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ABSTRACT In previous papers we proposed a theory of
internal supersymmetry using the superalgebra su(n/1) to give
rise to a unified structure that included quarks and leptons in
2n-5 generations. In the present paper we suggest that the
notion of superconnections as introduced by Quillen provides
a natural setting for the dynamics of an internally supersym-
metric theory with the Higgs field occurring as the "zero-th
order part" of the superconnection. The Higgs mechanism
enters quadratically into the curvature of the superconnection
and hence quartically into the Lagrangian. The supercovariant
derivative gives a coupling of the Higgs field to the matter field
similar to that put in "by hand" in the Lagrangian of the
Weinberg-Salam theory.

In ref. 1 it was noted that the number of independent
assumptions required by the Weinberg-Salam SU(2) x U(1)
theory can be reduced by assuming that the structure (gauge)
group SU(2) x U(1) is associated to the even part of the
superalgebra su(2/1) that acts internally on the matter fields
(cf. also ref. 2). In ref. 3 it was shown how the basic
representations of sl(2/1) occurring in ref. 1 could be ex-
tended to sl(n/1) and so give rise to a unified structure that
included quarks and leptons in 2- generations. These
representations have been discussed in terms of Howe pairs
and dimensional reduction in ref. 4. It was proposed in ref. 5
that for a theory of internal supersymmetry, the natural
"Grassmann variables" to tensor with the internal superal-
gebra are the differential forms on the base manifold, and an
attempt was made to construct a dynamics using a connection
associated to this structure. In the present paper we suggest
that the notion of superconnections as introduced by Quillen
(6) provides a natural setting for the dynamics ofan internally
supersymmetric theory with the Higgs field occurring as the
"zero-th order part" of the superconnection. The Higgs
enters quadratically into the curvature of the superconnec-
tion and hence quartically into the Lagrangian. The super-
covariant derivative gives a coupling of the Higgs field to the
matter field similar to that put in "by hand" in the Lagrangian
of the Weinberg-Salam theory. A good reference for the
material on superconnections and equivariant superconnec-
tions has been given by Berlin et al. (7).

Section 1. Generalities

Recall (8) that if A = AO D A1 and B = Bo (D B1 are super-
algebras, then the superalgebra A 0 B is defined by

(A 0B)o = A00BoEDAl 0B1,

(A 0B), = A1 BoDAo0B1, [11]

with multiplication (on homogeneous elements) given by

(a 0 b)(a'O( b') = (- 1)Ibjja'aa'Obb', [1.2]

where jal denotes the degree of a. For example, suppose that
A is the (supercommutative) superalgebra of all differential
forms on a manifold M and that B = End E, where E = Eo E
E1 is a supervector space. Thus Bo consists of all "matrices"
of the form

/R O\
(O s R E End(EO), S E End(El),

while Bi consists of all "matrices" of the form

lo K\
L o) K E Hom(E1, EO), L E Hom(EO, E1).

If we choose bases of Eo and E1 then we can think of R, S, K,
and L as actual matrices. We can then think of elements ofA
0B as matrices whose entries are differential-forms forms, but
we must remember rules 1.1 and 1.2. For example, if c0 and
co are matrices of differential forms of odd exterior degree
then

(coo °)

is an odd element of A 0 B. Similarly, if Lo1 and L1o are
matrices of forms of even exterior degree, then

isLoal

is an odd element of A 0 B. Then rule 1.2 says that

(ao O)(OO
whi0l

while

(0 Lolt(oo 0

L1jo 0 ct1

Lo, = (

O oiVsALlo

0
= Lj0 A co0

cwoA Lo,)
O

-Lo, A\ cot

O

[1.3a]

[1.3b]

The minus sign in Eq. 1.3b arises from passing the odd
elements of B through the differential forms of odd exterior
degree as prescribed by rule 1.2. In this example we can
consider the supervector space A 0 E with grading as in rule
1.1. Then A 0 E is a (left) module for A 0 B where we apply
the sign rule analogous to rule 1.2. Thus

A0 B C End(A0 E).

We can think ofA as embedded in A 0 B as A 0 I and this
makesA 0 E into anA module where the action is the obvious
one. Since A 0 E is a supervector space, End(A 0 E) is a
superalgebra. It is easy to see that an element of End(A 0 E)
belongs to A 0 B if and only if it supercommutes with all
elements of A. In other words,

A 0B is the supercentralizer of A inside End(A 0 E). [1.4]
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We can define the (odd) operator d E End(A 0 E) by

d(a 03 e) = dax ( e,

where da is the usual exterior derivative of the differential
form a. We can write this definition symbolically as defining
d as the "matrix"

d( )

If, by abuse of notation, we let a denote multiplication by a
as an element of End(A 0 E) then the supercommutator of d
with a is given by

[d, a] = dia, [1.5]

where the right-hand side denotes multiplication by ca. More
generally, for any a (0 b E A 0 B we have

[d, a(b] = dca b.

So if, for o- E A 0 B, we define dco by

d(a 9b) = da b,

then we can write Eq. 1.6 as

[d, o] =dci foro E A0 B.

[1.61

[1.7]

ential forms onM and A(M, E), the space of smooth E-valued
forms. Then A(M, E) is a module for A(M) as before. We can
consider End(A(M, E)) and A(M, End(E)) so that

A(M, End(E)) C End(A(M, E)).

The analogue of statement 1.4 is

A(M, End(E)) is the centralizer of

A(M) in End(A(M, E)). [2.1]

In fact, A(M, End(E)) is the centralizer of the ring of
functions, A0(M), in End(A(M, E)). An odd element, D E
End(A(M, E))1, is called a superconnection if

[D, a] = da for all a E A(M). [2.2]

In other words,

D: A(M, E)o-* A(M, E)1, D: A(M, E)1-* A(M, E)o

and

D(aA o) = dciA a-+ (-1)Ila aADo,

for all a E A(M) and or E A(M, E).

