### File Name: Supplementary Information Description: Supplementary Figures and Supplementary Tables

## File Name: Supplementary Movie 1

Description: Local application of NT-3 generates long-range  $Ca^{2+}$  waves. A  $Ca^{2+}$  indicator (Cal-520) was loaded into hippocampal neurons at 3 DIV. The pseudocolored image represents the concentration of  $Ca^{2+}$  after local application of PBS to the axon terminal. Frames were obtained every 2 sec.

#### File Name: Supplementary Movie 2

Description: Local application of NT-3 generates long-range  $Ca^{2+}$  waves. A  $Ca^{2+}$  indicator (Cal-520) was loaded into hippocampal neurons at 3 DIV. The pseudocolored image represents the concentration of  $Ca^{2+}$  after local application of NT-3 to the axon terminal. Frames were obtained every 2 sec.

File Name: Supplementary Movie 3

Description: **Spatio-temporal dynamics of RhoA activation in hippocampal neurons**. Raichu-RhoA-CR was transfected into hippocampal neurons at 3 to 4 DIV. The pseudocolored image represents the FRET efficiency after local application of PBS to the axon terminal. Frames were obtained every 20 sec.

#### File Name: Supplementary Movie 4

Description: **Spatio-temporal activation of RhoA in hippocampal neurons**. Raichu-RhoA-CR was transfected into hippocampal neurons at 3 to 4 DIV. The pseudocolored image represents the FRET efficiency after local application of NT-3 to the axon terminal. Frames were obtained every 20 sec.

#### File Name: Supplementary Movie 5

Description: **Photoactivation of Rho-kinase induces membrane blebbing and cell contraction**. mCherry-Rho-kinase-CAT-Zdk1 was co-transfected with NTOM20-LOV2 into HeLa cells. Photoactivation of LOVTRAP Rho-kinase was accomplished by irradiating intermittently (5 sec on/off cycle) for 30 minutes.

#### File Name: Supplementary Movie 6

Description: **Photoactivation of LOVTRAP RhoA/Rho-kinase induces minor neurite retraction**. mCherry-Zdk1 (LOVTRAP-Cont) was cotransfected with NTOM20-LOV2 into hippocampal neurons at 3 to 4 DIV. The cell body within a 20-µm square was irradiated every 5 sec. Frames were also obtained every 5 sec.

#### File Name: Supplementary Movie 7

Description: **Photoactivation of LOVTRAP RhoA/Rho-kinase induces minor neurite retraction**. A kinase dead (KD) mutant of LOVTRAP Rho-kinase was transfected into hippocampal neurons at 3 to 4 DIV. The cell body within a 20-µm square was irradiated every 5 sec. Frames were also obtained every 5 sec.

#### File Name: Supplementary Movie 8

Description: **Photoactivation of LOVTRAP RhoA/Rho-kinase induces minor neurite retraction**. LOVTRAP-Rho-kinase was transfected into hippocampal neurons at 3 to 4 DIV. The cell body within a 20-µm square was irradiated every 5 sec. Frames were also obtained every 5 sec. File Name: Supplementary Movie 9 Description: Local application of Rho-kinase inhibitor to the minor neurite induces neurite outgrowth. DMSO was locally applied to a minor neurite of a polarized neuron. Frames were also obtained every 5 min.

File Name: Supplementary Movie 10

Description: Local application of Rho-kinase inhibitor to the minor neurite induces neurite outgrowth. Rho-kinase inhibitor (Y-27632) was locally applied to a minor neurite of a polarized neuron. Frames were also obtained every 5 min.

File Name: Peer Review File Description:



Supplementary Figure 1. NT-3 derived from cultured neurons is required for axon formation in stage 3 cultured hippocampal neurons Local inhibition of NT-3 suppressed axonal elongation. Time course of changes in the lengths of the axon from a single neuron locally exposing with anti-Cont (blue) or anti-NT-3 (red) (anti-Cont= 13, anti-NT-3= 13 neurons from 3 independent experiments). Error bars represent SEM. \*\*P < 0.01.



Supplementary Figure 2. Local elevation of  $Ca^{2+}$  signaling at the cell body regulates neuronal polarity (a) Local application of a  $Ca^{2+}$  ionophore to an axon induced minor neurite retraction. DMSO or a  $Ca^{2+}$  ionophore (ionomycin) was locally applied to the axon of a polarized hippocampal neuron. (b-c) Minor neurite outgrowth and axonal outgrowth were measured (DMSO= 67, ionomycin= 30 neurites from 3 independent experiments). (d-e) Local application of a  $Ca^{2+}$  ionophore or  $Ca^{2+}$  signaling inhibitors to the cell body regulated minor neurite outgrowth. DMSO, ionomycin, BAPTA or KN-93 was locally applied to the cell body of a polarized hippocampal neuron. Minor neurite outgrowth was measured (DMSO=59, ionomycin=33, BAPTA= 24, KN-93= 21 neurites from 3 independent experiments). Error bars represent SEM. \*P < 0.05 and \*\*P < 0.01.



