Supporting Information

Biosynthesis of Fluorinated Peptaibols Using a Site Directed Building Block Incorporation Approach

José Rivera-Chávez,[†] Huzefa A. Raja,[†] Tyler N. Graf,[†] Joanna E. Burdette,[‡] Cedric J. Pearce,[§] and Nicholas H. Oberlies^{†,*}

[†]Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box. 26170, Greensboro, North Carolina 27412, United States

[‡]Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Illinois 60612, United States

[§]Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, North Carolina 27278, United States

TABLE OF CONTENTS

Page

C	\mathbf{r}
S	4

Experimental

Table of contents

Fungal strain isolation and identification		
Fermentation, extraction and isolation	S13	
Culture conditions optimization	S14	
Preparation of ortho-F-Pheol and meta-F-Pheol standards	S15	
References	S56	

List of figures

Figure S1. Cultures of MSX70741 (*Trichoderma arundinaceum*) grown on Potato Dextrose Agar (PDA) under four different conditions for 21 days. A) Normal PDA. B) PDA supplemented with *ortho*-F-DL- S5 Phe. C) PDA supplemented with *meta*-F-DL-Phe. D) PDA supplemented with *para*-F-DL-Phe.

Figure S2. Phylogram of the most likely tree (-lnL = 7876.71) from a RAxML analysis of 52 taxa based on *RPB2* sequence data (1063 bp). Numbers refer to RAxML bootstrap support values \geq 70% based on 1000 replicates. Strain MSX70741 was identified as *Trichoderma arundinaceum* (Bold, highlighted in gray). A 14 d old culture on Potato Dextrose Agar media is shown. Bar indicates nucleotide substitutions per site.

Figure S3. Phylogram of the most likely tree (-lnL = 3836.71) from a RAxML analysis of 41 taxa based on *tef-1* sequence data (518 bp). Numbers refer to RAxML bootstrap support values $\geq 70\%$ based on 1000 replicates. Strain MSX70741 was identified as *Trichoderma arundinaceum* (Bold, highlighted in gray). Bar indicates nucleotide substitutions per site.

Figure S4. *Trichoderma arundinaceum* (MSX70741). 1. Pustules showing protruding conidiophores. 2. Conidiophore on PDA (Difco). 3. Conidia. 4. 14 d old culture on PDA media; Scale Bars: $1 = 100 \,\mu$ m, S11 2, $3 = 20 \,\mu$ m.

Figure S5. Phylogram of the most likely tree (-lnL = 9524.67) from a RAxML analysis of 103 taxa based on *RPB2* sequence data (1060 bp). Numbers refer to RAxML bootstrap support values \geq 70% based on 1000 replicates. Strain MSX57715 was identified as *Trichoderma albolutescens* (highlighted in gray). A S12 14 d old culture on Potato Dextrose Agar media is shown. Bar indicates nucleotide substitutions per site. *Protocrea farinosa* is used as an outgroup.

Figure S6. Structures of ortho-F-D-pheol (7), ortho-F-L-pheol (8), meta-F-D-pheol (9), and meta-F-L-	\$15
pheol (10).	515

Figure S7. Marfey's analysis of standards.S17Figure S8. Marfey's analysis of alamethicin F50 (1).S17Figure S9. Marfey's analysis of *ortho*-F-Pheol alamethicin F50 (2).S18

Figure S11. A) Full scan positive HRESIMS for extracts of MSX70741 cultured in rice and rice supplemented with *ortho*, *meta*, and *para*-F-DL-Phe (from the top to the bottom), indicating the incorporation of *ortho* and *meta*-F-Phe into the alamethicin F50 molecule. B) Expansion of region at m/z S19 1960-1990. C) Expansion of region at m/z 770-800. Diagnostic signals for the incorporation of fluorine have been boxed.

Figure S12. Key HMBC, TOCSY and NOESY correlations for compounds 1-3.	S26
Figure S13. A) Full scan positive HRESIMS for compound 1. B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.	S27
Figure S14. ¹ H-NMR spectrum of alamethicin F50 (1) in CD ₃ OH (recorded at 700 MHz).	S28
Figure S15. ¹³ C-NMR spectrum of alamethicin F50 (1) in CD ₃ OH (recorded at 175 MHz).	S29
Figure S16 . 1 H- 1 H COSY of alamethicin F50 (1) in CD ₃ OH.	S 30
Figure S17. ¹ H- ¹ H TOCSY of alamethicin F50 (1) in CD ₃ OH.	S 31
Figure S18. ¹ H- ¹ H NOESY of alamethicin F50 (1) in CD ₃ OH.	S32
Figure S19. ¹ H- ¹³ C HSQC of alamethicin F50 (1) in CD ₃ OH.	S33
Figure S20 . ¹ H- ¹³ C HMBC of alamethicin F50 (1) in CD ₃ OH.	S34
Figure S21 . A) Full scan positive HRESIMS of <i>ortho</i> -F-Pheol alamethicin F50 (2). B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.	S35
Figure S22. The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 792.43 generated from the $[M+2H]^{2+}$ ion (bottom) for compound 2 .	S36
Figure S23 . ¹ H-NMR spectrum of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH (recorded at 700 MHz).	S37
Figure S24. ¹³ C-NMR spectrum of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH (recorded at 175 MHz).	S38
Figure S25. ¹ H- ¹ H COSY of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH.	S39
Figure S26. ¹ H- ¹ H TOCSY of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH.	S40
Figure S27. ¹ H- ¹ H NOESY of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH.	S41
Figure S28. ¹ H- ¹³ C HSQC of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH.	S42
Figure S29. ¹ H- ¹³ C HMBC of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH.	S43
Figure S30 . ¹⁹ F-NMR spectrum of <i>ortho</i> -F-Pheol alamethicin F50 (2) in CD ₃ OH (recorded at 470 MHz).	S44
Figure S31 . A) Full scan positive HRESIMS of <i>meta</i> -F-Pheol alamethicin F50 (3). B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.	S45
Figure S32. The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 792.44 generated from the $[M+2H]^{2+}$ ion (bottom) for compound 3 .	S46
Figure S33. ¹ H-NMR spectrum of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH (recorded at 700 MHz).	S47
Figure S34. ¹³ C-NMR spectrum of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH (recorded at 175 MHz).	S48
Figure S35. ¹ H- ¹ H COSY of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH.	S49
Figure S36. ¹ H- ¹ H TOCSY of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH.	S 50
Figure S37. ¹ H- ¹ H NOESY of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH.	S51
Figure S38. ¹ H- ¹³ C HSQC of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH.	S52
Figure S39. ¹ H- ¹³ C HMBC of <i>meta</i> -F-Pheol alamethicin F50 (3) in CD ₃ OH.	S53

Figure S40. ¹⁹F-NMR spectrum for *meta*-F-Pheol alamethicin F50 (3) in CD₃OH (recorded at 470 MHz). S54

Figure S41. Comparison of the ¹H-NMR spectra for compounds **1** (maroon), **2** (green), and **3** (blue). S55 Recorded at 700 MHz in CD₃OH.

List of tables

Table S1. PCR protocols and primers used for identification of Trichoderma spp.	S 7
Table S2 . NMR data for D and L <i>ortho</i> and <i>meta</i> -F-Phenylalanine (8 and 9). Data recorded in CD ₃ OH. ¹ H (500 MHz), ¹³ C (125 MHz) and ¹⁹ F (470 MHz)	S16
Table S3. NMR data for alamethicin F50 (1). Data recorded in CD ₃ OH. ¹ H (700 MHz), ¹³ C (175 MHz)	S20
Table S4 . NMR data for <i>ortho</i> -F-Pheol alamethicin F50 (2). Data recorded in CD ₃ OH. ¹ H (700 MHz), ¹³ C (175 MHz), and ¹⁹ F (470 MHz)	S22
Table S5 . NMR data for <i>meta</i> -F-Pheol alamethicin F50 (3). Data recorded in CD ₃ OH. ¹ H (700 MHz), ¹³ C (175 MHz), and ¹⁹ F (470 MHz)	S24

List of schemes

Scheme S1. Culture conditions of MSX70741 and MSX57715 on rice (EC, control) and rice supplemented with a racemic mixture of *ortho*, *meta* or *para*-F-phenylalanine (E2-E4).

Scheme S2. Experiments designed for optimization of culture conditions for biosynthesis of fluorinated alamethicin F50 analogues. S14

Scheme S3. Synthetic strategy for the preparation of *ortho*-F-Pheol and *meta*-F-Pheol standards. S15

Figure S1. Cultures of MSX70741 (*Trichoderma arundinaceum*) grown on Potato Dextrose Agar (PDA) under four different conditions for 21 days. A) Normal PDA. B) PDA supplemented with *ortho*-F-DL-Phe. C) PDA supplemented with *meta*-F-DL-Phe. D) PDA supplemented with *para*-F-DL-Phe.

