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1 Supplementary Data on Experiments

In this supplementary document, we present performance data collected during the execu-
tion of Experiment 2 on the Microsoft Azure Platform. All nodes were placed in the same
location (East-North US). The cluster is composed of two A4 instances (8 cores and 14GB
memory) configured as master nodes and 64 A3 (4 cores and 7GB memory) instances config-
ured as computing nodes. For the measurements presented in this text, both SparkBLAST
and CloudBLAST executed queries on the Buz.fasta (805 MB) dataset. We used Galglia
[Massie et al. 2004], a scalable distributed monitoring system, to collect the performance
data that are presented in this supplementary document.
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2 CPU utilization

The cluster average CPU utilization is presented in Figures S1 and S2. As illustrated, in both
cases CPU utilization reaches near 97-98% after the initialization of the application. CPU
utilization did not reach 100% because the master nodes are taken into account and they
have low CPU utilization. Individual workers for both systems reach 100% CPU utiilization
as depicted in Figure S3 and Figure S4.

As reported in our paper, the execution of CloudBLAST takes a sightly longer time than
the SparkBLAST execution. There are some possible reasons for the extra overhead caused
by Hadoop. First, Hadoop is much slower than Spark in task initialization [Shi et al. 2015].
Second, there is an overhead caused by the pipe and I/O operations implemented by Hadoop
[Ding et al. 2011]. Hadoop uses Linux pipes to redirect standard input and standard output of
BLAST to connect it to the Mapreduce environment. Pipes are inter process communication
mechanisms that involve the creation of buffers between two communication processes. The
producer process copies data into the buffer, while the consumer process collects and removes
data items from the buffer. Both communicating processes have to synchronize. Lastly, the
use of data type casting and unbuffered Java I/O operations, which write data to be accesed
by external executables (e.g. BLAST) and read data from them, may also lead to performance
overhead.

Figure S1: CPU utilization for the SparkBLAST execution.
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Figure S2: CPU utilization for the CloudBLAST execution.

Figure S3: CPU utilization for one worker node running SparkBLAST.

3 Memory utilization

Another cause for superior performance of SparkBLAST is memory management. Spark
implements the Resilient Distributed Datasets (RDDs), which implement in-memory data
structures used to cache intermediate data across a set of nodes. The effect can be observed
in Figures S5 and S6. Hadoop needs to use more memory than Spark, while Spark can
maintain a larger cache and less swap to execute.
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Figure S4: CPU utilization for one worker node running CloudBLAST.

Figure S5: Memory utilization for SparkBLAST

4 Network traffic

The network traffic produced by SparkBLAST and CloudBLAST are presented in Figure
S7 and Figure S8, respectively. The total amount of data transmitted over the network by
SparkBLAST during its execution is 3.76 GB, while CloudBLAST’s traffic reaches 8.92 GB.
CloudBLAST experienced a traffic peak in the beginning of the execution because it transfers
the data from the blob service to the local disk.
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Figure S6: Memory utilization for CloudBLAST.

Figure S7: Network traffic produced by SparkBLAST during its execution.

5 Final Remarks

Although Hadoop and Spark are designed to support the execution of distributed applications
on large clusters, their design and implementation lead to different performance. Compared to
Hadoop, Spark has demonstrated better performance for the execution of BLAST applications
on a cloud platform. Possible reasons for the superior performance of Spark come from its
low overhead in task management, better memory utilization and less network traffic. Also,
the underlying mechanisms used to implement Hadoop streaming also lead to extra overhead.
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Figure S8: Network traffic produced by CloudBLAST during its execution.
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