. Solid lines indicate the linear theory Equation (41), stars the results of
the numerical solved full mean-�eld theory Equation (5) and Equation (6) and dots those of the direct simulation of the full
network. Numerical results obtained by the same methods and identical parameters as in Figure 5.
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Figure C. Driven E-I network with biologically inspired parameters: EI-Covariance. Response of the exc.-inh.-part
of the covariance to a perturbation with frequency ω in the Fourier space. A Zeroth order (time independent part) of the
covariance. B Absolut value of the �rst three Fourier components of the cEI-covariances in loglog-scale. C Absolute value
of the �rst order of the time-dependent part of the covariance. D Phase angle in relation to the driving signal. E and F

analogous to C and D for the second Fourier modes. Solid lines indicate the linear theory Equation (41), stars the results of
the numerical solved full mean-�eld theory Equation (5) and Equation (6) and dots those of the direct simulation of the full
network. Numerical results obtained by the same methods and identical parameters as in Figure 5.
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Figure D.Driven E-I network with biologically inspired parameters: Dependence of the covariance and the mean
activity on hext. Ratio of the second to the �rst Fourier component in a system subject to a perturbation with frequency
ω = 20 ⋅ 2πHz. A Covariance between excitatory and between inhibitory neurons. B Mean activity of the excitatory and of the
inhibitory population. The vertical dotted lines indicate σexc./2 (black) and σinh./2 (lightgray). Solid lines indicate the results
of the numerical solved full mean-�eld theory Equation (5) and Equation (6) and dots those of the direct simulation of the full
network. Numerical results obtained by the same methods and with the same parameters as in Figure 3.
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