Fungal strain isolation and identification

Mycosynthetix fungal strain MSX70741 was isolated from wood collected in a humid mountain forest (April 1993), while strain MSX57715 was isolated from leaf litter in a predominately oak forest (October 1991) both by Dr. Barry Katz.¹ Both strains were used previously for the isolation of peptaibols.¹ At that time, we utilized the D2 region of the 28S rDNA and classified the above two strains only to ordinal level as Hypocreales spp. (GenBank accessions: JN377382 and JN377381, respectively). Based on morphological examination of the strains grown on potato dextrose agar (PDA, Difco), we were able to identify the strains as belonging to the genus Trichoderma. In this study, we sequenced three gene regions, specifically the partial fragment of translation elongation factor 1-alpha (tef1), the partial region of the second largest subunits of RNA polymerase (RPB2), and the ITS1, 5.8S, ITS2 rDNA for the identification of fungal strains, as these loci have been used successfully for the identification of Trichoderma spp previously^{2,3} and reference strains are available in the RefSeq Database maintained by GenBank⁴ for identification via DNA barcoding and DNA-taxonomy approaches. The ITS region was obtained with primers ITS5 and ITS4;⁵ the *tef1* region, specifically intron 4 in combination with intron 5, which is useful for species-level identification, was obtained using primer combinations 728F/983F and 986R/2218R;^{6,7} while RPB2 was obtained using primers RPB25f and RPB27cr.⁸ Thermocycler parameters and primer sequences for the three regions are outlined in Table S1. Sanger sequencing of the purified PCR products was performed using BigDye Terminator v3.1 cycle sequencing at Eurofins Genomics (https://www.eurofinsgenomics.com). The sequences were obtained bidirectionally using both strands with the same primers used for PCR. Sequences were generated on an Applied Biosystems 3730XL highthroughput capillary sequencer. Sequences were assembled with Sequencher 5.2.3 (Gene Codes), optimized, and then corrected manually when necessary.

The ITS region was sequenced because it has been designated as a barcoding marker for fungi⁹ and a reference strain database, International Subcommission on *Hypocrea* and *Trichoderma* (ISHT) TrichoKey and TrichoBLAST has been developed, which helps in identification of *Trichoderma* strains.¹⁰ When we

BLAST searched the ITS sequence of MSX70741 against the ISHT database, the strain was identified as *Trichoderma brevicompactum*, while GenBank BLAST against the RefSeq database revealed 99% similarity with numerous reference strains belonging to species within the "*T. brevicompactum* clade", such as *Trichoderma turrialbense* (GenBank NR_138448; strain CBS 112445), *Trichoderma arundinaceum* (GenBank NR_134372; strain: ATCC 90237), *Trichoderma protrudens* (GenBank NR_134373; strain: CBS 121320), and *Trichoderma rodmanii* (GenBank NR_134374; strain BPI GJS 91-88)). Recent studies have argued that ITS may not provide sufficient resolution for species-level identification within *Trichoderma* and other genera within the order Hypocreales.^{11,12} Therefore, we used portions of *tef1* and *RPB2* to obtain a species-level identification of *Trichoderma* spp.¹¹

Locus	Primer	Primer Sequence 5'-3'	Direction	PCR protocol	Reference
Translation	EF1-983F/EF1-	GCY CCY GGH CAY CGT GAY TTY AT	Forward	1. 94 °C − 2 min	6,7,13
elongation factor	728F			2. 66 °C – 56 °C	
1-alpha (tef1)		CAT CGA GAA GTT CGA GAA GG	Forward	touchdown (9 cycles)	
	EF1-			3. 94 °C – 30 sec	
	986R/EF1-	TAC TTG AAG GAA CCC TTA CC	Reverse	4. 56 °C − 1 min	
	2218R			5. 72 °C – 1 min	
		ATG ACA CCR ACR GCR ACR GTY TG		6. Repeat 3-5 for 36	
				cycles	
				7. 72 °C – 10 min	
				8.4 °C finish	
DNA-directed	RPB2-5f	GAY GAY MGW GAT CAY TTY GG	Forward	1. 94 °C – 3 min	13
RNA polymerase	RPB2-7cR	CCC ATR GCT TGY TTR CCC AT	Reverse	2. 94 °C – 20 sec	
II subunit 2				3. 55 °C – 30 sec	
(RPB2)				4. 72 °C − 1 min	
				5. Repeat 2-4 for 40	
				cycles	
				6. 72 °C - 10 min	
				7.4 °C finish	
Internal	ITS5	GGA AGT AAA AGT CGT AAC AAG G	Forward	1. 95 °C − 5 min	14,15
Transcribed	ITS4	TCC TCC GCT TAT TGA TAT GC	Reverse	2. 94 °C − 30 s	
Spacer (ITS)				3. 52 °C − 30 s	
				4. 72 °C − 1 min	
				5. Repeat 2-4 for 35	
				cycles	
				6. 72 °C – 8 min	
				7.4 °C finish	

Table S1. PCR protocols and primers used for identification of *Trichoderma* spp.

Both the *tef1* and *RPB2* sequences were BLAST searched in GenBank separately, and the top most similar sequences were downloaded and aligned with the sequences of MSX70741 using MUSCLE¹⁶ within the program SeaView v. 4.1. We then employed separate phylogenetic analyses for *tef1* and *RPB2* sequences using Maximum Likelihood with RAxML¹⁶ on the CIPRES server¹⁷ with 1000 bootstrap

replicates to assess branch/clade support for the resulting topology of the phylogenetic tree. Maximum Likelihood analyses using both gene regions (*tef1 and RPB2*) independently placed strain MSX70741 within the *Trichoderma brevicompactum* clade with strong bootstrap support (100% RAxML bootstrap support for *tef1* and 98% RAxML bootstrap support for *RPB2*, respectively). Within the *T. brevicompactum* clade, MSX70741 showed strong phylogenetic affinities to *Trichoderma arundinaceum* (83% RAxML bootstrap support for *tef1* and 100% RAxML bootstrap support for *RPB2*, respectively) (Figure S1). All names used in the phylogenetic analysis conform to recent nomenclature of *Trichoderma* spp¹¹. Therefore, based on the results of BLAST search (DNA Barcoding) and Maximum Likelihood analyses (DNA-taxonomy), MSX70741 was identified as *Trichoderma arundinaceum*² (Ascomycota; Pezizomycotina; Sordariomycetes; Hypocreomycetidae; Hypocreales; Hypocreaceae). The sequence data for MSX70741 were deposited in GenBank (accession no: ITS: KY630171, *tef1*: KY630169, KY630170, RPB2: KY630166).

For identification of MSX57715, we sequenced *tef1* and *RPB2*, but not the ITS region, as it shows incomplete resolution for species-level identification in *Trichoderma* spp. Based on a BLAST search using GenBank, the closest hits using *tef1* sequences were *Trichoderma albolutescens* (GenBank FJ860609; strain: CBS 119286; Identities = 724/730 (99%), Gaps = 3/730 (0%), and *Trichoderma albolutescens* (GenBank FJ860609; strain: S396; Identities = 720/726 (99%), Gaps = 3/26 (0%)). Further, based on a Maximum Likelihood analysis using *RPB2* sequences by employing RAxML, MSX57715 was identified as *Trichoderma albolutescens* (MSX57715 occurred on a strongly supported clade; 100% RAxML bootstrap support with reference strain GenBank: FJ860517, strain: Ex-type culture: CBS 119286 of *Trichoderma albolutescens*) (Supporting information). The sequence data for MSX57715 were deposited in GenBank (accession no: *tef1*: KY630167, KY630168, RPB2: KY630164, KY630165).

Figure S2. Phylogram of the most likely tree (-lnL = 7876.71) from a RAxML analysis of 52 taxa based on *RPB2* sequence data (1063 bp). Numbers refer to RAxML bootstrap support values \geq 70% based on 1000 replicates. Strain MSX70741 was identified as *Trichoderma arundinaceum* (Bold, highlighted in gray). A 14 d old culture on Potato Dextrose Agar media is shown. Bar indicates nucleotide substitutions per site.

Figure S3. Phylogram of the most likely tree (-lnL = 3836.71) from a RAxML analysis of 41 taxa based on *tef-1* sequence data (518 bp). Numbers refer to RAxML bootstrap support values \geq 70% based on 1000 replicates. Strain MSX70741 was identified as *Trichoderma arundinaceum* (Bold, highlighted in gray). Bar indicates nucleotide substitutions per site.

Figure S4. *Trichoderma arundinaceum* (MSX70741). 1. Pustules showing protruding conidiophores. 2. Conidiophore on PDA (Difco). 3. Conidia. 4. 14 d old culture on PDA media; Scale Bars: $1 = 100 \ \mu m$, $2, 3 = 20 \ \mu m$.