**Supplementary Figure 3. Spatio-temporal activation of RhoA by local application of NT-3 in neurons** PBS (blue) or NT-3 (red) was locally applied to an axon terminal of a hippocampal neuron expressing Raichu-RhoA-CR. Time course of changes in FRET efficiency in the axon terminal (left) and the minor neurite (right). Error bars represent the SEM.



Supplementary Figure 4. Characterization of LOVTRAP-Rho-kinase (a) LOVTRAP-Rho-kinase induced stress-fiber formation. COS-7 cells expressing LOVTRAP-Rho-kinase were illuminated at 488 nm in the perinuclear region (dotted lines) for 30 min and then immunostained with Alexa-Phalloidin (green). Scale bars, 50  $\mu$ m. (b) Experimental design. HeLa cells expressing LOVTRAP-Rho-kinase were imaged for 30 min prior to photoactivation. Photoactivation of LOVTRAP-Rho-kinase was accomplished by irradiating intermittently (5 sec on/off cycle) for 30 min. Following photoactivation, the cells were imaged for an additional 30 min. hv, irradiation. (c) Irradiation of HeLa cells expressing LOVTRAP-Rho-kinase. High-magnification images of the area indicated by the dotted lines are presented. Scale bars, 40  $\mu$ m. (d) Kymographs of the membrane (line 1 or line 2) during observation. (e-f) Percentage of cells exhibiting contraction (e) or membrane blebbing (f).



Supplementary Figure 5. Reaction-diffusion (RD) simulation without the steady state approximation (**a**, **b**, **c**) Reaction-diffusion process of the Rho-kinase was simulated, without the steady state approximation, along a neurite of fixed length (100  $\mu$  m). (**a**) The heat map represents a spatiotemporal profile of the Rho-kinase concentration in response to the photoactivation. (**b**) RD simulation as in (**a**) and approximated simulation as in Fig. 4 were compared with various lengths of neurites. Red and blue lines indicate temporal changes in the Rho-kinase concentration at a neurite tip, which were calculated by the RD simulation as in (**a**) and by equation (1), respectively. (**c**) The time required for Rho-kinase concentration at a neurite tip (100  $\mu$  m) to reach half the stationary value from the onset of photoactivation was evaluated upon varying the inactivation/degradation rate, k, and the diffusion rate, D. (**d**, **e**, **f**) RD process of the Rho-kinase was simulated by the RD simulation and the approximated simulation, respectively. (**e**) Red and blue lines indicate the neurite lengths simulated by RD simulation and the approximated simulation, respectively. (**f**) Blue line indicates the relationship between initial neurite length and LOVTRAP-Rho-kinase-dependent neurite retraction, which is the same as Fig. 4f. The relationship was also calculated by the RD simulation (red dots).



Supplementary Figure 6. Spatial distribution of Rho-kinase in hippocampal neurons and Rho-kinase regulates the maintenance of future dendrite identity (a) PBS (left panels) or NT-3 (right panels) was applied locally to the growth cone of the axon at 3 DIV. Neurons were immunostained with an anti-Rho-kinase antibody. The amount of Rho-kinase was analyzed by 2.5D reconstruction. Scale bars, 10  $\mu$  m. (b) Hippocampal neurons were treated at 3 DIV with DMSO (top) or Y-27632 (bottom) for 48 h. The neurons were co-immunostained at 5 DIV with anti-Tau-1 (red) and anti-MAP2 (green) antibodies. Multiple axons (arrows) grew out from the distal tips of the minor neurites (future dendrites) of a polarized neuron. The white arrowheads indicate the original axon.



Supplementary Figure 7. GEF-H1 was identified as a novel substrate of CaMKI using the KISS method (a) Brain lysate was incubated with glutathione Sepharose beads coated with a GST-tagged CaMKI-cat to form a kinase-substrate complex. The bound proteins were incubated with or without ATP and Mg<sup>2+</sup>. The samples were subjected to LC/MS/MS analysis. (b) Motif logo of candidate phosphopeptides identified from the CaMKI screening using Logo Generators (http://www.phosphosite.org). (c) Spatial distribution of phosphorylated GEF-H1 at Thr103 in hippocampal neurons. PBS (left panels) or NT-3 (right panels) was applied locally to the growth cone of the axon at 3 DIV. Neurons were immunostained with an anti-pT103 antibody. The pseudocolor images represent the amounts of phospho-GEF-H1 in the cell body (top), axon (middle) and minor neurite (bottom). Scale bars, 10  $\mu$  m. (d-f) The fluorescence intensities of phospho-GEF-H1 in the axon (d), the cell body (e) and minor neurites (f) (PBS= 10, NT-3= 12 neurons from 3 independent experiments).



