Supplemental Figure Legends

Figure S1. Alignment of HSP90 sequences from representative species and homologs, Related to Figure 1

The N-terminal domain amino acid sequences of HSP90 family members. T5,7 are highlighted with boxes, and the extreme N-terminus (ENT) region (a.a. 1-11), in gray.

Figure S2. p-HSP90a did not increase with aging in the lung, Related to Figure 1

HSP90 α phosphorylation in lung of young (3 mo) and old (24 mo) mice (in arbitrary units) (n=5 each group). Quantification is shown on the right. All values are expressed as mean \pm s.e.m.

Figure S3. DNA-PK inhibition did not increase DNA DSBs, Related to Figure 5

(A)H2AX phosphorylation (γ -H2AX) in resting muscle isolated from young (2 months old) and old (18 mo) WT and SCID mice (n=3 each group). Quantification is shown on the right. All values are expressed as mean ± s.e.m.: *, *p*<0.05. (B) H2AX phosphorylation (γ -H2AX) in resting skeletal muscle isolated from 17 months old fl/fl and muscle specific DNA-PK knockout (MDPKO) mice. Quantification is shown on the right. All values are expressed as mean ± s.e.m. (C) H2AX phosphorylation (γ -H2AX) in resting skeletal muscle isolated from WT and AMPK α 2 knockout mice fed either vehicle or DNA-PKcs inhibitor. Quantification is shown on the right. All values are expressed as mean ± s.e.m. (D) H2AX phosphorylation (γ -H2AX) in resting skeletal muscle isolated from middle age (MA) mice treated with either vehicle or DNA-PKcs inhibitor. Quantification is shown on the right. All values are expressed as mean ± s.e.m.

Figure S4. DNA-PK inhibition increases skeletal muscle mitochondrial function, Related to Figure 5

(A) VO₂ of WT and SCID mice skeletal muscle mitochondria in states 2, 3, 4 and RC (n=6 per each genotype) All values are given as mean \pm s.e.m. Mann-Whitney Test: *, p<0.05. (B) Running distance before exhaustion during three consecutive days of treadmill running for middle-age (MA) and HFD-fed (Ob, for 3-4 months) WT and SCID mice (n=5-9 for each group). All values are given as mean \pm s.e.m. Mann-Whitney Test: *, p<0.05; **, p<0.01 between WT and SCID values.

Figure S5. Metabolic function of DNA-PK is not immune-related, Related to Figure 5

(A) Relative mRNA levels of PGC-1 α and PPAR δ in skeletal muscle (M), WAT (W), BAT (B) and liver (L) of HFD-fed WT and Rag1-/- mice are shown. The mRNA levels were measured using real-time PCR and are expressed in arbitrary units (A.U.) (n=3 per genotype). Results were shown as mean \pm s.e.m. (B) The distance (in meters) lean (RCD) and HFD-fed (HFD, for 3-4 months) WT and Rag1-/- mice ran on the treadmill before exhaustion (n=5 per each genotype). Results were shown as mean \pm s.e.m.

Figure S6. Scid mice are protected against obesity and insulin resistance, Related to Figure 6