Figure S5. Phylogram of the most likely tree (-lnL = 9524.67) from a RAxML analysis of 103 taxa based on *RPB2* sequence data (1060 bp). Numbers refer to RAxML bootstrap support values \geq 70% based on 1000 replicates. Strain MSX57715 was identified as *Trichoderma albolutescens* (highlighted in gray). A 14 d old culture on Potato Dextrose Agar media is shown. Bar indicates nucleotide substitutions per site. *Protocrea farinosa* is used as an outgroup.

Fermentation, extraction and isolation

Scheme S1. Culture conditions of MSX70741 and MSX57715 on rice (EC, control) and rice supplemented with a racemic mixture of *ortho*, *meta* or *para*-F-phenylalanine (E2-E4).

Culture conditions optimization

Scheme S2. Experiments designed for optimization of culture conditions for biosynthesis of fluorinated alamethicin F50 analogues.

Preparation of ortho-F-Pheol and meta-F-Pheol standards

To a suspension of 25 mg of *ortho*-F-D-Phe, *ortho*-F-L-Phe, *meta*-F-D-Phe or *meta*-F-L-Phe (Acros Organics) in 2.5 mL of anhydrous tetrahydrofuran (THF) were added 2.5 mL of a suspension of 15.0 mg of lithium borohydride in 2.5 mL of anhydrous THF. After the addition, the reaction was heated at 65 °C for two hours (Scheme 3) and then cooled to room temperature. Then, the excess of reagent was decomposed by dropwise addition of 2 N aqueous sodium hydroxide and water (5 mL of each). The resulting white solids were collected by filtration and washed with 30 mL of THF (2 ×). The eluent was evaporated *in vacuo*, and the resulting materials were recrystallized from ethyl acetate-hexane 1:1 to give **7-10**.

Scheme S3. Synthetic strategy for the preparation of *ortho*-F-Pheol and *meta*-F-Pheol standards.

Figure S6. Structures of ortho-F-D-pheol (7), ortho-F-L-pheol (8), meta-F-D-pheol (9), and meta-F-L-pheol (10).

		Compour	nd (8)		Compour	nd (9)
Position	$\delta_{ m C}$	type	δ_{H} , m, J (Hz)	$\delta_{ m C}$	type	$\delta_{\mathrm{H}},\mathrm{m},\mathrm{J}(\mathrm{Hz})$
1	64.7, <i>s</i>	CH_2	a. 3.42, <i>dd</i> , (11.0,7.0)	61.2, <i>s</i>	CH ₂	a. 3.55, <i>dd</i> , (11.5, 6.0)
			b. 3.71, <i>dd</i> , (11.0, 4.0)			b. 3.71, <i>dd</i> , (11.5, 3.5)
2	54.5, <i>s</i>	CH	3.22, <i>m</i>	55.6, s	CH	3.49, <i>m</i>
3	32.5, d, (1.4)	CH_2	a. 2.78, <i>dd</i> , (13.5, 7.0)	35.9, <i>d</i> , (1.6)	CH_2	a. 2.99, <i>dd</i> , (14.0, 8.5)
			b. 2.89, <i>dd</i> , (13.5, 7.0)			b. 3.71, <i>dd</i> , (11.5, 6.5)
4	125.8, <i>d</i> , (15.8)	С		140.1, <i>d</i> , (7.4)	С	
5	162.7, <i>d</i> (242.3)	CF		117.2, <i>d</i> , (21.5)	CH	7.11, <i>dt</i> , (10.0, 2.0)
6	116.4, <i>d</i> , (22.1)	CH	7.09, <i>t</i> , (9.0)	164.4, <i>d</i> , (244.4)	CF	
7	130.0, <i>d</i> , (8.1)	CH	7.28, <i>m</i>	115.0, d, (21.0)	CH	7.01, td, (8.5, 2.0,)
8	125.5, <i>d</i> , (3.5)	CH	7.14, <i>t</i> , (7.5)	131.7, <i>d</i> , (8.4)	CH	7.37, td, (8.0, 6.5)
9	132.9, <i>d</i> , (4.6)	CH	7.28, <i>t</i> , (7.5)	126.4, <i>d</i> , (2.9)	CH	7.15, <i>d</i> , (8.5)
5-F			-119.65, <i>m</i>			-
6-F			-			-114.78, <i>td</i> , (10.0, 6.5)

Table S2. NMR data for *ortho/meta*-F-Phenylalaninol (8 and 9). Data recorded in CD₃OH. ¹H (500 MHz), ¹³C (125 MHz) and ¹⁹F (470 MHz)

Marfey's analysis of standards

Figure S7. Marfey's analysis of standards.

Marfey's analysis of AF50 (1)

Figure S8. Marfey's analysis of alamethicin F50 (1).

Figure S9. Marfey's analysis of *ortho*-F-Pheol alamethicin F50 (2).

Marfey's analysis of m-F-Pheol AF50 (3)

Figure S10. Marfey's analysis of meta-F-Pheol alamethicin F50 (3).

Figure S11. A) Full scan positive HRESIMS for extracts of MSX70741 cultured in rice and rice supplemented with *ortho*, *meta*, and *para*-F-DL-Phe (from the top to the bottom), indicating the incorporation of *ortho* and *meta*-F-Phe into the alamethicin F50 molecule. B) Expansion of region at m/z 1960-1990. C) Expansion of region at m/z 770-800. Diagnostic signals for the incorporation of fluorine have been boxed.

Position		δc	<u>δ_H, m, J (Hz)</u>	HMBC	NOESY
Ac	1	172.5			
A :1.]	2	22.5	2.05, <i>s</i>	Ac-1	
Alb	2	175.5 57.4			
	3	23.8	1.46, <i>s</i>	Aib ¹ -1, Aib ¹ -2, Aib ¹ -4	
	4	26.6	1.53, <i>s</i>	Aib ¹ -1, Aib ¹ -2	
- 1	NH		8.63, s	Ac-1, Aib ¹ -1, Aib ¹ -2	Pro ² -5a, Pro ² -5b
Pro ²	1	175.6	1 25 + (8 4)	$\mathbf{Dro}^2 1 \mathbf{Dro}^2 2$	
	23	29.7 ^a	4.25, i, (6.4) 1 80 m	$Pro^{2}-2$ $Pro^{2}-4$	
	5	29.7	2.34, <i>m</i>	Pro ² -2, Pro ² -4	
	4	27.1	1.96, <i>m</i>	Pro ² -3, Pro ² -5	
	-	50.0	2.08, <i>m</i>	Pro ² -3, Pro ² -5	
	5	50.0	3.49, <i>td</i> , (9.8, 5.6)	Pro^2-4 $Pro^2 4$ Aib ¹ 1	Aib ¹ -NH
Aib ³	1	178 5	5.75, m	F10 -4, Alb -1	Alb -INH
	2	57.4			
	3	23.1	1.54, <i>s</i>	Aib ³ -1, Aib ³ -2	
	4	27.4	1.56, <i>s</i>	Aib ³ -2	- 1-
A 1 - 4	NH	NH	7.62, <i>s</i>	Aib ³ -1, Pro ² -1	Pro ² -5a
Ala	1	54.1	4.09 ad (7.7, 5.6)	$\Lambda 10^4 1 \Lambda 10^4 3$	$A1a^4$ NH
	3	17.1	1.49, d. (7.7)	Ala ⁴ -1	Ala -IVII
	NH		7.55, <i>d</i> , (5.6)	Ala ⁴ -1, Aib ³ -1	Ala ⁴ -2
Aib ⁵	1	177.8			
	2	57.3			
	3	23.1	1.54, s	Aib^3-1	
	4 NH	27.1	1.50, s 7 94 s	Alb -1, Alb -2 Aib ⁵ -1 Ala ⁴ -1	Ala ⁴ -NH (weak)
Ala ⁶	1	178.2	1.77, 5	7110 1,7114 1	The Title (weak)
	2	54.1	4.02, <i>m</i>	Ala ⁶ -1, Ala ⁶ -3	
	3	17.0	1.53, d, overlapped	Ala ⁶ -2	
C1 7	NH	175.0	7.92, brs	Alaº-2, Aib ³ -1	Alaº-2
Gin	2	1/5.8	3.92 m	Gln^7 -1 Ala^6 -1	
	3	27.1	2.14, m	Gln ⁷ -2, Gln ⁷ -4	
			2.27, <i>m</i>	Gln ⁷ -2, Gln ⁷ -4	
	4	32.6	2.34, <i>m</i>	Gln ⁷ -2, Gln ⁷ -3, Gln ⁷ -5	
	5	177.2	2.54, <i>ddd</i> , (15.4, 9.8, 5.4)	Gln'-2, Gln'-3, Gln'-5	
	NH	177.5	799 d (49)	Gln ⁷ -2 Ala ⁶ -1	Ala ⁶ -NH
	5-NH ₂		6.77, brs	$Gln^{7}-3, Gln^{7}-5$	
			7.44, brs	Gln ⁷ -5	
Aib ⁸	1	178.2			
	2	57.6	1.52	A:1-8 1 A:1-8 2	
	3	23.3	1.52, 8	Aib -1, Aib -2 Aib 8 -1 Aib 8 -2	
	NH	27.1	8.09, s	Aib ⁸ -1, Gln ⁷ -1	Gln ⁷ -2
Val ⁹	1	175.3			
	2	65.7	3.58, <i>m</i>	Val ⁹ -1, Val ⁹ -3	Aib ¹⁰ -NH
	3	30.4	2.25, m	$Val^{9}-2,$ $Val^{9}-2,$ $Val^{9}-2$	
	4	20.9	1.00, a, (7.0) 1 14 d (7.0)	$Val^{9}-2, Val^{9}-3$	
	NH	2017	7.49, <i>d</i> , (4.9)	Val ⁹ -2, Aib ⁸ -1	
Aib ¹⁰	1	179.0			
	2	57.6		10	
	3	26.8	1.54, s	A1 b^{10} -1, Val'-1 A; b^{10} 1, A; b^{10} 2	
	NH	27.1	8.23. s	Aib $^{-1}$, Aib $^{-2}$, Aib 10 -1, Val 9 -1	Val ⁹ -2, Glv ¹¹ -2b
Gly ¹¹	1	173.0			,,
-	2	45.1	3.66, <i>m</i>	Gly ¹¹ -1	
			3.93, <i>m</i>	$Gly^{11}-1$	
L au ¹²	<u>NH</u>	175.9	8.34, <i>brt</i> , (6.3)	Gly ¹¹ -2, Alb ¹⁰ -1	Gly ¹¹ -2a, Gly ¹¹ -2b
Leu	2	54.1	447ddd(1057035)	Leu ¹² -1 Leu ¹² -3 Leu ¹² -4	
	3	41.5	1.59, overlapped	Leu ¹² -4,	
			1.96, <i>m</i>	Leu ¹² -2, Leu ¹² -4	
	4	25.7	1.91, <i>m</i>	Leu ¹² -3	
	5	21.3	0.92, d, (6.3)	Leu ¹² -3, Leu ¹² -4 Leu ¹² -2, Leu ¹² -4	
	0 NH	23.4	0.94, a, (0.5) 8 11 d (7 7)	Leu -5, Leu ⁴ Leu ¹² -2 Glv ¹¹ -1	Gly ¹¹ -2a Gly ¹¹ -2b
Aib ¹³	1	174.9	0.11, 0, (7.7)	Lou -2, Oly -1	Giy -2a, Giy -20
-	2	58.1			
	3	23.7	1.61, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2, Aib ¹³ -4	
	4	26.7	1.54, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2	

