## **Supporting information for**

Towards Elimination of Pin-tract Infections: Novel Antibacterial Coating on Orthopaedic

Wires

Dmitry Gil,<sup>a</sup> Sergey Shuvaev,<sup>b</sup> Anastasia Frank-Kamenetskii,<sup>a</sup> Vladimir Reukov,<sup>a,c</sup> Christopher Gross,<sup>d</sup> Alexey Vertegel<sup>a</sup>#

<sup>a</sup> Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC, USA

<sup>b</sup> Department of Chemistry, Durham University, South Road, Durham, UK

<sup>c</sup> Institute for Biological Interfaces of Engineering, Clemson University, 301 Rhodes Hall, Clemson, SC, USA

<sup>d</sup> Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA

#corresponding author: vertege@clemson.edu

## **Supporting results:**

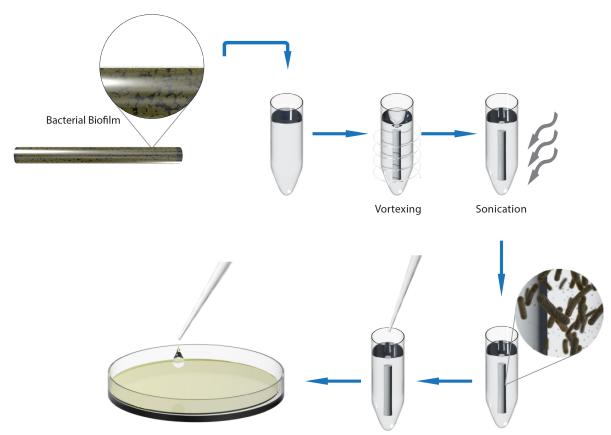
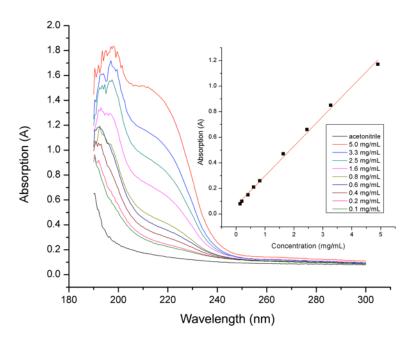
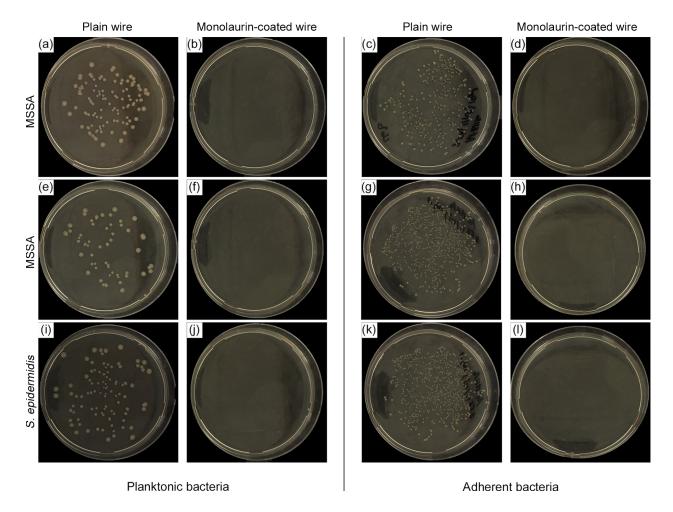
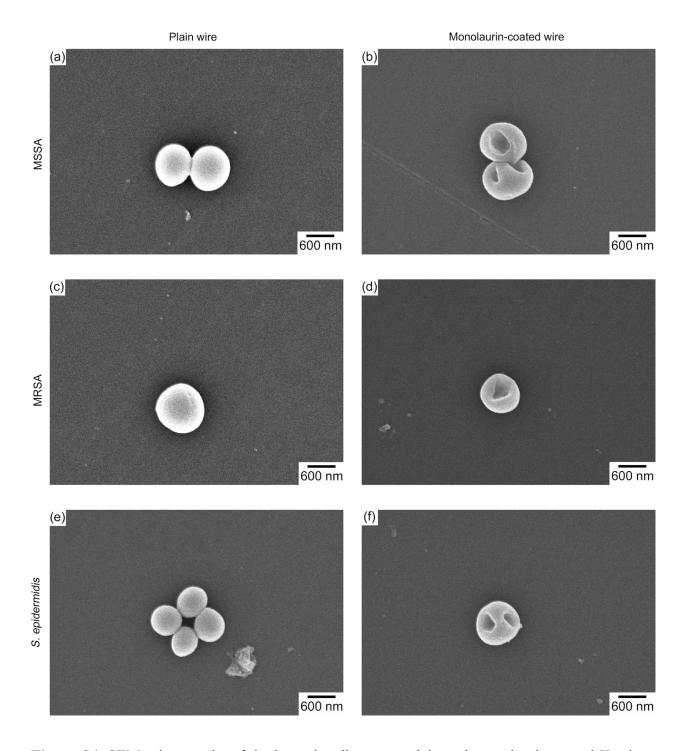



Figure S1. The protocol used to dislodge bacteria from the surface of the wires.

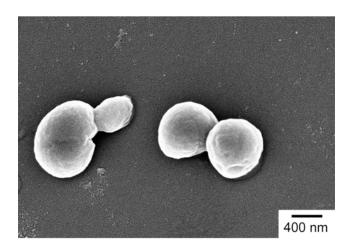





Figure S2. Calibration curve for monolaurin used in this study.

**Table S1.** Number of viable and dead osteoblasts lodging on plain and monolaurin-coated K-wires determined by Live/Dead $^{\otimes}$  assay.

|              | Viable cells, log(cell number) | P-value         | Dead cells,<br>log(cell number) | P-value         | Total number, log(cell number) | P-value         |
|--------------|--------------------------------|-----------------|---------------------------------|-----------------|--------------------------------|-----------------|
| Plain wires  | 5.41±4.84                      | P=0.419,<br>n=6 | 3.19±2.59                       | P=0.409,<br>n=6 | 5.42±4.84                      | P=0.411,<br>n=6 |
| Coated wires | 5.34±5.01                      |                 | 3.12±2.71                       |                 | 5.34±5.01                      |                 |




**Figure S3.** Representative photos of recultivated bacteria incubated with the plain and monolaurin-coated K-wires. (a), (c) MSSA incubated with plain wire; (b), (d) MSSA incubated with monolaurin-coated wire; (e), (g) MRSA incubated with plain wire; (f), (h) MRSA incubated with monolaurin-coated wire; (i), (k) *S. epidermidis* incubated with plain wire; (j), (l) *S. epidermidis* incubated with monolaurin-coated wire.



**Figure S4.** SEM micrographs of the bacteria adherent to plain and monolaurin-coated K-wires.

(a) MSSA adherent to the plain wire; (b) MSSA adherent to the monolaurin-coated wire; (c) MRSA adherent to the plain wire; (d) MRSA adherent to the monolaurin-coated wire; (e) S.

epidermidis adherent to the plain wire; (e) S. epidermidis adherent to the monolaurin-coated wire.



**Figure S5.** Higher resolution (30,000X) image of the left part of Fig. 7b. Evident of damage to microbial cell walls, which is not obvious at lower resolution.