# **Science** Advances

AAAS

advances.sciencemag.org/cgi/content/full/3/6/e1700584/DC1

# Supplementary Materials for

## Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

Stefan Hofer, Andrew J. Tedstone, Xavier Fettweis, Jonathan L. Bamber

Published 28 June 2017, *Sci. Adv.* **3**, e1700584 (2017) DOI: 10.1126/sciadv.1700584

### This PDF file includes:

- fig. S1. Long-term NAO index from observations on Iceland and the Azores (1950–2016) (19).
- fig. S2. Extended GBI (1850–2016) (14).
- fig. S3. Correlation between JJA cloud cover and LWD anomalies.
- fig. S4. Correlation between summer radiation anomalies and albedo.
- fig. S5. Correlation between annual melt and runoff anomalies.

#### **Supplementary Materials**



fig. S1. Long-term NAO index from observations on Iceland and the Azores (1950–2016)(19). Average JJA NAO index (blue) and 5 year running average (orange) retrieved from observations from the Azores (Ponta Delgada) and Iceland (Reykjavik).



**fig. S2. Extended GBI (1850–2016) (14).** Average JJA GBI from mean 500 hPa geopotential height between 60-80°N and 20-80°W (blue) and 5 year running average GBI (orange).



fig. S3. Correlation between JJA cloud cover and LWD anomalies. Scatterplot and linear regression line of JJA cloud cover anomalies (%) and JJA longwave downward anomalies (Gt) ( $R^2 = 0.003$ , p = 0.1).



fig. S4. Correlation between summer radiation anomalies and albedo. (A), correlation between JJA SWD anomalies since 1979 and GrIS summertime albedo ( $R^2 = 0.46$ , p < 0.001), based on the 1970-1995 climatological mean of MAR, (**B**), same as **A**) but showing JJA LWD anomalies and summertime albedo correlation ( $R^2 = 0.50$ , p < 0.001).



fig. S5. Correlation between annual melt and runoff anomalies. Scatterplot of annual melt anomalies against annual runoff anomalies, based on the 1970-1995 average of MAR ( $R^2 = 0.98$ , p < 0.001).