Table S3. NMR data for alamethicin F50 (1). Data recorded in CD₃OH. ¹H (700 MHz) and ¹³C (175 MHz)

	NH		8.41, <i>s</i>	Aib ¹³ -1, Leu ¹² -1	Pro ¹⁴ -5a, Pro ¹⁴ -5b
Pro ¹⁴	1	176.4			•
	2	64.7	4.39, dd, (9.1, 6.3)	Pro ¹⁴ -1, Pro ¹⁴ -3, Pro ¹⁴ -4	
	3	30.0	1 80 m	$Pro^{14}-2$ $Pro^{14}-4$ $Pro^{14}-5$	
	5	2010	2.32 m	$Pro^{14}-2$ $Pro^{14}-4$ $Pro^{14}-5$	
	4	26.9	199 m	$Pro^{14}-2$ $Pro^{14}-3$ $Pro^{14}-5$	
	7	20.7	2.08 m	$Pro^{14}-2$ $Pro^{14}-3$ $Pro^{14}-5$	
	5	50.6	2.00, m	$Pro^{14} 2 Pro^{14} 4$	
	5	50.0	3.75, m 3.87 dt (11.2, 5.6)	$Pro^{14} 3 Pro^{14} 4 Aib^{13} 1$	Aib ¹³ NH
Vo115	1	175.2	5.67, <i>ui</i> , (11.2, 5.6)	110 -5,110 -4,710 -1	710 -111
v ai	1	64.2	2.74	Vol15 1 Vol15 2	
	2	20.5	3.74, m	Val ¹⁵ 2	
	3	50.5	2.54, m	Val -2 Val 2 Val 5 2	
	4	19.3	0.98, a, (7.0)	$v_{a1} - 2, v_{a1} - 5$	
	D NIL	20.2	1.07, d, (7.0)	$v_{a1} - 2, v_{a1} - 3$	Due 14 5 -
4 *1 16	NH	100 4	7.64, <i>d</i> , (8.4)	val2, Pro1	Pro ¹ -5a
Aib ¹⁰	1	177.6			
	2	57.6			
	3	23.4	1.54, <i>s</i>	Aib ¹⁰ -1, Aib ¹⁰ -2, Aib ¹⁰ -4	
	4	27.4	1.54, <i>s</i>	Aib ¹⁶ -1, Aib ¹⁶ -2	1.5
	NH		7.60, <i>s</i>	Aib ¹⁶ -1, Aib ¹⁶ -2, Aib ¹⁶ -4, Val ¹⁵ -1	Val ¹⁵ -2
Aib ¹⁷	1	178.7			
	2	57.7			
	3	23.4	1.53, s	Aib ¹⁷ -1, Aib ¹⁷ -2	
	4	27.4	1.55, s	Aib ¹⁷ -1, Aib ¹⁷ -2	
	NH		7.82, <i>s</i>	Aib ¹⁷ -1, Aib ¹⁷ -2, Aib ¹⁷ -3, Aib ¹⁷ -4, Aib ¹⁶ -1	Gln ¹⁸ -3, Gln ¹⁸ -4b
Gln ¹⁸	1	175.5			
	2	57.0	4.02, m	Gln ¹⁸ -1, Aib ¹⁷ -1	Gln ¹⁹ -NH
	3	28.0	2.25, m	Gln ¹⁸ -1, Gln ¹⁸ -2, Gln ¹⁸ -4	
	4	33.2	2.43, dt, (16.1, 8.4)	Gln ¹⁸ -2, Gln ¹⁸ -3, Gln ¹⁸ -5	
			2.62, ddd, (15.4, 9.1, 6.3)	Gln ¹⁸ -2, Gln ¹⁸ -3, Gln ¹⁸ -5	
	5	177.6			
	NH		7.79, d, (5.6)	Gln ¹⁸ -2, Aib ¹⁷ -1	
	5-NH ₂		6.79, brs	Gln ¹⁸ -3, ¹⁸ Gln ¹⁸ -5	
			7.44, brs	Gln ¹⁸ -5	
Gln ¹⁹	1	174.0	,		
	2	55.7	4.15. m	Gln ¹⁹ -1, Gln ¹⁹ -3, Gln ¹⁸ -1	Pheol ²⁰ -NH
	3	28.0	2.02. m	Gln ¹⁹ -2, Gln ¹⁹ -4	
	4	32.9	2.20, m	Gln ¹⁹ -2. ¹⁹ Gln ¹⁹ -3. Gln ¹⁹ -5	
			2.34. m	Gln ¹⁹ -2, ¹⁹ Gln ¹⁹ -3, Gln ¹⁹ -5	
	5	177.3	,		
	NH		7.88 d (7.0)	Gln ¹⁹ -2 Gln ¹⁸ -1	Pheol ²⁰ -2
	5-NH2		6 63 brs	Gln^{19} -3 Gln^{19} -5	
	0 1 1 1 2		7.34. brs	Gln ¹⁹ -5	
Pheo1 ²⁰	1	64.9	3 61 <i>brs</i>	Pheol ²⁰ -3	
Theor	2	54.5	4 15 m	Pheol ²⁰ -3	Gln ¹⁹ -NH
	3	38.0	273 dd (140.91)	Pheol ²⁰ -1 Pheol ²⁰ -2 Pheol ²⁰ -4 Pheol ²⁰ -5	
	5	50.0	2.94 dd (14.0, 5.6)	$Pheol^{20}-1$ $Pheol^{20}-2$ $Pheol^{20}-4$ $Pheol^{20}-5$	
	4	139.8	2.94, au, (14.0, 5.0)		
	+ 5	139.0	7.28 d (7.7)	Pheol ²⁰ -7 Pheol ²⁰ 0	
	5	130.4	7.20, u, (7.7)	$\frac{11001 - 7}{1001 - 9}$	
	7	127.1	7.22, i(7.7)	-4, 1 heol -3, 1 heol -6 Dbac1 ²⁰ 5 Dbac1 ²⁰ 0	
	/	127.1	7.14, 1, (7.7)	$\frac{1001}{2} -3, \frac{1001}{2} -3$	
	0	127.1	7.22, i(7.7)	Deco120 5 Deco120 7	
	9 NU	150.4	7.20, u, (7.7)	F HCOT -3, F HCOT7	Dha a 120 1 $Dha a 120$ 2
	INH		1.32, a, (9.1)	Pneor-2, Gin1	rneor1, rneor2