**Supplementary Figure 8. The effect of GEF-H1 knockdown on neuronal polarization** (a) Immunoblots showing knockdown of GEF-H1 with siRNA. Scramble siRNA (siControl), siRNA-GEF-H1#1 (siGEF-H1#1) or siRNA-GEF-H1#2 (siGEF-H1#2) was co-transfected with myc-GEF-H1 into Neuro2a cells. The cells were subjected to immunoblot analysis with an anti-myc antibody. Tubulin was used as a loading control. (b) Immunoblots revealing knockdown of GEF-H1 with shRNA. pSico-mCherry

(shControl), pSico-mCherry-shGEF-H1 #1, and -shGEF-H1 #2 were co-transfected with pEF-Cre and myc-GEF-H1 into Neuro2a cells. The cells were subjected to immunoblot analysis with an anti-myc antibody. Tubulin was used as a loading control. (c) Immunostaining showing knockdown of GEF-H1 in neurons. pSico-mCherry, pSico-mCherry-shGEF-H1#1 or pSico-mCherry-shGEF-H1#2 was co-transfected with T $\alpha$ -Cre into hippocampal neurons at 3 DIV. The cells were immunostained with anti-GEF-H1 (left) and anti-class III  $\beta$ tubulin (right) antibodies. Scale bar, 20  $\mu$  m. (d) pSico-mCherry, pSico-mCherry-shGEF-H1#1 or pSico-mCherry-shGEF-H1#2 was co-transfected with T  $\alpha$  -Cre into hippocampal neurons at 3 DIV. Representative images of the neurons at 4 DIV are shown. Scale bar, 50  $\mu$ m. (e) myc-GEF-H1 WT or shRNA-resistant forms of GEF-H1 were co-transfected into Neuro2a cells with pSico-mCherry or pSico-mCherry-shGEF-H1 #2 and pEF-Cre. The cells were subjected to immunoblot analysis with an anti-myc antibody. Tubulin was used as a loading control. (f) Hippocampal neurons were co-transfected with pSico-mCherry, pSico-mCherry-shGEF-H1#1 or pSico-mCherry-shGEF-H1#2 and shRNA-resistant forms of GEF-H1 at 3 DIV. Representative images of the neurons at 4 DIV are shown. Scale bar, 50  $\mu$  m. (g) Percentages of neurons with multiple Tau-1-positive axons. (h-i) The lengths of the longest neurite (h) and the total neurites (i) were determined (shCont= 90, shGEF-H1#1= 90, shGEF-H1#2= 90, GEF-H WT Res= 90, GEF-H1T103E Res= 90, GEF-H1T103A Res= 90 neurons from 3 independent experiments). Error bars represent the SEM. \*P < 0.05 and \*\*P < 0.01.



**Supplementary Figure 9. Long-range inhibitory signaling regulates axon/dendrite polarity** A working model of long-range inhibitory signaling for neuronal polarization. Once the axon is determined, amplification of NT-3 generates long-range Ca<sup>2+</sup> waves from the axon to the cell body in a CICR-dependent manner. The long-range Ca<sup>2+</sup> waves activate CaMKI, which subsequently phosphorylates GEF-H1 in the cell body. Phosphorylation of GEF-H1 induces polarized activation of RhoA/Rho-kinase, thereby activating Rho-kinase to diffuse to all minor neurites, preventing the other minor neurites from forming an axon and maintaining a future dendrite identity.



