Copper Doped Ceria Porous Nanostructures towards Highly Efficient Bifunctional Catalyst for Carbon Monoxide and Nitric Oxides Elimination

Shanlong Li, Nengli Wang, Yonghai Yue, Guang-sheng Wang, Zhao Zu and Yu Zhang

Experimental Section

Materials. The initial chemicals, including $Ce(NO₃)₃·6H₂O$ (Alfa Aescar Chemical Co.), Cu(NO3)2·3H2O (Alfa Aescar Chemical Co.), benzene-1,3,5-tricarboxylic acid (BTC) (98%, Alfa Aescar Chemical Co.), terephthalic acid (BDC) (98%, Alfa Aescar Chemical Co.) 4,4'- Biphenyldicarboxylic acid (BPDC) (98%, Alfa Aescar Chemical Co.) and ethanol (A. R., Beijing Fine Chemical Company, China), were used without further purification.

Preparation.

CeO₂ nanorods: In a typical procedure, the reaction of $Ce(NO₃)₃·6H₂O$ (1 mmol) and BTC (1 mmol) in a 1:1 stoichiometry in ethanol-water solution (50 mL, $v/v = 1:1$) was carried out under vigorous stirring at room temperature. The reaction mixture was then refluxed at 90 \degree C under constant stirring for 2 h, and a large amount of white precipitate occurred. At last, the precipitate was collected by centrifugation, washed several times with ethanol and water, and dried at 60 °C for 24 h in atmosphere. In addition, the conversion of $Ce(BTC)$ ·6H₂O into $CeO₂$ was carried out in an oven at $600 \degree C$ for 3 h in air.

 $CeO₂$ **nanobundles:** the procedure for the synthesis of $CeO₂$ nanobundles is similar with the procedure for the synthesis of $CeO₂$ nanorods. The only different is reducing the concentrations of reactant (1 mL of 0.5 M Ce(NO₃)₃ aqueous solution was added into BTC (0.5 mmol) waterethanol solution (40 mL, $v/v = 1:1$)).

 Cu^{2+} **-doped CeO₂ nanorods** and **nanobundles:** Cu^{2+} -doped CeO₂ nanorods and nanobundles were prepared by the same treatment as the undoped sample except that 0.1 mmol $Cu(NO₃)₂·3H₂O$ and 0.9 mmol Ce(NO₃)₃·6H₂O were used instead of 1 mmol Ce(NO₃)₃·6H₂O.

The procedure for the synthesis of other Cu^{2+} -doped $CeO₂$ nanostructures obtain from $Ce(Cu)$ -BDC and Ce(Cu)-BPDC is similar with the procedure for the synthesis of Cu^{2+} -doped CeO₂ nanorods.

Characterization.

Powder X-ray diffraction (XRD) patterns were performed on a D8 Focus (Bruker) diffractometer (continuous, 40 kV, 40 mA, increment: 0.02 degree). Thermogravimetric analysis and differential thermal analysis (TGADTA) data were recorded with a thermal analysis instrument (SDT2960, TA Instruments, New Castle, DE) at the heating rate of 10 °C min^{-1} in an air flow of 100 mL min^{-1} . The morphology and composition of the samples were inspected using a field emission scanning electron microscope (FE-SEM, S-4800, Hitachi) equipped with an energy dispersive X-ray spectrum (EDX, JEOL JXA-840). Transmission electron microscopy (TEM) images were obtained using a JEOL 2010 transmission electron microscope operating at 200 kV. The X-ray diffraction patterns of the products were collected on a Rigaku-D/max 2500 V X-ray diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å), with an operation voltage and current maintained at 40 kV and 40 mA. Transmission electron microscopic (TEM) images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV. XPS measurement was performed on an ESCALAB-MKII 250 photoelectron spectrometer (VG Co.) with Al K α X-ray radiation as the X-ray source for excitation.

Catalytic test: 8 mg catalyst was mixed with 20 mg SiO₂. The mixture was put in a stainless steel reaction tube. The experiment was carried out under a flow of reactant gas mixture (1 % CO, 20 % O2, balance N2) at a rate of 30 mL/min. The composition of the gas was monitored on-line by gas chromatography (GC 9800).

Micromeritics ASAP2020 surface area analyzer was used to measure gas adsorption.

Fig. S1. The XRD patterns of Ce(BTC)(H₂O)₆ and Cu²⁺ doped (10% content with Ce) Ce(BTC)(H₂O)₆ nanocrystals (a: simulated Ce(BTC)(H₂O)₆; b: Ce(BTC)(H₂O)₆ nanorods; c: Ce(BTC)(H₂O)₆ nanobundles; d: CeCu(BTC)(H₂O)₆ nanorods; e: CeCu(BTC)(H₂O)₆ nanobundles).

Fig. S2. The morphology of Ce-MOF nanorods (a) and nanobundles (b).

Fig. S3. TG-DTA analysis of CeCu-BTC nanocrystals.

Fig. S4. XRD patterns of Cu^{2+} doped samples.

Fig. S5. The representative EDX patterns recorded from the $CeO₂:Cu²⁺$.

Fig. S6. The XRD pattern (a) and SEM image (b) of the nanorods after catalytic reaction.

Fig. S7. The CO catalytic activity of $CeO₂: Cu²⁺$ porous nanomaterials with different Cu²⁺ content.

Fig. S8. The XRD pattern of $CeO₂: Cu²⁺$ nanocrystals with 20% $Cu²⁺$ content.

Fig. S9. Catalytic cycles of $CeO₂:Cu²⁺$ nanorods.

Fig. S10. The morphology of $CeO₂:Cu²⁺$ nanocrystals obtained from CeCu-BDC (a) and CeCu-BPDC (b).