^aSignals may be exchangeable

Alamethicin F50 (1)

			Compound 2 (ortho-F-Pheol	I-alamethicin F50)	
Position		δ _C	$\delta_{\rm H}, { m m}, J { m (Hz)}$	НМВС	NOESY
Ac	1	172.5	2.05 s	Ac 1	
Aib ¹	1	175.5	2.03, 3	AC-1	
7110	2	57.4			
	3	23.8	1.46, <i>s</i>	Aib ¹ -1, Aib ¹ -2, Aib ¹ -4	
	4	26.6	1.53, <i>s</i>	Aib ¹ -1, Aib ¹ -2	
-	NH		8.63, s	Ac-1, Aib ¹ -1, Aib ¹ -2	Pro ² -5a, Pro ² -5b
Pro ²	1	175.6			
	2	65.7	4.25, <i>t</i> (8.4)	$Pro^2 - 1$, $Pro^2 - 3$ $Pro^2 - 2$, $Pro^2 - 4$	
	3	29.1	2.34 m	$Pro^{2}-2$, $Pro^{2}-4$	
	4	27.1ª	1.97, m	Pro ² -3, Pro ² -5	
			2.08, m	Pro ² -3, Pro ² -5	
	5	49.9	3.48, td, (10.5, 6.3)	Pro ² -4	Aib ¹ -NH
			3.95, m	Pro ² -4, Aib ¹ -1	Aib ¹ -NH
Aib ³	1	178.5			
	2	57.4 22.1	154 c	$A;h^3 \downarrow A;h^3 2$	
	3	23.1	1.34, s 1.56 s	Aib -1, Aib -2 Aib ³ -2	
	NH	NH	7.62, <i>s</i>	Aib ³ -1, Pro ² -1	Pro ² -5a
Ala^4	1	177.2		- , -	
	2	54.1	4.09, <i>m</i>	Ala ⁴ -1, Ala ⁴ -3	Ala ⁴ -NH
	3	17.1	1.48, <i>d</i> , (7.7)	Ala ⁴ -2	
	NH		7.56, <i>d</i> , (5.6)	Ala ⁴ -1	Ala ⁴ -2
Aib ⁵	1	177.8			
	2	57.5 23.1	154 s	Aib ⁵ 1	
	4	27.1	1.54, 5	Aib^{-1} $Aib^{5}-1$ $Aib^{5}-2$	
	NH	27.1	7.93, <i>s</i>	Aib ⁵ -1, Ala ⁴ -1	Ala ⁴ -NH
Ala ⁶	1	178.1		· · · · · · · · · · · · · · · · · · ·	
	2	53.9	4.02, <i>m</i>	Ala ⁶ -1, Ala ⁶ -3	
	3	16.9	1.53, d, overlapped	Ala ⁶ -2	
C1 7	NH	175.0	7.92, brs	Ala ⁶ -2	Ala ⁶ -2
Gln'	1	1/5.8	2.04	C_{1m}^{7} 1 A 1_{2m}^{6} 1	
	23	27.1	2.15 m	Gln^7-2 Gln^7-4	
	5	27.1	2.30, m	$Gln^{7}-2$, $Gln^{7}-4$	
	4	32.6	2.34, <i>m</i>	Gln ⁷ -2, Gln ⁷ -3, Gln ⁷ -5	
			2.54, ddd, (15.4, 9.8, 5.6)	Gln ⁷ -2, Gln ⁷ -3, Gln ⁷ -5	
	5	177.3			
	NH		8.00, <i>d</i> , (5.6)	Gln ⁷ -2, Ala ⁶ -1	Ala ⁶ -NH
	5-NH ₂		6.77, brs	Gln'-3, Gln'-5 Gln ⁷ 5	
A ib ⁸	1	178.2	7.44, <i>D</i> rS	OIII-5	
Alt	2	57.6			
	3	23.3	1.52, <i>s</i>	Aib ⁸ -1, Aib ⁸ -2	
	4	27.4	1.55, <i>s</i>	Aib ⁸ -1, Aib ⁸ -2	
	NH		8.09, s	Aib ⁸ -1, Gln ⁷ -1	Gln ⁷ -2
Val ⁹	1	175.3			10
	2	65.7	3.58, <i>dd</i> , (9.8, 3.5)	Val^9-1 , Val^9-3	Aib ¹⁰ -NH
	3	30.4	2.25, m	$Val^{2}-2,$ $Val^{9}-2, Val^{9}-2$	
	4	20.8	1.00, u, (0.3) 1.13 d (6.3)	Val^{-2} , Val^{-3}	
	NH	20.0	7.49, d, (4.9)	Val ⁹ -2, Aib ⁸ -1	
Aib ¹⁰	1	179.0	, , , , ,		
	2	57.6			
	3	26.8	1.54, <i>s</i>	Aib ¹⁰ -1, Val ⁹ -1	
	4	27.1	1.56, <i>s</i>	Aib ¹⁰ -1, Aib ¹⁰ -2,	
CI II	NH	152.0	8.22, <i>s</i>		Val ⁹ -2, Gly ¹¹ -2b
Gly ¹¹	1	173.0	2 67	Gly ¹¹ 1	
	2	45.1	3.07, m 3.04 m	Giy - 1 $Giv^{11} 2 Aib^{10} 1$	
	NH		8.34. hrt. (5.6)	Gly^{12} , Alb -1 Gly^{11} -1, Aib ¹⁰ -1	Gly ¹¹ -2a, Gly ¹¹ -2b
Leu ¹²	1	175.8		,	
	2	54.1	4.46, <i>m</i>	Leu ¹² -1, Leu ¹² -3, Leu ¹² -4	
	3	41.5	1.59, overlapped	Leu ¹² -4,	
			1.96, <i>m</i>	Leu ¹² -2, Leu ¹² -4	
	4	25.6	1.91, <i>m</i>	$Leu^{12}-3$	
	5	21.3	0.92, d, (6.3)	Leu ¹² -3, Leu ¹² -4 Leu ¹² 3, Leu ¹² 4	
	NH	23.4	0.74, a, (0.5) 8.11 d (8.4)	Leu $^{-3}$, Leu $^{-4}$ Leu 12 -2, Glv 11 -1	Glv ¹¹ -2a Glv ¹¹ -2h
Aib ¹³	1	174.9	0.11, 4, (0.7)	200 2, 01j -1	01 <i>j</i> 20, 01 <i>j</i> -20
	2	58.1			
	3	23.7	1.61, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2, Aib ¹³ -4	
			,	· · · · · · · · · · · · · · · · · · ·	

 Table S4. NMR data for *ortho*-F-Pheol alamethicin F50 (2). Data recorded in CD₃OH. ¹H (700 MHz), ¹³C (175 MHz), and ¹⁹F (470 MHz)

