Engineering FRET Strategy to Achieve Ratiometric Two-Photon Fluorescence Response with Large Emission Shift and Its Application to Fluorescence Imaging

Lin Yuan,*^a Fangping Jin,^a Zebing Zeng,*^a Chengbin Liu,^a Shenglian Luo^a and Jishan Wu^b

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical

Engineering, Hunan University, Changsha 410082 (PR China)

^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore

E-mail: lyuan@hnu.edu.cn, zbzeng@hnu.edu.cn

Table of contents

Materials and instruments	.S3
Cytotoxicity assays.	.83
Quantum yield calculation	.83-4
Detection limit calculation	. S4
HeLa cells culture and imaging	S4-5
Preparation of fresh mouse liver slices and two-photon fluorescence imaging	.85
Synthesis	S5-9
Figure S1	.S9
Figure S2	.S10
Figure S3	.S11
Figure S4	.S11
Figure S5	.S12
Figure S6	.S12
Figure S7	.S13
Figure S8	.S13
Figure S9	.S14
Figure S10	.S14
Figure S11	.S14
Figure S12	.S15
Figure S13	.S15
Figure S14	.S16
Table S1	.S17-18
Reference	S18
The copy of NMR	S19-23

Materials and instruments. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Solvents used were purified by standard methods prior to use. Twice-distilled water was used throughout all experiments. High resolution mass spectrometric (HRMS) analyses were measured on a Finnigan MAT 95 XP spectrometer. NMR spectra were recorded on an Bruker-300 or 500 spectrometer. Absorption and emission spectra were recorded with a multifunctional microplate reader SpectraMax M5. Cells and tissue imaging was performed with two photon laser scanning microscope (Olympus FV1000 or NOL-LSM 710). TLC analysis was performed on silica gel plates and column chromatography was conducted over silica gel (mesh 200–300), both of which were obtained from the Qingdao Ocean Chemicals.

Cytotoxicity assays. HeLa cells were cultured in DMEM supplemented with 10% FBS in an atmosphere of 5% CO₂ and 95% air at 37 °C. Before the experiments, the cells were placed in a 96-well plate, followed by addition of increasing concentrations of probe **TR-H₂S** (99.9% DMEM and 0.1% DMSO). The final concentrations of the probe were kept from 1 to 15 μ M (n = 3). The cells were then incubated at 37 °C in an atmosphere of 5% CO₂ and 95% air at 37 °C for 24 h, followed by MTT assays. Untreated assay with DMEM (n = 3) was also conducted under the same conditions.

Quantum yield calculation

Quantum yields were determined using rhodamine B (0.70 in MeOH) as a standard according to a published method (Velapoldi, R. A.; Tønnesen, H. H. *J. Fluoresc.* **2004**, *14*, 465). The quantum yield was calculated according to the equation:

$$\Phi_{\text{sample}} = \Phi_{\text{standard}} \times (A_{\text{standard}} F_{\text{sample}} / A_{\text{sample}} F_{\text{standard}})$$

where Φ_{sample} and Φ_{standard} are the fluorescence quantum yield of the sample and the standard, respectively; F_{sample} and F_{standard} are the integrated fluorescence intensities of the sample and the standard spectra, respectively; A_{sample} and A_{standard} are the optical densities at the excitation wavelength, of the sample and the standard, respectively.

Detection limit calculation

The detection limit was calculated based on the fluorescence titration (Joshi, B. P.; Park, J.; Lee, W. I.; Lee, K. *Talanta.* **2009**, *78*, 903; Wu, M. Y.; Li, K.; Hou, J. T.; Huang, Z.; Yu, X. Q. *Org. Biomol. Chem.* **2012**, *10*, 8342). To determine the S/N ratio, the emission intensity of **TR-H₂S** without Na₂S was measured by 20 times and the standard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the emission ratios (I₅₀₀/I₆₂₅) and the H₂S concentration could be obtained in the 1-80 μ M (R = 0.994), as shown in Figure S5. The detection limit is then calculated with the equation: detection limit = 3 σ /m, where σ is the standard deviation of blank measurements, m is the slope between the emission ratios versus sample concentration. The detection limit was measured to be 0.3 μ M at S/N = 3 (signal-to-noise ratio of 3:1).