(A) Weight gain of WT (black symbols) and SCID (white symbols) littermates fed regular chow diet (RCD) as a function of the time on the diet (n=5-8 per genotype). All values are expressed as mean \pm s.e.m. (B) Weight gain of WT (black symbols) and SCID (white symbols) littermates fed high fat diet (HFD, 60% fat by calories) as a function of the time on the diet (n=5-7 per genotype). All values are expressed as mean \pm s.e.m. **, p<0.01 (Two-way repeated measures Anova) between WT and SCID mice. (C) Food intake for WT and SCID mice (n=5-7 per each genotype). All values are expressed as mean \pm s.e.m. (D) fat absorption was measured by fecal analysis (n=5 per each genotype). All values are given as mean \pm s.e.m. (E) Fat mass index (total fat mass/body weight) as measured by NMR spectroscopy for WT and SCID mice after 20 weeks on the respective diet (n=7-8 per genotype). All values are expressed as mean \pm s.e.m. Mann-Whitney Test: **, p<0.01 between WT and SCID values. (F) Abdominal fat in WT and SCID fed HFD (for 3-4 months). (G) Epididymal fat (EWAT) mass of WT and SCID mice fed HFD relative to body weight (B.W.) (n=3 per genotype). All values are given as mean \pm s.e.m. **, p<0.01 between WT and SCID values. (H) Lean mass index (lean mass/total body weight) of mice on HFD was measured by NMR spectroscopy (n=7). All values are given as mean \pm s.e.m. (I) Body weight of middle-age WT and SCID mice. (n=7-8 per genotype). All values are expressed as mean \pm s.e.m. Mann-Whitney Test: ***, p<0.001 between WT and SCID values. (J) Plasma concentrations of triacylglyceride for middle-age WT and SCID mice (6-10 per treatment group). All values are expressed as mean ± s.e.m. Mann-Whitney Test: *, p<0.05 between WT

and SCID values. (K) HOMA-IR for young (3 mo) and middle-age (14 mo) WT and SCID mice (n=6-10 per treatment group). All values are expressed as mean \pm s.e.m. Mann-Whitney Test: **, p<0.01 between 3 mo and 14 mo values.

Figure S7. Hyperinsulinemic-euglycemic clamp study performed on mice fed HFD (±DNA-PK inhibitor), Related to Figure 6

(A) Time course of blood glucose level. (B) Time course of glucose infusion rate. (n=7-8). All values are given as mean \pm s.e.m. *, *p*<0.05 (Two-way ANOVA) between the treatment groups. (C) Plasma concentrations of FFAs, triacylglyceride, glucose and insulin in WT and muscle specific DNA-PKcs knockout mice. (n=6-8 for each genotype). All values are given as mean \pm s.e.m.

Fig. S1 (Park)

		ENT							10					20															30	
Human HSP90 α	Μ	Ρ	Ε	Е	Τ	Q	Τ	Q	D	Q	Ρ	М	Ε	Е	Ε	Е	V	Ε	Т	F	А	F	Q	А	Ε	Ι	А	Q	L	М
Mouse HSP90 α	Μ	Ρ	Ε	Ε	Т	Q	Т	Q	D	Q	Ρ	М	Ε	Ε	Ε	Е	V	Е	Т	F	А	F	Q	А	Е	Ι	А	Q	L	М
Human HSP90 β	М	Ρ	Ε	Ε	V	Η	Η	G	-	-	-	-	-	Ε	Ε	Е	V	Е	Т	F	А	F	Q	А	Е	Ι	А	Q	L	М
Mouse HSP90 β	М	Ρ	Ε	Ε	V	Η	Η	G	-	-	-	-	-	Ε	Ε	Ε	V	Ε	Т	F	А	F	Q	А	Ε	Ι	А	Q	L	М
	М	Ρ	Е	Е	-	-	-	-	-	-	-	-	-	-	-	-	Α	Ε	Т	F	А	F	Q	А	Ε	Ι	А	Q	L	М
Yeast HSP82															М	A	S	Е	Т	F	Е	F	Q	А	Ε	Ι	Т	Q	L	М
Yeast HSC82															М	A	G	Е	Т	F	Е	F	Q	А	Ε	Ι	Т	Q	L	М
E. Coli HtpG														М	Κ	G	Q	Ε	Т	R	G	F	Q	S	Ε	V	Κ	Q	L	L

Fig. S2 (Park)

Figure S3 (Park)

Figure S4 (Park)

Figure S5 (Park)

Figure S6 (Park)

Figure S7 (Park)

Α 180 160 14<mark>0</mark> Blood glucose(mg/dl) 120 100 80 +Inh -Inh 60 40 20 -40 80 100 120 140 -20 0 20 40 60 в 300.0 Glucose infusion rate (umol/kg/min) 250.0 200.0 * 150.0 +lnh −lnh 100.0 50.0 0.0 . 20 40 . 60 0 80 100 120 140

С

Fastig glucose (mg/dl)

📕 fl/fl