	4 NH	26.7	1.54, <i>s</i> 8.40, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2 Aib ¹³ -1, Leu ¹² -1	Pro ¹⁴ -5a, Pro ¹⁴ -5b
Pro ¹⁴	1	176.4	,.		
	2	64.6	4.38, dd, (9.1, 6.3)	Pro ¹⁴ -1, Pro ¹⁴ -3, Pro ¹⁴ -4	
	3	30.0	1.80, <i>m</i>	Pro ¹⁴ -2, Pro ¹⁴ -4, Pro ¹⁴ -5	
			2.35, m	Pro ¹⁴ -2, Pro ¹⁴ -4, Pro ¹⁴ -5	
	4	26.9 ^a	1.99, <i>m</i>	Pro ¹⁴ -2, Pro ¹⁴ -3, Pro ¹⁴ -5	
			2.08, <i>m</i>	Pro ¹⁴ -2, Pro ¹⁴ -3, Pro ¹⁴ -5	
	5	50.6	3.73, <i>m</i>	Pro ¹⁴ -3, Pro ¹⁴ -4	
			3.88, dt, (11.2, 6.3)	Pro ¹⁴ -3, Pro ¹⁴ -4, Aib ¹³ -1	Aib ¹³ -NH
Val ¹⁵	1	175.3			
	2	64.3	3.73, <i>m</i>	Val ¹⁵ -1, Val ¹⁵ -3	
	3	30.5	2.34, m	Va ¹⁵ -2	
	4	19.4	0.97, d, (6.3)	Val ²² -2, Val ²² -3	
	NH	20.2	7.63 d overlapped	$v_{a1} - 2, v_{a1} - 3$ $v_{a1} - 2$ Pro ¹⁴ 1	Pro^{14} 5a
Aib ¹⁶	1	177.6	7.05, <i>u</i> , overlapped	v ai -2,110 -1	110 -5a
Alt	2	57.6			
	3	23.4	154 s	Aib ¹⁶ -1 Aib ¹⁶ -2 Aib ¹⁶ -4	
	4	27.4	1.54. s	Aib ¹⁶ -1, Aib ¹⁶ -2	
	NH		7.58, s	Aib ¹⁶ -1, Aib ¹⁶ -2, Aib ¹⁶ -4, Val ¹⁵ -1	Val ¹⁵ -2
Aib ¹⁷	1	178.8			
	2	57.7			
	3	23.4	1.53, s	Aib ¹⁷ -1, Aib ¹⁷ -2	
	4	27.4	1.55, s	Aib ¹⁷ -1, Aib ¹⁷ -2	
	NH		7.81, <i>s</i>	Aib ¹⁷ -1, Aib ¹⁷ -2, Aib ¹⁷ -3, Aib ¹⁶ -1	Gln ¹⁸ -3, Gln ¹⁸ -4b
Gln ¹⁸	1	175.6		10 17	10
	2	57.0	4.01, <i>m</i>	Gln ¹⁸ -1, Aib ¹⁷ -1	Gln ¹⁹ -NH
	3	28.0	2.25, <i>m</i>	Gln^{18} -1, Gln^{18} -2, Gln^{18} -4	
	4	33.2	2.43, dt, (15.4, 8.4)	$Gln^{10}-2, Gln^{10}-3, Gln^{10}-5$	
	5	177 4	2.62, <i>dt</i> , (15.4, 7.7)	Gin ¹⁰ -2, Gin ¹⁰ -3, Gin ¹⁰ -5	
	NH	1//.4	7.78 d (5.6)	Gln^{18} 2 Aib ¹⁷ 1	
	5-NH2		6.78 brs	Gln^{18} -3 Gln^{18} -5	
	5-14112		7.44. brs	Gln ¹⁸ -5	
Gln ¹⁹	1	174.1	,		
	2	55.7	4.15, <i>m</i>	Gln ¹⁹ -1, Gln ¹⁹ -3, Gln ¹⁸ -1	Pheol ²⁰ -NH
	3	27.9	1.99, <i>m</i>	Gln ¹⁹ -2, Gln ¹⁹ -4	
	4	32.9	2.19, <i>m</i>	Gln ¹⁹ -2, Gln ¹⁹ -3, Gln ¹⁹ -5	
			2.34, <i>m</i>	Gln ¹⁹ -2, Gln ¹⁹ -3, Gln ¹⁹ -5	
	5	177.3			
	NH		7.86, <i>d</i> , (7.7)	Gln ¹⁹ -2, Gln ¹⁸ -1	Pheol ²⁰ -2
	$5-NH_2$		6.62, brs	Gln ¹⁹ -3, Gln ¹⁹ -5	
			7.35, brs	Gln ¹⁹ -5	
F-Pheol ²⁰	1	65.1	3.65, brt	F-Pheol ²⁰ -3	
	2	52.9	4.25, m	$F-Pneol^{20}-3$	GIn''-NH
	5	51.1	2.70, aa, (14.0, 9.1)	F-Pileoi -1, F -Pileoi -2, F -Pileoi -4, F -Pileoi -3 F Phao 1^{20} 1, F Phao 1^{20} 2, F Phao 1^{20} 4, F Phao 1^{20} 5	
	4	126.5 d (15.4)	<i>3.07, aa</i> , (14.0, 4.9)	1'-Fileo1 -1, 1'-Fileo1 -2, 1'-Fileo1 -4, 1'-Fileo1 -5	
	5	120.5, u, (15.4) 162.6 d (242.7)			
	6	115.5 d (22.1)	$6.99 \ t \ (9.1)$	F-Pheol ²⁰ -4 F-Pheol ²⁰ -5 F-Pheol ²⁰ -8	
	7	129.1. d. (8.4)	7.18. dd. (7.1. 7.0)	F-Pheol ²⁰ -5, F-Pheol ²⁰ -9	
	8	124.9, d, (3.7)	7.04, t, (7.7)	F-Pheol ²⁰ -4, F-Pheol ²⁰ -6	
	9	132.9, d, (4.4)	7.37, t, (7.7)	F-Pheol ²⁰ -5, F-Pheol ²⁰ -7	
	1-OH		5.23, <i>t</i> , (6.6)		
	NH		7.32, <i>d</i> , (9.1)	Gln ¹⁹ -1	F-Pheol ²⁰ -1, F-Pheol ²⁰ -2
	F		-119.7*, m		
*Recorded at	470 MHz		_ 9 \ / ц 9 \ /		
$ \land ($	0	I	H ₂ N O		<u> </u>

ortho-F-Pheol alamethicin F50 (2)

			Compound 3 (meta-F-Pheol	-alamethicin F50)	
residue	position	δ _C	$\delta_{\rm H}, {\rm m}, J ({\rm Hz})$	HMBC	NOESY
Ac	1	172.5			
	2	22.4	2.05, <i>s</i>	Ac-1	
Aib	1	175.5			
	3	23.8	1.46.5	Aib ¹ -1, Aib ¹ -2, Aib ¹ -4	
	4	26.6	1.54, <i>s</i>	Aib ¹ -1, Aib ¹ -2	
	NH		8.64, s	Ac-1, Aib ¹ -1, Aib ¹ -2	Pro ² -5a, Pro ² -5b
Pro ²	1	175.6			
	2	65.7 20.7	4.25, t (8.4)	Pro^2-1 , Pro^2-3 Pro^2-2 , Pro^2-4	
	3	29.1	2.34 m	$Pro^{2}-2$, $Pro^{2}-4$	
	4	27.1ª	1.97, <i>m</i>	Pro ² -3, Pro ² -5	
			2.08, <i>m</i>	Pro ² -3, Pro ² -5	
	5	49.9	3.49, <i>td</i> , (10.5, 6.3,)	Pro ² -4	Aib ¹ -NH
A *1 3		170 5	3.95, <i>m</i>	Pro ² -4, Aib ¹ -1	Aib ¹ -NH
Alb	1	1/8.5			
	3	23.1	1.54. s	Aib ³ -1, Aib ³ -2	
	4	27.4	1.56, <i>s</i>	Aib ³ -2	
	NH	NH	7.62, <i>s</i>	Aib ³ -1, Pro ² -1	Pro ² -5a
Ala ⁴	1	177.2	1.00		
	2	54.1 17.0	4.09, m 1 48 d (7 7)	Ala ⁻¹ , Ala ⁻³ Ala ⁴ 2	Ala'-NH
	NH	17.0	7.56, d, (4.2)	Ala ⁴ -1	Ala ⁴ -2
Aib ⁵	1	177.8			
	2	57.3			
	3	23.1	1.54, <i>s</i>	Aib ⁵ -1	
	4 NH	27.1	1.56, <i>s</i>	A_{1b}^{-1} , A_{1b}^{-2}	A 104 NIH
Ala ⁶	1	178.1	1.55, 5	Al0 -1, Ala -1	Ala -INIT
2114	2	53.8	4.01, <i>m</i>	Ala ⁶ -1, Ala ⁶ -3	
	3	16.9	1.53, d, overlapped	Ala ⁶ -2	
	NH		7.91, brs	Ala ⁶ -2	Ala ⁶ -2
Gln ⁷	1	175.8	2.04	C_{1-7}^{1-7} 1 A1-6 1	
	23	58.1 27.3	5.94, m 2 15 m	$Gln^{7}-1$, Ala ^{*-1} $Gln^{7}-2$, $Gln^{7}-4$	
	5	21.5	2.30, <i>m</i>	Gln^7-2 , Gln^7-4	
	4	32.5	2.34, <i>m</i>	Gln ⁷ -2, Gln ⁷ -3, Gln ⁷ -5	
	_		2.54, <i>ddd</i> , (15.4, 9.8, 6.3)	Gln ⁷ -2, Gln ⁷ -3, Gln ⁷ -5	
	5	177.1	7.00 + (4.0)		A 166 NUL
	5-NH2		6.77 brs	$Gln^{7}-3$, $Gln^{7}-5$	Ala-INH
	5 1112		7.45, brs	Gln ⁷ -5	
Aib ⁸	1	178.2			
	2	57.6			
	3	23.3	1.52, s	Aib $^{\circ}$ -1, Aib $^{\circ}$ -2	
	4 NH	27.4	1.55, s 8 08 s	Aib^{-1} , Aib^{-2} Aib^{8} -1, Gln^{7} -1	Gln ⁷ -2
Val ⁹	1	175.3	0100,0	The i, on i	om 2
	2	65.7	3.58, dd, (9.3, 3.2)	Val9-1, Val9-3	Aib ¹⁰ -NH
	3	30.6	2.25, <i>m</i>	Val ⁹ -2,	
	4	19.6	1.00, d, (6.4)	Val^{-2} , Val^{-3}	
	NH	20.8	7.49. d. (4.9)	Val ⁹ -2, Aib ⁸ -1	
Aib ¹⁰	1	179.0			
	2	57.6			
	3	26.8	1.54, <i>s</i>	Aib ¹⁰ -1, Val ⁹ -1	
	4 NH	27.1	1.56, <i>s</i>	Aib ¹⁰ -1, Aib ¹⁰ -2,	V_{21}^{9} 2 $C_{1}v_{11}^{11}$ 2b
Glv ¹¹	1	173.0	0.22, 5	Glv ¹¹ -1	Vai -2, Giy -20
ory	2	45.0	3.67, dd (16.8, 5.6)	Gly ¹¹ -1	
			3.95, <i>m</i>	Gly ¹¹ -2, Aib ¹⁰ -1	
- 12	NH		8.34, <i>brt</i> , (5.7)	Gly ¹¹ -1, Aib ¹⁰ -1	Gly ¹¹ -2a, Gly ¹¹ -2b
Leu ¹²	1	175.8	4.45	$L_{au} _{2}^{2} + L_{au} _{2}^{2} + L_{au} _{2}^{2} + L_{au} _{2}^{2}$	
	<u>4</u> 3	54.0 41 5	4.4 <i>3, m</i> 1.59 overlanned	Leu -1, Leu3, Leu4 Leu 12 -4	
	5	-11.0	1.96, <i>m</i>	Leu ¹² -2, Leu ¹² -4	
	4	25.6	1.91, <i>m</i>	Leu ¹² -3	
	5	21.3	0.92, <i>d</i> , (6.3)	Leu ¹² -3, Leu ¹² -4	
	6 NU	23.4	0.94, d, (6.3)	Leu ¹² -3, Leu ¹² -4 Leu ¹² 2, Chull 1	Chull 2. Chull 2t
Aib ¹³	1	174 9	0.11, <i>u</i> , (7.0)	Leu -2, Gly -1	Giy -2a, Gly -2D
110	2	58.1			
	3	23.7	1.61, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2, Aib ¹³ -4	

