Supplemental Materials for Pyrazinoic Acid Inhibits a Bifunctional Enzyme in Mycobacterium tuberculosis Moses Njire^{1,2}, Na Wang ^{1,4}, Bangxing Wang¹, Yaoju Tan³, Xingshan Cai³, Yanwen Liu³, Julius Mugweru^{1,2}, Jintao Guo¹, H.M. Adnan Hameed^{1,2}, Shouyong Tan³, Jianxiong Liu³, Wing Wai Yew⁵, Eric Nuermberger⁶, Gyanu Lamichhane⁶, Jinsong Liu^{1,2}, Tianyu Zhang^{1,2#} *To whom correspondence should be addressed. Email: zhang_tianyu@gibh.ac.cn **Figure S1: PZase enzyme assay.** *M. tuberculosis* recombinant strains (1-3): **(1)** Wildtype Rv2783; **(2)** Rv2783_{Asp67Asn} mutant; **(3)** Hsp60 vector control; **(4)** *M. tuberculosis* H37Rv parental strain; **(5-6)** PZA-resistant clinical strains harboring the G199A mutation in *Rv2783c*; **(7)** *M. bovis* Bacillus Calmette-Guérin (BCG) Tice. Figure S2: The M. tuberculosis Rv2783c locus and its surrounding genes. The upstream lppU and the downstream pepR and Rv2781c genes are deemed non-essential for M. tuberculosis growth (33).