Supplementary Figure 10. Images of full-length blots

# Supplementary Table 1: primers for the GEF-H1 mutants

| Constructs   | Primers                                        |  |  |  |
|--------------|------------------------------------------------|--|--|--|
| GEF-H1 C1    | Forward 5'-ccagatcatgtctcggatcgaatccctc-3'     |  |  |  |
|              | Reverse 5'-ccagatctttaggccagggtgtctttacagc -3' |  |  |  |
| GEF-H1 M/1   | Forward 5'-ggagatctaactgtaccaaggtcaagcag-3'    |  |  |  |
|              | Reverse 5'-ccagatctttagaagctgtcggaagggtaaat-3' |  |  |  |
| GEF-H1 M/2   | Forward 5'-ggagatctcggcagtccctcctggg-3'        |  |  |  |
|              | Reverse 5'-ggagatctttacaggaagctgctgtccacg-3'   |  |  |  |
| GEF-H1 DH/PH | Forward 5'-ggagatccagcagcacaaaaaggaagtg-3'     |  |  |  |
|              | Reverse 5'-ggagatctttaaaagtcctccctggacggg-3'   |  |  |  |
| GEF-H1 CC    | Forward 5'-ggagatctcctctgatcgagacagagg-3'      |  |  |  |
|              | Reverse 5'-ggagatctttagctctctgaagctgtgg -3'    |  |  |  |
| GEF-H1-T103A | Forward 5'-ggaacaacgctgctttgcagtctgtctccc-3'   |  |  |  |
|              | Reverse 5'-gcaaagcagcgttgttcctcagcagtgcag-3'   |  |  |  |
| GEF-H1-T114A | Forward 5'-gaagtaaggcgaccaccagagagcggcca-3'    |  |  |  |
|              | Reverse 5'-tggtggtcgccttacttcgaagggagacag-3'   |  |  |  |
| GEF-H1-S122A | Forward 5'-gccaacggctgccatttacccttccgac-3'     |  |  |  |
|              | Reverse 5'-taaatggcagccgttggccgctctctggt-3'    |  |  |  |
| GEF-H1-T103E | Forward 5'-ggaacaacgaggctttgcagtctgtctccc-3'   |  |  |  |
|              | Reverse 5'-gcaaagcctcgttgttcctcagcagtgcag-3'   |  |  |  |
| shGEF-H1 #2  | Forward 5'-actggaatgctagaagaattgcagat-3'       |  |  |  |
| Resistant    | Reverse 5'-atctgcaattcttctagcattccagt-3'       |  |  |  |