 Table S5. NMR data for *meta*-F-Pheol alamethicin F50 (3). Data recorded in CD₃OH. ¹H (700 MHz), ¹³C (175 MHz), and ¹⁹F (470 MHz)

	4 NH	26.6	1.54, <i>s</i> 8.40, <i>s</i>	Aib ¹³ -1, Aib ¹³ -2 Aib ¹³ -1, Leu ¹² -1	Pro ¹⁴ -5a, Pro ¹⁴ -5b
Pro ¹⁴	1	176.4	,	,	,
	2	64.6	4.39, dd, (8.9, 6.5)	Pro ¹⁴ -1, Pro ¹⁴ -3, Pro ¹⁴ -4	
	3	30.0	1.80, <i>m</i>	$Pro^{14}-2$, $Pro^{14}-4$, $Pro^{14}-5$	
			2.35, m	$Pro^{14}-2$, $Pro^{14}-4$, $Pro^{14}-5$	
	4	26.9 ^a	1.99, m	$Pro^{14}-2$, $Pro^{14}-3$, $Pro^{14}-5$	
	5	50.5	2.08, m	Pro^{-2} , Pro^{-3} , Pro^{-5}	
	5	50.5	3.88 dt (119.62)	$Pro^{14}-3$ $Pro^{14}-4$ $Aib^{13}-1$	Aib ¹³ -NH
Val ¹⁵	1	175 3	5.00, <i>u</i> , (11.9, 0.2)	110 -5,110 -1,710 -1	710 -111
	2	64.3	3.73, <i>m</i>	Val ¹⁵ -1, Val ¹⁵ -3	
	3	30.5	2.34, <i>m</i>	Va ¹⁵ -2	
	4	19.4	0.98, <i>d</i> , (6.5)	Val ¹⁵ -2, Val ¹⁵ -3	
	5	20.2	1.07, d, (6.4)	Val ¹⁵ -2, Val ¹⁵ -3	n 14 r
4 *1 16	NH	155.4	7.63, d(8.0)	Val ¹³ -2, Pro ¹⁴ -1	Pro ¹⁴ -5a
Alb	1	177.6			
	2	57.0 23.4	154 s	Aible 1 Aible 2 Aible 1	
	4	27.4	1.54, s	Aib ⁻¹ , Aib ⁻² , Aib ⁻⁴	
	NH	2	7.59, s	Aib ¹⁶ -1, Aib ¹⁶ -2, Aib ¹⁶ -4, Val ¹⁵ -1	Val ¹⁵ -2
Aib ¹⁷	1	178.8	,		
	2	57.7			
	3	23.4	1.53, s	Aib ¹⁷ -1, Aib ¹⁷ -2	
	4	27.4	1.55, s	Aib ¹⁷ -1, Aib ¹⁷ -2	an 18 a an 18 m
C1 18	NH	175.5	7.81, <i>s</i>	A1b ¹⁷ -1, A1b ¹⁷ -2, A1b ¹⁷ -3, A1b ¹⁰ -1	Gln ¹⁸ -3, Gln ¹⁸ -4b
Gin ¹⁰	1	175.5	4.01	Cln^{18} 1 Aib ¹⁷ 1	Cln ¹⁹ NH
	3	28.0	4.01, m	$Gln^{18}-1$, $Gln^{18}-2$, $Gln^{18}-4$	OIII -NH
	4	33.1	2.43. dt. (15.5, 8.6)	Gln^{18} -2, Gln^{18} -3, Gln^{18} -5	
			2.62, dt, (15.2, 8.0)	Gln ¹⁸ -2, Gln ¹⁸ -3, Gln ¹⁸ -5	
	5	177.4		, ,	
	NH		7.79, <i>d</i> , (5.4)	Gln ¹⁸ -2, Aib ¹⁷ -1	
	5-NH2		6.79, brs	Gln ¹⁸ -3, Gln ¹⁸ -5	
C1 19	1	174.0	7.45, brs	Gln ¹⁸ -5	
Gin ¹²	1	1/4.0	4.16	C_{1}^{1} C_{2}^{1} C_{2	Dhaa120 NUL
	3	27.9	2.01-2.05 m	$Gln^{19}-2$ $Gln^{19}-4$	FIICOI -INTI
	4	32.9	2.23, m	Gln ¹⁹ -2. Gln ¹⁹ -3. Gln ¹⁹ -5	
			2.34, m	Gln ¹⁹ -2, Gln ¹⁹ -3, Gln ¹⁹ -5	
	5	177.3			
	NH		7.87, <i>d</i> , (7.5)	Gln ¹⁹ -2, Gln ¹⁸ -1	Pheol ²⁰ -2
	5-NH ₂		6.63, brs	Gln ¹⁹ -3, Gln ¹⁹ -5	
E Dhao120	1	64.0	7.55, BFS	E Phas ¹²⁰ 2	
1-1160	2	64.9 54.0	4.16 m	F-Pheol ²⁰ -3	Gln ¹⁹ -NH
	3	37.7	2.72. dd. (14.2. 9.7.)	F-Pheol ²⁰ -1, F-Pheol ²⁰ -2, F-Pheol ²⁰ -4, F-Pheol ²⁰ -5	Gin Till
			2.98, dd, (13.9, 4.8)	F-Pheol ²⁰ -1, F-Pheol ²⁰ -2, F-Pheol ²⁰ -4, F-Pheol ²⁰ -5	
	4	142.6, d, (7.4)			
	5	117.1, <i>d</i> , (21.0)	7.06, brd (10.2)	F-Pheol ²⁰ -4	
	6	160.0, d, (242.4)		$E \mathbf{P} = 1^{20} \mathbf{C} \mathbf{E} \mathbf{P} = 1^{20} \mathbf{C} \mathbf{E} \mathbf{P} = 1^{20} \mathbf{C}$	
	/	113.8, d, (21.0) 120.7, d, (8.2)	6.88, td, (8.5, 2.3)	F-Pheol ²⁰ -5, F -Pheol ²⁰ -6, F -Pheol ²⁰ -9	
	9	130.7, a, (8.2) 126.3, d, (2.6)	7.24, i, (7.6)	$F_{\rm Pheol}^{20}$, $F_{\rm Pheol}^{20}$, $F_{\rm Pheol}^{20}$	
	1-OH	120.5, u, (2.0)	5.27. t. (6.6)	1-11100 -5,1-11100 -7	
	NH		7.22, d, overlapped	Gln ¹⁹ -1	F-Pheol ²⁰ -1, F-Pheol ²⁰ -2
	F		-115.8*, <i>m</i>		•
*Recorded at	$\frac{F}{470 \text{ MHz}}$	ŊŢŔŹŔŹţ			
$\mathbb{Y}_{\mathbb{X}}$	0	ł	HN O		⊓ 2N [°] U

meta-F-Pheol alamethicin F50 (3)

Figure S12. Key HMBC, TOCSY and NOESY correlations for compounds 1-3.