HeLa cells culture and imaging using probe TR-H₂S. HeLa cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO₂ and 95% air at 37 °C. The cells were placed on 1-well plates and allowed to adhere for 24 h. Immediately before the experiments, the cells were washed with PBS buffer, and then the cells were incubated with probe TR-H₂S (5 μ M) for 30 min at 37 °C, or were pre-incubated

with probe **TR-H₂S** (5 μ M) for 30 min and then further treated with Na₂S (100 μ M) for 30 min at 37 °C. Subsequently, the cells were washed in PBS medium. The fluorescence images were acquired through a con-focal laser scanning microscopy.

Preparation of fresh mouse liver slices and two-photon fluorescence imaging. Slices were prepared from the liver of two weeks old mice. Slices were cut to 400 μ m thickness by using a vibrating-blade microtome in 15 mM PBS (pH 7.4). Slices were incubated with probe **TR-H₂S** (5 μ M) for 30 min at 37 °C or pretreated with of **TR-H₂S** (5 μ M) for 30 min and then further treated with Na₂S (100 μ M) for 30 min at 37 °C. Slices were then washed three times with PBS, transferred to glass-bottomed dishes, and observed under a two-photon con-focal microscopy.

Synthesis

Compound 1 was prepared by the literature method (M. Y. Kang, C. S. Lim, H. S. Kim, E. W. Seo, H. M. Kim, O. Kwon, B. R. Cho, *Chem. Eur. J.* **2012**, *18*, 1953-1960), and the synthesis of the other compounds is described below.

Synthesis of compound 2: A mixture of compound 1 (142 mg, 0.5 mmol), 4-(*N*-Bocamino)piperidine (100 mg, 0.5 mmol), EDC·HCl (154 mg, 0.6 mmol), and HOBt (124 mg, 1.7 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for overnight under a nitrogen atmosphere. The resulting mixture was extracted with saturated NaHCO₃, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂/MeOH = 50:1) to give compound **2** in 76% yield (177 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.29 (s, 1H), 7.91 (dd, *J* = 8.7, 1.5 Hz, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.58 (dd, *J* = 15.2, 8.7 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.66 (d, *J* = 4.5 Hz, 1H), 4.70 (s, 1H), 4.53 – 4.48 (m, 1H), 4.04 (d, *J* = 12.4 Hz, 1H), 3.77 (s, 2H), 3.59 (s, 1H), 3.29 (dt, *J* = 12.3 Hz, 1H), 2.84 (dt, *J* = 10.1 Hz, 1H), 2.66 (d, *J* = 10.2 Hz, 3H), 2.37 (dd, *J* = 9.1 Hz, 1H), 2.08 (m, 11.5 Hz, 5H), 1.77 (s, 1H), 1.48 (9H), 1.28 (s, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 197.74, 170.68, 155.05, 146.72, 137.75, 131.02, 130.54, 126.02, 125.23, 124.55, 116.05, 105.17, 79.74, 59.34, 58.94, 48.64, 43.89, 41.33, 33.45, 33.12, 32.40, 30.82, 30.50, 28.41, 26.38, 23.67, 23.55. MS (ESI⁺) 466.3 (M + H⁺); HRMS (EI): (M)⁺ calcd. for C₂₇H₃₅N₃O₄, 465.2628; found, 465.2619.

Synthesis of compound 3: Compound 2 (349 mg, 0.75 mmol) was dissolved in CH₂Cl₂ (2 mL), then CF₃COOH (2 mL) was added, the mixture was stirred at room temperature for 30 min under a nitrogen atmosphere. The resulting mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 100: 1 to 20: 1) to give compound **3** in 92% yield (252 mg). ¹H NMR (500 MHz, DMSO): δ 8.42 (s, 1H), 8.10 (d, 2H, -NH₂), 7.87 (d, *J* = 8.9 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 1H), 7.64 (t, *J* = 8.7 Hz, 1H), 6.92 (dd, *J* = 8.6 Hz, 1H), 4.36 (t, *J* = 12.4 Hz, 1H), 4.23 (t, *J* = 12.7 Hz, 1H), 3.55 (dd, *J* = 10.5, 6.0 Hz, 2H), 3.22 – 3.10 (m, 1H), 2.78 – 2.64 (m, 1H), 2.62 (s, 3H),