| ouppier      | incinary rabate 2. Summary of                  | Statistical analysis                                                                                                                   |                            |                                                |                                                                                 |                                                                                                                       |
|--------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Figure<br>1e | Panel<br>Axon outgrowh                         | Number of sample<br>PBS= 14, NT-3= 15, BDNF= 16 neurons from 3 independent                                                             | Test used<br>One-way ANOVA | Post-hoc test<br>Dunnett's multiple comparison | PBS vs NT-3 or BDNF, p<0.01                                                     | Effect size<br>Cohen's d =1.75 (NT-3), Large                                                                          |
| 1f           | Minor neurite outgrowth                        | experiments.<br>PBS= 45. NT-3= 39. BDNF= 31 neurites from 3 independent                                                                | One-way ANOVA              | Dunnett's multiple comparison                  | PBS vs NT-3 or BDNF. p<0.05                                                     | Cohen's d =1.22 (BDNF), Large<br>Cohen's d =0.78 (NT-3), Medium                                                       |
| 2b           | Ca2+ propagation                               | experiments.<br>PBS= 10 NT-3= 16 XestosponginC= 9 Ryapodine=                                                                           | One-way ANOVA              | Dunnett's multiple comparison                  | PBS vs NT-3 p<0.05                                                              | Cohen's d =0.78 (BDNF), Medium                                                                                        |
| 20           | our propagatori                                | 15,Dantrolene= 18, SKF96365= 12 neurons from 3 independent                                                                             | one may rate are           | Buillet & Hulipic companion                    | 100101110, p10.00                                                               | Concerts d = 1.77, Earge                                                                                              |
| 2c           | Minor neurite outgrowth                        | PBS=21, NT-3=21, XestosponginC=26, Ryanodine=25,<br>Dantrolene=25, SKF96365=24 neurites from 3 independent<br>experiments              | One-way ANOVA              | Dunnett's multiple comparison                  | PBS vs NT-3, p<0.05                                                             | Cohen's d =0.94, Large                                                                                                |
| 2d           | Axon outgrowh                                  | PBS= 7, NT-3= 9, XestosponginC= 9, Ryanodine= 9, Dantrolene=<br>8, SKF96365= 8 neurons from 3 independent experiments.                 | One-way ANOVA              | Dunnett's multiple comparison                  | PBS vs NT-3, Ryanodine, Dantrolene or<br>SKF96365 p<0.05                        | Cohen's d =1.90 (NT-3), Large<br>Cohen's d =1.39 (Ryanodine), Large<br>Cohen's d =1 16 (Dantrolene)   arge            |
| 2f           | Minor neurite outgrowth                        | PBS= 27 NT-3= 31 BAPTA= 47 STO-609= 45                                                                                                 | One-way ANOVA              | Dunnett's multiple comparison                  | PBS vs NT-3 p<0.01                                                              | Cohen's d =1.21 (SKF96365), Large                                                                                     |
| 20           | Minor neurite outgrowth                        | KN-93= 40 neurites from 3 independent experiments.                                                                                     |                            | Dunnett's multiple comparison                  | DMSO us Yestersonais C er Puspedine                                             | Cohon's d =0.02, Large                                                                                                |
| 29           | winter neurite outgrowth                       | SKF96365= 32 neurons from 3 independent experiments.                                                                                   | Olle-way ANOVA             | Dumen's multiple companison                    | p<0.01; DMSO vs Dantrolene or SKF96365,<br>p<0.05                               | Cohen's d =0.50 (XEstaspolight C), Large<br>Cohen's d =1.09 (Ryanodine), Large<br>Cohen's d =0.5 (Dantrolene), Medium |
| 2h           | Axon outgrowh                                  | DMSO= 14, XestosponginC= 11, Ryanodine= 13, Dantrolene= 13,<br>SKE96365- 12 neurons from 3 independent experiments                     | One-way ANOVA              | Dunnett's multiple comparison                  | DMSO vs Xestospongin C, p<0.01                                                  | Cohen's d =1.05, Large                                                                                                |
| 3c           | Minor neurite outgrowth                        | DMSO (PBS)= 16, DMSO (NT-3)= 22, C3= 23,<br>V-27632- 28, Blabbietatin- 22 neuritas from 3 independent                                  | One-way ANOVA              | Dunnett's multiple comparison                  | DMSO (PBS) vs DMSO (NT-3), p<0.05                                               | Cohen's d =1.79, Large                                                                                                |
| 3d           | FRET efficiency                                | experiments.<br>DMSO (PBS)= 37. DMSO (NT-3)= 37. BAPTA= 37. STO-609= 37.                                                               | One-way ANOVA              | Dunnett's multiple comparison                  | DMSO (PBS) vs DMSO (NT-3), p<0.001                                              | Cohen's d>2.0. Large                                                                                                  |
| 3g           | Minor neurite outgrowth                        | KN-93= 37 neurons from 3 independent experiments.<br>LOVTRAP-Cont= 40, LOVTRAP-RhoA= 23,                                               | One-way ANOVA              | Dunnett's multiple comparison                  | LOVTRAP-Cont vs LOVTRAP-RhoA or                                                 | Cohen's d =1.01 (LOVTRAP-RhoA), Large                                                                                 |
|              | Photoactivation for 10 min                     | LOVTRAP-Rho-kinase CAT= 44, LOVTRAP-Rho-kinase CAT KD=<br>36 neurites from 5 independent experiments.                                  |                            |                                                | LOVTRAP-Rho-kinase CAT, p<0.01                                                  | Cohen's d =0.7 (LOVTRAP-Rho-kinase CAT),<br>Medium                                                                    |
|              | Photoactivation for 20 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or<br>LOVTRAP-Rho-kinase CAT, p<0.01               | Cohen's d =1.37 (LOVTRAP-RhoA), Large<br>Cohen's d =1.2 (LOVTRAP-Rho-kinase CAT),<br>Large                            |
