CHEMPHYSCHEM

Supporting Information

C1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy

Grzegorz Greczynski* and Lars Hultman^[a]

cphc_201700126_sm_miscellaneous_information.pdf

Methods

The adventitious carbon layers analyzed in this study are accumulated on the surfaces of polycrystalline (TM)N thin films, where TM = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W grown by reactive dc magnetron sputtering in Ar/N₂ gas mixtures. The total pressure P_{tot} during all depositions is kept constant at 3 mTorr (0.4 Pa), while the N₂–to-Ar flow ratio is optimized for each target material to obtain stoichiometric single-phase nitrides. Si(001) is used as a substrate and the film growth is performed at the temperature T_s of 470±12 °C. To minimize surface roughness, the resulting film thickness is kept relatively low, from 140 nm for TiN to 420 nm for WN. Following the growth, the vacuum vessel is evacuated with N₂ (99.999 % pure) once the sample temperature drops below 230 °C in order to ensure consistency of obtained results,ⁱ which typically requires ~100 min wait. Samples are subsequently exposed to laboratory air (40 % RH, 23 °C) for less than 2 min necessary to transfer them to the ultrahigh-vacuum (UHV) XPS system. Further details about (TM)N layers including elemental composition, crystalline structure, and surface roughness can be found in reference ⁱⁱ.

C 1s and valence band (VB) XPS spectra are recorded in Axis Ultra DLD instrument (Kratos Analytical, UK) employing monochromatic Al K α radiation (hv = 1486.70 eV). The base pressure during spectra acquisition is 1.1×10^{-9} Torr (1.5×10^{-7} Pa). The same instrument is used for work function ϕ_{SA} measurements performed using ultraviolet photoelectron spectroscopy (UPS) with unmonochromatized He I radiation (hv = 21.22 eV). ϕ_{SA} is obtained from the secondary electron cutoff energy in the He I UPS spectra, according to the standard procedure described in detail elsewhere,ⁱⁱⁱ with the accuracy of ±0.05 eV. ϕ_{SA} of the sputter-cleaned reference Au sample is 5.30 eV, which agrees very well with the textbook values that span from 5.0 to 5.4 eV.ⁱⁱⁱ The binding energy scale is calibrated by examining sputter-cleaned Au, Ag, and Cu samples according to the recommended ISO standards for monochromatic Al K α sources that place Au 4f_{7/2}, Ag 3d_{5/2}, and Cu 2p_{3/2} peaks at 83.96, 368.21, and 932.62 eV,

respectively.^{iv,v} The Fermi level cut-off for all three metal samples defines the "0" of the BE scale. The charge neutralizer was not used in any of the reported experiments. C 1s peak models are constructed using CasaXPS software,^{vi} Shirley type background^{vii} (except for the spectra recorded from MoN and WN samples, where linear background was necessary), and Voigt functions with 70% Gaussian contribution.

Samples are first analyzed in the "as-received" state, i.e., following the ~100 min long exposure to residual gases in the growth chamber and <2 min long ambient exposure. After that all TMN surfaces are sputter-etched with 0.5 keV Ar⁺ ions incident at an angle of 70° with respect to the sample normal. The ion beam is rastered over a 3×3 mm² area, while the analysis area is 0.3×0.7 mm² and centered in the middle of the ion-etched crater. XPS and UPS characterization is then performed on cleaned surfaces and following the exposure to laboratory air for 10 min, 100 min, 1 day, 1 week, 1 month, and 7 months. The thickness of AdC layers are estimated from the relative intensities of core level signals using a Hill equation.^{viii}

ⁱ G. Greczynski, S. Mráz, L. Hultman, J.M. Schneider, Appl. Phys. Lett. 2016, 108, 041603

ⁱⁱ G. Greczynski, D. Primetzhofer, J. Lu, and L. Hultman, Appl. Surf. Sci. 2017, 396, 347

ⁱⁱⁱ see for example: Chapter 1 in S. Hűfner "Photoelectron Spectroscopy: Principles and Applications", 3rd Ed. Springer **2003**, ISSN 1439-2674

^{iv} M.P. Seah, Surf. Interf. Anal. 2001, 31, 721

^v ISO 15472, "Surface chemical analysis- *x*-ray photoelectron spectrometers - calibration of energy scales" (ISO, Geneva, **2001**)

 ^{vi} See N. Fairley "XPS Lineshapes and Curve Fitting" in "Surface Analysis by Auger and X-ray Photoelectron Spectroscopy" Ed. D. Briggs and J.T. Grant, IM Publications, Manchester, 2003, p.397
^{vii} D. A. Shirley, *Physical Review B* 1972, 5, 4709

^{viii} we estimate the thickness *d* of the adventitious carbon from the Hill equation: $d = \lambda ln(1 + (l_0/s_0)/(l_s/s_s))$, in which *I* stands for signal intensity, *s* is the sensitivity factor, and λ is the mean free path for electrons with the energy of 1 keV in the carbon overlayer (here 20 Å, based on values given in Ref. **Fehler! Textmarke nicht definiert.**). Indices "O" and "S" refer to carbon overlayer and the substrate. See: P.J. Cumpson "Angle-resolved XPS" in "Surface Analysis by Auger and X-ray Photoelectron Spectroscopy", edited by D. Briggs and J.T. Grant, IM Publications and Surface Spectra Limited (UK), 2003.