2.42 - 2.27 (m, 1H), 1.98 (m, 5H), 1.61 (m, 1H), 1.45 - 1.30 (m, 1H), 1.24 (s, 1H); ¹³C NMR (126 MHz, DMSO) δ 197.34, 170.29, 147.34, 137.70, 131.08, 130.23, 126.09, 124.47, 116.99, 104.92, 58.43, 58.30, 48.72, 48.13, 47.86, 43.19, 31.14, 30.75, 30.51, 30.35, 29.80, 29.45, 26.81, 23.58, 23.49. MS (ESI⁺) 366.3 (M + H⁺); HRMS (EI): (M)⁺ calcd. for C₂₂H₂₇N₃O₂, 365.2103; found, 365.2112.

Synthesis of compound 5: A mixture of compound **4** (191 mg, 1.3 mmol), tert-Butyl bromoacetate (305 mg, 1.6 mmol), K_2CO_3 (215 mg, 1.6 mmol), NaI (61 mg, 0.4 mmol) in MeCN (150 mL) was refluxed under nitrogen atmosphere for 18 h. The product was extracted with ethyl acetate, washed with brine, and purified by flash column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂/MeOH = 60: 1) to give compound **5** in 52% yield (176 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.64 (d, *J* = 8.4 Hz, 1H), 6.60 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.52 (s, 1H), 3.90 (s, 2H), 3.09 – 2.99 (m, 2H), 2.70 – 2.60 (m, 2H), 1.54 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 204.76, 169.15, 158.40, 152.50, 127.51, 125.47, 113.41, 107.22, 82.62, 45.62, 36.26, 27.99, 25.71. MS (ESI⁺) 262.1 (M + H⁺); HRMS (EI): (M)⁺ calcd. for C₁₅H₁₉NO₃, 261.1365; found, 261.1372.

Synthesis of compound 6: 4-(diethylamino)salicylaldehyde (193 mg, 1 mmol) and compound 5 (260 mg, 1 mmol) were dissolved in MeSO₃H (2 mL) and stirred at 90 °C for 2 h. After cooling to room temperature, the mixture was added to ice-water solution (30 g), then 70% perchloric acid (0.5 mL) was added. The resulting mixture was extracted with CH₂Cl₂ (6 × 30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 50: 1 to 10: 1) to give compound 6 in 63% yield (292 mg). ¹H NMR (300 MHz, MeOD): δ 8.18 (s, 1H), 8.86 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.13 (dd, *J* = 6.4 Hz, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 6.92 (dd, *J* = 8.7 Hz, 1H), 6.84 (d, *J* = 2.0 Hz, 1H), 3.90 (4H), 3.67 (q, *J* = 6.9 Hz, 4H), 1.37 (7, *J* = 6.9 Hz, 4H); ¹³C NMR (75 MHz, MeOD) δ 171.31, 156.60, 157.27, 153.23, 153.12, 140.75, 139.95, 134.57, 130.76, 126.68, 124.02, 119.51, 115.03, 113.73, 113.48, 96.49, 45.12, 44.99, 13.05. MS (ESI⁺) 363.2 (M⁺); HRMS (ESI): (M)⁺ calcd. for C₂₂H₂₃N₂O₃⁺, 363.1709; found, 363.1725.