|              | Photoactivation for 30 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or<br>LOVTRAP-Rho-kinase CAT, p<0.01               | Cohen's d =1.5 (LOVTRAP-RhoA), Large<br>Cohen's d =1.41 (LOVTRAP-Rho-kinase CAT),                                     |
|              | Photoactivation for40 min                      |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or                                                 | Large<br>Cohen's d =1.89 (LOVTRAP-RhoA), Large<br>Cohen's d =1.72 (LOVTRAP-Rho-kinase CAT)                            |
|              | Photoactivation for 50 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Role of LOVTRAP-RhoA or                                                 | Large<br>Cohen's d>2.0 (LOVTRAP-RhoA), Large                                                                          |
|              | Photoactivation for 60 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Rno-kinase CA1, p<0.01                                                  | Large<br>Cohen's d>2.0 (LOVTRAP-RhoA), Large                                                                          |
|              |                                                |                                                                                                                                        |                            |                                                | LOVTRAP-Rho-kinase CAT, p<0.01                                                  | Cohen's d =1.72 (LOVTRAP-Rho-kinase CAT),<br>Large                                                                    |
|              | After photoactivation                          |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA,p<0.05;<br>LOVTRAP-Cont vs LOVTRAP-Rho-kinase CAT, | Cohen's d=1.16 (LOVTRAP-RhoA), Large<br>Cohen's d =1.05 (LOVTRAP-Rho-kinase CAT),                                     |
| 3i           | Axon outgrowth<br>Photoactivation for 10 min   | LOVTRAP-Cont= 8, LOVTRAP-RhoA= 9,<br>LOVTRAP-Rho-kinase CAT=9, LOVTRAP-Rho-kinase CAT KD= 9                                            | One-way ANOVA              | Dunnett's multiple comparison                  | DVTRAP-Cont vs LOVTRAP-Rho-kinase<br>CAT, p<0.01                                | Large<br>Cohen's d =1.57 (LOVTRAP-Rho-kinase CAT),<br>Large                                                           |
|              | Photoactivation for 20 min                     | neurons trom 3 independent experiments.                                                                                                |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA, p<0.01;                                           | Cohen's d>2.0 (LOVTRAP-RhoA), Large                                                                                   |
|              | Distantiantian (as 20 min                      |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-Rho-kinase CAI,<br>p<0.05                               | Large                                                                                                                 |
|              | Photoactivation for 30 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-Rilox of<br>LOVTRAP-Rho-kinase CAT, p<0.05              | Cohen's d =1.89 (LOVTRAP-RIDA), Large<br>Cohen's d =1.89 (LOVTRAP-Rho-kinase CAT),                                    |
|              | Photoactivation for40 min                      |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or<br>I OVTRAP-Rho-kinase CAT p<0.05               | Cohen's d>2.0 (LOVTRAP-RhoA), Large<br>Cohen's d>2.0 (LOVTRAP-Rho-kinase CAT)                                         |
|              | Photoactivation for 50 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or                                                 | Large<br>Cohen's d>2.0 (LOVTRAP-RhoA), Large                                                                          |
|              |                                                |                                                                                                                                        |                            |                                                | LOVTRAP-Rho-kinase CAT, p<0.05                                                  | Cohen's d>2.0 (LOVTRAP-Rho-kinase CAT),<br>Large                                                                      |
|              | Photoactivation for 60 min                     |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or<br>LOVTRAP-Rho-kinase CAT, p<0.05               | Cohen's d>2.0 (LOVTRAP-RhoA), Large<br>Cohen's d>2.0 (LOVTRAP-Rho-kinase CAT),                                        |
|              | After photoactivation                          |                                                                                                                                        |                            |                                                | LOVTRAP-Cont vs LOVTRAP-RhoA or<br>LOVTRAP-Rho-kinase CAT, p<0.05               | Large<br>Cohen's d>2.0 (LOVTRAP-RhoA), Large<br>Cohen's d>2.0 (LOVTRAP-Rho-kinase CAT),                               |
| 5b           | Minor neurite outgrowth                        | Cont= 17, Y-27632= 14, C3= 13, Blebbistatin= 7 neurons from 3                                                                          | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs Y-27632, p<0.01; Cont vs C3 or<br>Blebhistatin, p<0.05                  | Large<br>Cohen's d=1.62 (Y-27632), Large<br>Cohen's d=0.95 (C3) Large                                                 |
| 5d           | Mutiple axon formation                         | Independent experiments.                                                                                                               | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs Y-27632, C3 or Blebbistatin, p<0.01                                     | Cohen's d=1.38 (Blebbistatin), Large<br>Cohen's d>2.0 (Y-27632), Large                                                |
|              |                                                | independent experiments.                                                                                                               |                            |                                                |                                                                                 | Cohen's d>2.0 (C3), Large<br>Cohen's d>2.0 (Blebbistatin), Large                                                      |
| 5e           | Length of multiple axons                       |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs Y-27632, C3 or Blebbistatin, p<0.05                                     | Cohen's d=0.64 (Y-27632), Medium<br>Cohen's d=0.69 (C3), Medium<br>Cohen's d=0.74 (Blebbistatin), Medium              |
| 5f           | Length of longest neurite                      |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs Y-27632, C3 or Blebbistatin, p<0.01                                     | Cohen's d>2.0 (Y-27632,) Large<br>Cohen's d>2.0 (C3), Large<br>Cohen's d>2.0 (Blebbistatin), Large                    |
| 5g           | Length of total neurites                       |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs Y-27632, C3 or Blebbistatin, p<0.01                                     | Cohen's d>2.0 (Y-27632), Large<br>Cohen's d>2.0 (C3), Large<br>Cohen's d>2.0 (Blebbistatin), Large                    |