The curvature F = F(D) of the superconnection is defined as

In particular, if w is an odd element of A 0 B then

(d + w)2 = d2 + [d, W(] + -2= ci + 02.

F = D2.

[1.8]

Note that the right-hand side of Eq. 1.8 is an element ofA 0
B. If we write co out as a "matrix"

cO (o Lo)l [1.9]

[2.31

Note that for any function f we have

[D2, f] = [D, f]D + D[D, f] = (df)D + D(df)

= [D, df] = ddf=O.

Thus

F E A(M, End(E))O.
then we can write Eq. 1.8 as

(d + a)2 -

( ciw0 + 0 Aw0 + Lo, A L10 dLoL + woA Lo, - Lo, A o1
cdL10 + (1AL1 --L1oA0(o11 + w1A w + LjoAL0j /

[1.10]

We should remember that in Eq. 1.10 the w and L terms are
matrices of even and odd forms, respectively, but not nec-
essarily homogeneous with respect to exterior degree. Thus,
if the base space is four-dimensional then

woo = AO + CO,

where AO is a matrix of one forms and CO is a matrix of three
forms and similarly for wl. Also

Lo, = hol + Bo, + Do,,

where hol is a matrix of functions, Bo, is a matrix of two
forms, and Do1 is a matrix offour forms and similarly for L10.
The A occurring in Eq. 1.10 denotes matrix multiplication
where the matrix entries are multiplied via exterior multipli-
cation.

Section 2. Superconnections

Now let E --* M be a supervector bundle over an ordinary
manifold M. So E = Eo 1 E1, where EO and E1 are ordinary
vector bundles. Let A(M) denote the ring of smooth differ-

[2.4]

The difference D1 - D2 between two superconnections is an
element of A(M, End(E)) by Eq. 2.3. Hence, in terms of a
local trivialization of E, the most-general superconnection
can be written locally as

D = d + a), w E A(M, End(E))1. [2.5]

This means that the local expression for the curvature is given
by Eq. 1.8 or, in "matrix" language, by Eq. 1.10. Ifp is any
polynomial (or entire function) of one variable and Str
denotes the supertrace, then (cf. ref. 6 or ref. 7) Str(p(F)) is
a closed form; i.e.,

Str(p(F)) E A(M) and dStr(p(F)) = 0.

Furthermore, up to an exact form, Str(p(F)) is independent
of the choice of the superconnection; i.e.,

Str(p(F(D1))) - Str(p(F(D2))) = cia(D1, D2),

where a(Dl, D2) is a differential form that has a simple
expression in terms of D1 and D2. Thus, for example, the
Chern character corresponds to p(z) = e-z (for all this, see
refs. 6 and 7). Now Str(ab) is antisymmetric in a and b if a and
b are both odd elements of End(E). Hence if a and a are odd
forms, the expression Str(a 0 a)(*pB 0 b) is antisymmetric as
a function of a 0 a and ,p 0 b. Furthermore, on the even
terms, an expression such as Str(F*F) in the Lagrangian will
lead to negative kinetic energy terms for the dynamics (unless
EO or E1 is trivial). Hence we proceed as follows: choose an
invariant bilinear form b on the Lie algebra End(E)O. Here
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invariant means invariant under the "even group" Aut(EO) x
Aut(E1). As the adjoint representation of this group is not
irreducible, there will be some choices here, beyond overall
scale. In the case of eventual interest to us, this amounts to
the choice of Weinberg angle. We will see how this choice is
made in our theory. Then the Lagrange density for the purely
Yang-Mills part of the theory is

Y-M(D) = b(F, *F) [2.6]

as usual. If we identify End(E), with the Higgs sector, then
the Lo, entering into "matrix" 1.9 contains, as components
of exterior degree zero, sections of End(E)1, that is to say
Higgs fields. From "matrix" 1.10 we see that the Higgs field
enters quadratically into the curvature, and hence Eq. 2.6 is
a polynomial of degree four in the Higgs. For the case of
su(n/1) as internal superalgebra, a natural choice of b is as
follows: For su(n/1), we have go = su(n) E R = su(n) and g1
= C'. As a vector space, and also as far as the action of go
on g, is concerned, we have go @ g1 su(n + 1). The
difference lies in the bracket of g1 x g1 go, one bracket
being symmetric and giving a Lie superalgebra and the other
being antisymmetric and giving a Lie algebra. Indeed these
two structures are related to one another via the notion of a
Hermitian Lie algebra (see the first few pages of ref. 9 and cf.
also ref. 10). So a natural choice would be to take b to be the
Killing form of su(n + 1), and this was the choice made for
the case n = 2 in refs. 1 and 2 for determination of the
Weinberg angle.
The theory of superconnections can, of course, also be

formulated in terms of principal and associated bundles (cf.
ref. 7): If g = go @ g1 and G is a Lie group whose Lie algebra
is go, then a superconnection will be a g-valued form on PG
of total odd degree (subject to conditions generalizing the

standard ones for connections), where PG is a principal
bundle with structure group G. If F is a supervector bundle
associated to a representation of (G, g) on a supervector
space V, then the superconnection form on PG induces a
superconnection D on F. If S is the spin bundle, then we can
use D to modify the Dirac operator and so obtain the operator
y(D): F 0 S -- F 0 5. A superinvariant bilinear form on F
then gives the matter field contribution to the Lagrangian as
(., 'y(D).) on FO S. Notice that this involves a cubic term that
is quadratic in the matter field and of first order in the Higgs
field, as in the Weinberg-Salam Lagrangian.
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