Synthesis of compound TR-H₂S: A mixture of compound **3** (51 mg, 0.11 mmol), **6** (40 mg, 0.11 mmol), EDC·HCl (25 mg, 0.13 mmol), and HOBt (21 mg, 0.13 mmol) in CH₂Cl₂ (3 mL) was stirred at room temperature for overnight under a nitrogen atmosphere. The resulting mixture was extracted with saturated NaHCO₃, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂/MeOH = 20: 1) to give compound **TR-H₂S** in 74% yield (690 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.83 (1H), 8.59 (N*H*, 1H), 8.26-8.19 (d, *J* = 2.8 Hz, 1H), 7.94-7.70 (3H), 7.56-7.33 (2H),

7.16-7.03 (2H), 6.95-6.92 (d, J = 1.0 Hz, 1H), 6.83-6.72 (2H), 6.61-6.59 (d, J = 1.0 Hz, 1H), 4.67 (s, 1H), 4.27-4.10 (5H), 3.82-3.54 (9H), 3.32-3.09 (m, 1H), 2.62 (s, 1H), 2.25-1.80 (8H), 1.32, (t, J = 8.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 197.73, 171.40, 170.42, 168.73, 156.36, 156.35, 152.81, 146.77, 146.74, 138.37, 138.12, 137.73, 131.15, 130.94, 130.92, 130.48, 126.86, 126.04, 126.01, 125.91, 124.97, 124.33, 124.24, 119.93, 116.14, 113.67, 113.21, 104.92, 97.03, 58.82, 58.69, 48.55, 48.48, 45.43, 43.64, 40.53, 40.45, 32.55, 31.87, 29.65, 29.27, 26.39, 23.48, 12.42. MS (M⁺) 710.3; HRMS (ESI): (M)⁺ calcd. for C₄₄H₄₈N₅O₄⁺, 710.3706; found, 710.3715.

Fig. S1. (a) Normalized TPE emission spectrum of 2 (•), 6 (\blacktriangle), and absorption spectrum 6 (\blacksquare) at 25 °C. (b) Absorption spectrum of 6 upon titration of H₂S (Na₂S, 0-50 μ M) in a PBS (pH = 7.4, 1% DMSO, 1 mg/mL HSA).

Fig. S2. Reversed-phase HPLC chromatograms with absorption (350 nm) detection. Assigned peaks were confirmed by ESI⁺. The arrow indicates adduct product of compound **6** with Na₂S. (a) An authentic solution of 100 μ M compound **6**. (b) A sample solution of 100 μ M compound **6** in the presence of 200 μ M Na₂S for 1 min. (c) The MS of 100 μ M compound **6** in the presence of 200 μ M Na₂S for 1 min. (d) ¹H NMR spectra of **6** (500 MHz) in the absence (i) and presence of 0.5 equiv. (ii) and 2equiv. (iii) Na₂S in DMSO-d₆/D₂O (8:2, v/v).

Fig. S3. One-photon ($\lambda_{ex} = 378$ nm) induced emission spectra of **TR-H₂S** (•), **2** (•), **and 6** (**A**) at 25°C in MeOH. Emission at around 500 nm is quenched (>97%) upon excitation of **TR-H₂S** at 378 nm compared to excitation of **2** at 378 nm.

Fig. S4. The normalized absorption spectrum (\blacksquare) and excitation spectrum (\blacktriangle) of TR-H₂S, both normalized to 1 at the TR-H₂S absorption peak (~570 nm).

Fig. S5. The intensity ratio (I_{500}/I_{625}) of TR-H₂S versus the concentration of Na₂S changes from 1 to 80 μ M.

Fig. S6. The normalized fluorescence intensity of dye 2 (•), and 6 (•) exposure to UV light (80 W, 365 nm) (a) or femtosecond laser (80 W, 760 nm) for 0-40 min. (c) The intensity ratio (I_{500}/I_{625}) of **TR-H₂S** exposure to femtosecond laser (80 W, 760 nm) for 0-40 min

Fig. S7. The intensity ratio (I_{500}/I_{625}) changes with times of **TR-H₂S** in the absence (0-15 s) and presence (20-60 s) of Na₂S (80 μ M).

Fig. S8. Fluorescence intensity ratios (I_{500}/I_{625}) of probe **TR-H₂S** in the absence (**•**) or presence (**•**) of H₂S (100 µM) at different pH.

Fig. S9. Resonance structures of the cationic anthocyanidin analogues. B) The proposed electrostatic repulsion interaction between the cationic anthocyanidin analogues and the cationic ammonium group of Cys.