| 6e           | pT103 GEF-H1                                   | GEF-H1= 3, GEF-H1 + CaMKI WT= 3, GEF-H1 + CaMKI CA= 3,<br>GEF-H1 + CaMKI KD= 3, GEF-H1 T103A + CaMKI CA = 3<br>independent experiments | One-way ANOVA              | Dunnett's multiple comparison                  | GEF-H1 vs GEF-H1 + CaMKI CA,<br>p<0.05                                          | Cohen's d>2.0, Large                                                                                                  |
| 6g           | pT103 GEF-H1                                   | Cont= 3, NT-3= 3,<br>NT-3 + KN-93 = 3 indenpendet experiments                                                                          | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs NT-3, p<0.05,                                                           | Cohen's d>2.0, Large                                                                                                  |
| 7a           | Minor neurite outgrowth                        | siCont/PBS= 29, siCont/NT-3= 26, siGEF-H1#2/PBS= 23,<br>siGEF-H1#2/NT-3= 26 neurites from 3 independent experiments.                   | One-way ANOVA              | Dunnett's multiple comparison                  | siCont/PBS or siGEF-H1#2/NT-3 vs siCont/NT-<br>3. p<0.01                        | Cohen's d=1.19 ( siCont/NT-3), Large                                                                                  |
| 7b           | FRET efficiency                                | siCont/PBS= 5, siCont/NT-3= 8, siGEF-H1#2/PBS= 6, siGEF-<br>H1#2/NT-3= 15 neurops from 3 independent experiments                       | One-way ANOVA              | Dunnett's multiple comparison                  | siCont/PBS vs siCont/NT-3, p<0.01<br>siCont/PBS vs siGEF-H1#2 P<0.01            | Cohen's d=1.07 ( siCont/NT-3), Large<br>Cohen's d=0.74 ( siGEF-H1/NT-3) Medium                                        |
| 7d           | GEF activity                                   | Cont= 4, CaMKI WT= 4, CaMKI CA= 4, CaMKI KD= 4<br>independent experiments                                                              | One-way ANOVA              | Dunnett's multiple comparison                  | Cont vs CaMKI CA, p<0.05                                                        | Cohen's d>2.0, Large                                                                                                  |
| 7f           | GEF activity                                   | GEF-H1 WT=4, GEF-H1 T103A=4,<br>GEF-H1 1102E = 4 independent experiments                                                               | One-way ANOVA              | Dunnett's multiple comparison                  | GEF-H1 WT vs GEF-H1 T103E, p<0.01                                               | Cohen's d>2.0, Large                                                                                                  |
| 7h           | Mutiple axon formation                         | GST = 86, GEF-H1 WT= 90, GEF-H1 T103E= 88,<br>GEF H1 T102A = 00 nourons from 2 independent experiments                                 | One-way ANOVA              | Dunnett's multiple comparison                  | GEF-H1 WT vs GEF-H1 T103A, p<0.01                                               | Cohen's d>2.0, Large                                                                                                  |
| 7i           | Length of multiple axons                       |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | GST vs GEF-H1 T103E or<br>GEE-H1 T103A p<0.05                                   | Cohen's d>2.0 (GEF-H1 T103E), Large<br>Cohen's d=1 18 (GEF-H1 T103A), Large                                           |
| 7j           | Length of longest neurite                      |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | GST vs GEF-H1 T103E or<br>GEE-H1 T103A p<0.05                                   | Cohen's d>2.0 (GEF-H1 T103E), Large<br>Cohen's d>2.0 (GEF-H1 T103E), Large                                            |
| 7k           | Length of total neurites                       |                                                                                                                                        | One-way ANOVA              | Dunnett's multiple comparison                  | GST vs GEF-H1 T103A, p<0.05<br>GEF-H1 T103A, p<0.05                             | Cohen's d>2.0 (GEF-H1 T103A), Large<br>Cohen's d>2.0 (GEF-H1 T103A), Large                                            |
| 8b           | Distribution of cells in vivo                  | pTa-LPL-EGFP = 6, pTa-LPL-GEF-H1-WT= 9,<br>pTa-LPL-GEF-H1-T103E = 9, pTa-LPL-GEF-H1-T103A = 4                                          | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs GEF-H1WT, T103E or<br>GEF-H1 T103A, p<0.01                              | Cohen's d>2.0 (GEF-H1 WT), Large<br>Cohen's d>2.0 (GEF-H1 T103E), Large                                               |
| 8c           | Morphology of cells in vivo                    | brains from 3 independent experiments.                                                                                                 | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs GEF-H1WT, T103E or<br>GEF-H1 T103A, p<0.01                              | Cohen's d>2.0 (GEF-H1 T103A), Large<br>Cohen's d>2.0 (GEF-H1 WT), Large<br>Cohen's d>2.0 (GEF-H1 T103E) Large         |
| 8d           | Trailling process fromation                    |                                                                                                                                        | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs GEF-H1 WT or GEF-H1 T103E,                                              | Cohen's d>2.0 (GEF-H1 T103A), Large<br>Cohen's d>2.0 (GEF-H1 WT), Large                                               |
| 8e           | Leading process formation                      |                                                                                                                                        | One-way ANOVA              | Tukey's multiple comparison                    | p<0.01<br>Cont vs GEF-H1 WT, GEF-H1 T103E, GEF-H1<br>T103A, p<0.01              | Conen's d>2.0 (GEF-H1 T103E), Large<br>Cohen's d>2.0 (GEF-H1 WT), Large<br>Cohen's d>2.0 (GEF-H1 T103E), Large        |
| 8g           | Distribution of cells in vivo                  | pSico-mCherry= 4, pSico-mCherry-shGEF-H1 #1= 8, pSico-<br>mCherry-shGEF-H1 #2= 4, pTo LPL GEF H4 W7 Part #                             | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs shGEF-H1#1, shGEF-H1#2,<br>GEE_H1 T103E Res or GEE_H4 T4004             | Cohen's d>2.0 (GEF-H1 T103A), Large<br>Cohen's d>2.0 (shGEF-H1#1), Large                                              |
|              |                                                | LPL-GEF-H1-T103E Res= 13,<br>pTa-LPL-GEF-H1-T103E Res= 10 brains from 3 independent                                                    |                            |                                                | Res,p<0.01                                                                      | Cohen's d>2.0 (SINGER-r11#12), Large<br>Cohen's d>2.0 (T103E Res), Large<br>Cohen's d>2.0 (T103A Res), Large          |