Figure S13. A) Full scan positive HRESIMS for compound 1. B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.

Figure S14. ¹H-NMR spectrum of alamethicin F50 (1) in CD₃OH (recorded at 700 MHz).

Figure S15. ¹³C-NMR spectrum of alamethicin F50 (1) in CD₃OH (recorded at 175 MHz).

Figure S16. ¹H-¹H COSY of alamethicin F50 (1) in CD₃OH.

Figure S17. ¹H-¹H TOCSY of alamethicin F50 (1) in CD₃OH.

Figure S18. ¹H-¹H NOESY of alamethicin F50 (1) in CD₃OH.

Figure S19. ¹H-¹³C HSQC of alamethicin F50 (1) in CD₃OH.

Figure S20. ¹H-¹³C HMBC of alamethicin F50 (1) in CD₃OH.

Figure S21. A) Full scan positive HRESIMS of *ortho*-F-Pheol alamethicin F50 (2). B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.

MSX70741-01042-144-2#1320-1545 RT: 4.61-5.36 AV: 7 NL: 2.50E7 T: Average spectrum MS2 1189.69 (1320-1545)

Figure S22. The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 792.43 generated from the $[M+2H]^{2+}$ ion (bottom) for compound **2**.

m/z

Figure S23. ¹H-NMR spectrum of *ortho*-F-Pheol alamethicin F50 (2) in CD₃OH (recorded at 700 MHz).

Figure S24. ¹³C-NMR spectrum of *ortho*-F-Pheol alamethicin F50 (2) in CD₃OH (recorded at 175 MHz).

Figure S25. ¹H-¹H COSY of *ortho*-F-Pheol alamethicin F50 (**2**) in CD₃OH.

Figure S26. ¹H-¹H TOCSY of *ortho*-F-Pheol alamethicin F50 (2) in CD₃OH.

Figure S27. ¹H-¹H NOESY of *ortho*-F-Pheol alamethicin F50 (**2**) in CD₃OH.

Figure S28. ¹H-¹³C HSQC of *ortho*-F-Pheol alamethicin F50 (**2**) in CD₃OH.

Figure S29. ¹H-¹³C HMBC of *ortho*-F-Pheol alamethicin F50 (2) in CD₃OH.

Figure S30. ¹⁹F-NMR spectrum of *ortho*-F-Pheol alamethicin F50 (2) in CD₃OH (recorded at 470 MHz).

Figure S31. A) Full scan positive HRESIMS of *meta*-F-Pheol alamethicin F50 (**3**). B-F) Expansion of the $[M+3H]^{3+}$, y_7^+ , $[M+2H]^{2+}$, b_{13}^+ , and $[M+H]^+$ ion peaks, respectively.

Figure S32. The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 792.44 generated from the $[M+2H]^{2+}$ ion (bottom) for compound **3**.

Figure S33. ¹H-NMR spectrum of *meta*-F-Pheol alamethicin F50 (3) in CD₃OH (recorded at 700 MHz).

Figure S34. ¹³C-NMR spectrum of *meta*-F-Pheol alamethicin F50 (3) in CD₃OH (recorded at 175 MHz).

Figure S35. ¹H-¹H COSY of *meta*-F-Pheol alamethicin F50 (**3**) in CD₃OH.

Figure S36. ¹H-¹H TOCSY of *meta*-F-Pheol alamethicin F50 (3) in CD₃OH.

Figure S37. ¹H-¹H NOESY of *meta*-F-Pheol alamethicin F50 (**3**) in CD₃OH.

Figure S38. ¹H-¹³C HSQC of *meta*-F-Pheol alamethicin F50 (**3**) in CD₃OH.

Figure S39. ¹H-¹³C HMBC of *meta*-F-Pheol alamethicin F50 (**3**) in CD₃OH.

Figure S40. ¹⁹F NMR spectrum of *meta*-F-Pheol alamethicin F50 (3) in CD₃OH (recorded at 470 MHz).

Figure S41. Comparison of the ¹H-NMR spectra for compounds 1 (maroon), 2 (green), and 3 (blue). Recorded at 700 MHz in CD₃OH.

References

(1) Ayers, S.; Ehrmann, B. M.; Adcock, A. F.; Kroll, D. J.; Carcache de Blanco, E. J.; Shen, Q.; Swanson, S. M.; Falkinham, J. O., 3rd; Wani, M. C.; Mitchell, S. M.; Pearce, C. J.; Oberlies, N. H. *J. Pept. Sci.* **2012**, *18*, 500-510.

(2) Degenkolb, T.; Dieckmann, R.; Nielsen, K. F.; Gräfenhan, T.; Theis, C.; Zafari, D.; Chaverri, P.; Ismaiel, A.; Brückner, H.; von Döhren, H.; Thrane, U.; Petrini, O.; Samuels, G. J. *Mycol. Prog.* **2008**, *7*, 177-219.

(3) Jaklitsch, W. M.; Voglmayr, H. Stud. Mycol. 2015, 80, 1-87.

(4) Schoch, C. L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R. H.; Hughes, K.; Miller, A. N.; Kirk, P. M.; Abarenkov, K.; Aime, M. C.; Ariyawansa, H. A.; Bidartondo, M.; Boekhout, T.; Buyck, B.; Cai, Q.; Chen, J.; Crespo, A.; Crous, P. W.; Damm, U.; De Beer, Z. W.; Dentinger, B. T.; Divakar, P. K.; Duenas, M.; Feau, N.; Fliegerova, K.; Garcia, M. A.; Ge, Z. W.; Griffith, G. W.; Groenewald, J. Z.; Groenewald, M.; Grube, M.; Gryzenhout, M.; Gueidan, C.; Guo, L.; Hambleton, S.; Hamelin, R.; Hansen, K.; Hofstetter, V.; Hong, S. B.; Houbraken, J.; Hyde, K. D.; Inderbitzin, P.; Johnston, P. R.; Karunarathna, S. C.; Koljalg, U.; Kovacs, G. M.; Kraichak, E.; Krizsan, K.; Kurtzman, C. P.; Larsson, K. H.; Leavitt, S.; Letcher, P. M.; Liimatainen, K.; Liu, J. K.; Lodge, D. J.; Luangsa-ard, J. J.; Lumbsch, H. T.; Maharachchikumbura, S. S.; Manamgoda, D.; Martin, M. P.; Minnis, A. M.; Moncalvo, J. M.; Mule, G.; Nakasone, K. K.; Niskanen, T.; Olariaga, I.; Papp, T.; Petkovits, T.; Pino-Bodas, R.; Powell, M. J.; Raja, H. A.; Redecker, D.; Sarmiento-Ramirez, J. M.; Seifert, K. A.; Shrestha, B.; Stenroos, S.; Stielow, B.; Suh, S. O.; Tanaka, K.; Tedersoo, L.; Telleria, M. T.; Udayanga, D.; Untereiner, W. A.; Dieguez Uribeondo, J.; Subbarao, K. V.; Vagvolgyi, C.; Visagie, C.; Voigt, K.; Walker, D. M.; Weir, B. S.; Weiss, M.; Wijayawardene, N. N.; Wingfield, M. J.; Xu, J. P.; Yang, Z. L.; Zhang, N.; Zhuang, W. Y. Database (Oxford) 2014, 2014.

(5) White, T., 1 T. Lee S., and Tylor J.; Academic Press, I., Ed. San Diego California **1990**, p 315-322.

(6) Carbone, I.; Kohn, L. M. *Mycologia*. **1999**, *91*, 553-556.

(7) Jaklitsch, W. M.; Komon, M.; Kubicek, C. P.; Druzhinina, I. S. *Mycologia*. **2006**, *98*, 499-513.

(8) Liu, Y. J.; Hall, B. D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4507-4512.

(9) Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A.; Chen, W.; Consortium, F. B. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*, 6241-6246.

(10) Druzhinina, I. S.; Kopchinskiy, A. G.; Komon, M.; Bissett, J.; Szakacs, G.; Kubicek, C. P. *Fungal. Genet. Biol.* **2005**, *42*, 813-828.

- (11) Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G. J. *IMA Fungus* **2015**, *6*, 263-295.
- (12) Elike Lieckfeldt, K. A. S. *Stud. Mycol.* **2000**, *45*, 35-44.
- (13) Rehner, S. A.; Buckley, E. Mycologia. 2005, 97, 84-98.
- (14) Edgar, R. C. Nucleic Acids Res. 2004, 32, 1792-1797.
- (15) Liu, Y. J.; Whelen, S.; Hall, B. D. Mol. Biol. Evol. 1999, 16, 1799-1808.
- (16) Stamatakis, A. *Bioinformatics*. 2006, 22, 2688-2690.
- (17) Miller, M. A.; Pfeiffer, W.; Schwartz, T. In *Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery*; ACM: Salt Lake City, Utah, 2011, p 1-8.