Fig. S10. Percentage of viable HeLa cells after treatment with indicated concentrations (a: 0 μ M; b: 1 μ M; c: 2 μ M; d: 5 μ M; e: 10 μ M; f: 15 μ M) of probe **TR-H₂S** after 24 hours by MTT assay.

Fig. S11. Depth fluorescence images of liver slice incubated with TR-H₂S (5 µM) for 30 min,

emission measured at 591-704 nm. Scale bars: 20 μm

Fig. S12. Depth fluorescence images of liver slice incubated with TR-H₂S (5 μ M) for 30 min and then further incubated with Na₂S (100 μ M) for another 30 min, emission measured at 471-560 nm. Scale bars: 20 μ m

Fig. S13. (top) Ratio (F_{green}/F_{red}) images of liver slice incubated with **TR-H₂S** (5 µM) for 30 min. (bottom) Ratio (F_{green}/F_{red}) images of liver slice incubated with **TR-H₂S** (5 µM) for 30 min and then further incubated with Na₂S (100 µM) for another 30 min. The emission measured at 471-560 nm for green channel and 591-704 nm for red channel, respectively. Scale bars: 20 µm.

Fig. S14. Imaging of HeLa cells. a-c) Cell incubated with **TR-H₂S** (5 μ M) for 30 min, emission measured at 471-560 nm (b) and 591-704 nm (c); d-f) Cell incubated with **TR-H₂S** (5 μ M) for 30 min and then further incubated with Na₂S (100 μ M) for another 30 min, emission measured at 471-560 nm (e) and 591-704 nm (f). Scale bars: 10 μ m.

Probes	λ_{ex}/nm	$\Delta \lambda_{em}/nm^{b}$	detection	Solution	Mechanis	Application
	(OP/TP) ^a		limit/µM		m	
CyN3 ¹	625/	40	0.08	HEPES (pH=7.4, 40 mM)	ICT	macrophage cells
AHS-1/2 ²	400/800	62	0.05	EtOH/PBS (v/v1:4, pH 7.0)	ICT	MCF-7 cells
CouMC ³	475/	140 °	1	PBS (20 mM, pH 7.40, 2% DMSO, v/v)	ICT	MCF-7 cells
nitroolefin-	467/	139 °	2.5	DMF	ICT	
based coumarin 2 ⁴						
SHS-M2 ⁵	373/750	81	0.4	HEPES (30 mM, 100 mM KCl, pH 7.4)	ICT	HeLa cells Brain slices
RHP-2 ⁶	415/	67	0.27	PBS buffer (20 mM, pH 7.4, 5%CH ₃ CN)	ICT	MCF-7 cells
NAP-1 ⁷	415/	67	0.11	PBS buffer (20 mM, pH = 7.4, 5% CH ₃ CN)	ICT	MCF-7 cells
Azido-Cresyl violet ⁸	535/	54	0.1	phosphate buffer (60 mM, pH 7.4).	ICT	MCF-7 cells zebrafish.
Flavylium derivative ⁹	450/	205 °	0.14	PBS buffer (10 mM, pH 7.4, 30% CH ₃ CN	ICT	HeLa cells
HS-Cy ¹⁰	700-510/	155°	0.01	HEPES buffer (20 mM, pH 7.4, 0.5% CH ₃ CN)	ICT	HepG2 cells
Azido-HBT ¹¹	330/	95 ^d	2.4	PBS (50 mM, pH 7.4,30% CH ₃ CN).	ESIPT	HeLa cells
3-(disulfanyl)- propionic acid- caged HMBT ¹²	320/	104 ^d	0.068	Tris-HCl (10 mM, pH 7.40)	ESIPT	HeLa cells
E1 ¹³	295/	131 ^d	0.12	Tris-HCl buffer (20 mM, pH 7.4, 40% EtOH)	ESIPT	HeLa cells
FBBP ¹⁴	310/	103 ^d	0.51	CH ₃ CN : H ₂ O ($v/v = 2$: 8, pH 7.5)	ESIPT	yeast cell
SR400 ¹⁵	400/	60		PBS buffer (20 mM, pH 7.4)	FRET	HEK293
SR550 ¹⁵	550/	90		PBS buffer (20 mM, pH 7.4)	FRET	
TR-H ₂ S ¹⁶	378/760	125 °	0.3 μΜ	PBS (pH = 7.4, 2% DMSO, 1 mg/mL HSA)	FRET	HeLa cells Liver slice