| 8h           | Morphology of cells in vivo                    | experiments.                                                                                                                           | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs shGEF-H1#1, shGEF-H1#2,                                                 | -<br>Cohen's d>2.0 (shGEF-H1#1), Large                                                                                |
|              |                                                |                                                                                                                                        |                            |                                                | GEF-H1 T103E Res or GEF-H1 T103A<br>Res,p<0.01                                  | Cohen's d>2.0 (shGEF-H1#12), Large<br>Cohen's d>2.0 (T103E Res), Large                                                |
| 8i           | Trailling process fromation                    |                                                                                                                                        | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs GEF-H1 T103E, p<0.01                                                    | Conen's d>2.0 (1103A Res), Large<br>Cohen's d>2.0 (T103E Res), Large                                                  |
| 8j           | Leading process formation                      |                                                                                                                                        | One-way ANOVA              | Tukey's multiple comparison                    | Cont vs shGEF-H1#1, shGEF-H1#2,<br>GEE-H1 T103E Res or GEE H1 T102A             | Cohen's d>2.0 (shGEF-H1#1), Large                                                                                     |
|              |                                                |                                                                                                                                        |                            |                                                | Res,p<0.01                                                                      | Cohen's d>2.0 (T103E Res), Large<br>Cohen's d>2.0 (T103A Res), Large                                                  |
| S1           | Axon outgrowth<br>Local application for 30 min | anti-Cont= 13, anti-NT-3= 13 neurons from 3 independent<br>experiments.                                                                | Student's t-test           |                                                | anti-Cont vs anti-NT-3, p<0.01                                                  | Cohen's d=1.54, Large                                                                                                 |
|              | Axon outgrowth<br>Local application for 40 min |                                                                                                                                        |                            |                                                |                                                                                 | Cohen's d=1.49, Large                                                                                                 |
|              | Axon outgrowth<br>Local application for 50 min |                                                                                                                                        |                            |                                                |                                                                                 | Cohen's d=1.83, Large                                                                                                 |
|              | Axon outgrowth<br>Local application for 60 min |                                                                                                                                        |                            |                                                |                                                                                 | Cohen's d=1.72, Large                                                                                                 |
| S2b          | Minor neurite outgrowth                        | DMSO= 67, ionomycin= 30 neurites from 3 independent<br>experiments.                                                                    | Student's t-test           |                                                | DMSO vs ionomycin, p<0.05                                                       | Cohen's d=0.52 (ionomycin), Medium                                                                                    |
| S2e          | Minor neurite outgrowth                        | DMSO=59, ionomycin=33, BAPTA= 24,<br>KN-93= 21 neurites from 3 independent experiments.                                                | Student's t-test           |                                                | DMSO vs ionomycin, BAPTA or KN-93, p<0.05                                       | Cohen's d=1.03 (ionomycin), Large<br>Cohen's d=0.67 (BAPTA), Medium                                                   |
| S7e          | pGEF-H1                                        | PBS= 10, NT-3= 12 neurons from 3 independent experiments.                                                                              | Student's t-test           |                                                | PBS vs NT-3, p<0.05                                                             | Cohen's d=0.87 (KN-93), Large<br>Cohen's d>2.0, Large                                                                 |
| S8g          | Mutiple axon formation                         | shCont= 90, shGEF-H1#1= 90, shGEF-H1#2= 90,                                                                                            | One-way ANOVA              | Tukey's multiple comparison                    | shCont vs shGEF-H1#1, shGEF-H1#2,<br>T1034 Res p=0.05                           | Cohen's d>2.0 (shGEF-H1#1), Large                                                                                     |
| S8h          | Length of longest neurite                      | GEF-H1T103A Res= 90 neurons from 3 independent experiments.                                                                            | One-way ANOVA              | Tukey's multiple comparison                    | shCont vs shGEF-H1#1. shGFF-H1#2                                                | Cohen's d>2.0 (T103A Res), Large<br>Cohen's d>2.0 (shGEF-H1#1). Large                                                 |
|              |                                                |                                                                                                                                        | .,                         |                                                | T103A Res, p<0.01                                                               | Cohen's d>2.0 (shGEF-H1#12), Large<br>Cohen's d>2.0 (T103A Res), Large                                                |
| S8i          | Length of total neurites                       |                                                                                                                                        | One-way ANOVA              | I ukey's multiple comparison                   | shCont vs shGEF-H1#1, shGEF-H1#2,<br>T103A Res, p<0.01                          | Cohen's d>2.0 (shGEF-H1#1), Large<br>Cohen's d>2.0 (shGEF-H1#12), Large<br>Cohen's d>2.0 (T103A Res), Large           |