Table S1. Properties of ratiometric fluorescent H₂S probes

^a One-photon (OP) excitation wavelength and two-photon (TP) excitation wavelength. ^b The emission shift between two peaks before and after interaction with H_2S . ^c Although these probes based on ICT mechanism have large emission shift, their maximum excitation/absorption wavelengths are also remarkably fluctuated/shifted before and after reaction with H_2S ; thus, these probes have to irradiate at the excitation maxima of either absorbance band or the iso-excitation point (absorptivity of these probes at this point is quite weak.). Therefore as a result, one band of fluorescence brightness is sacrificed or both bands of fluorescence are equally sacrificed, which are not conducive to image purpose. One extreme example is $HS-Cy^{10}$, which has to excite at two different absorption bands due to the large excitation shift (190 nm) before and after reaction with H₂S. ^d These probes based on ESIPT (excited state intramolecular proton transfer) mechanism also display large emission shift, but the short excitation wavelengths in the UV range (295-330 nm) typically used for this type of probes could perturb the cells. In addition, the short excitation wavelength leads to two emission bands, among which one emission band also lies in the UV range (356-374 nm), thus it is not desirable for imaging purpose. ^e Probe **TR-H₂S** collectively displays several unique advantages, such as its large emission shift (125 nm), unchanged maximum low energy TPE wavelength (760 nm) and both emission bands located at long wavelength region (500-630 nm).

References

- 1. F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, Chem. Commun., 2012, 48, 2852-2854.
- 2. X. L. Liu, X. J. Du, C. G. Dai and Q. H. Song, J. Org. Chem., 2014, 79, 9481-9489.
- Y. Chen, C. Zhu, Z. Yang, J. Chen, Y. He, Y. Jiao, W. He, L. Qiu, J. Cen and Z. Guo, *Angew. Chem. Int. Ed.*, 2013, 52, 1688-1691.
- 4. M. Y. Wu, K. Li, J. T. Hou, Z. Huang and X. Q. Yu, Org. Biomol. Chem., 2012, 10, 8342-8347.
- S. K. Bae, C. H. Heo, D. J. Choi, D. Sen, E. H. Joe, B. R. Cho and H. M. Kim, J. Am. Chem. Soc., 2013, 135, 9915-9923.
- 6. L. Zhang, W. Q. Meng, L. Lu, Y. S. Xue, C. Li, F. Zou, Y. Liu and J. Zhao, Sci. Rep., 2014, 4.
- L. Zhang, S. Li, M. Hong, Y. Q. Xu, S. S. Wang, Y. Liu, Y. Qian and J. Zhao, Org. Biomol. Chem., 2014, 12, 5115-5125.
- 8. Q. Q. Wan, Y. C. Song, Z. Li, X. H. Gao and H. M. Ma, Chem. Commun., 2013, 49, 502-504.
- 9. J. Liu, Y. Q. Sun, J. Zhang, T. Yang, J. Cao, L. Zhang and W. Guo, Chem. -Eur. J., 2013, 19, 4717-4722.
- 10. J. S. Xu Wang, W. Zhang, X. Ma, J. Lv and B. Tang, Chem. Sci., 2013, 4, 2551-2556.
- 11. Y. Jiang, Q. Wu and X. Chang, Talanta, 2014, 121, 122-126.
- 12. Q. Huang, X. F. Yang and H. Li, Dyes. Pigment., 2013, 99, 871-877.
- 13. Z. Xu, L. Xu, J. Zhou, Y. Xu, W. Zhu and X. Qian, Chem. Commun., 2012, 48, 10871-10873.
- 14. S. Goswami, A. Manna, M. Mondal and D. Sarkar, Rsc. Adv., 2014, 4, 62639-62643.
- 15. L. Wei, L. Yi, F. Song, C. Wei, B. F. Wang and Z. Xi, Sci. Rep., 2014, 4.
- 16. This work.

S21

