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1 Supplemental Methods

1.1 Human DSI Data Acquisition and Preprocessing

Both T1 weighted anatomical images and diffusion spectrum images (DSI) were acquired from 59 human adults
with 72 scans in total, among which 61 scans were acquired from 48 healthy subjects (mean age 22.6± 5.1 years,
24 female, 2 left handed) and 11 were acquired from individuals with mild traumatic brain injury [1](mean age
33.8 ± 13.3 years, 4 female, handedness unclear). Participants in the mild traumatic brain injury group were
recruited by advertisement and referral from a local neurologist (P.R.D.). Inclusion criteria were age > 18, a
history of community acquired concussion in the preceding 10–180 days with persistent cognitive complaints based
on self report. Patients with depression were excluded. The concussions were primarily secondary to motor
vehicle, bicycle, skateboard and horseback riding accidents. Subjects with an abnormal clinical MRI or CT (eg.,
skull fracture or hemorrhage) or a preexisting neurologic condition were excluded. All participants volunteered
with informed written consent in accordance with the Institutional Review Board/Human Subjects Committee,
University of California, Santa Barbara.

DSI scans sampled 257 directions using a Q5 half shell acquisition scheme with a maximum b value of 5000
and an isotropic voxel size of 2.4mm. We utilized an axial acquisition with the following parameters: TR =
11.4s, TE = 138ms, 51 slices, FoV (231,231,123 mm). DSI data were reconstructed in DSI Studio (www.dsi-
studio.labsolver.org) using q-space diffeomorphic reconstruction (QSDR) [2]. QSDR first reconstructs diffusion
weighted images in native space and computes the quantitative anisotropy (QA) in each voxel. These QA values
are used to warp the brain to a template QA volume in MNI space using the SPM nonlinear registration algorithm.
Once in MNI space, spin density functions were again reconstructed with a mean diffusion distance of 1.25 mm
using three fiber orientations per voxel. Fiber tracking was performed in DSI Studio with an angular cutoff of
55◦, step size of 1.0 mm, minimum length of 10 mm, spin density function smoothing of 0.0, maximum length of
400 mm and a QA threshold determined by DWI signal in the CSF. Deterministic fiber tracking using a modified
FACT algorithm was performed until 100, 000 streamlines were reconstructed for each individual.

1.2 Structural Network Construction

In addition to diffusion scans, a three-dimensional high-resolution T1-weighted sagittal sequence image of the whole
brain was obtained at each scanning session by a magnetization-prepared rapid acquisition gradient-echo sequence
with the following parameters: TR=15.0ms; TE=4.2ms; flip angle=9 degrees, 3D acquisition, FOV=256mm; slice
thickness=0.89mm, matrix=256 ×256. Anatomical scans were segmented using FreeSurfer [3] and parcellated
according to the Lausanne 2008 atlas included in the connectome mapping toolkit [4]. A parcellation scheme
including 234 regions was registered to the B0 volume from each subject’s DSI data. The B0 to MNI voxel
mapping produced via QSDR was used to map region labels from native space to MNI coordinates. To extend
region labels through the gray/white matter interface, the atlas was dilated by 4mm. Dilation was accomplished
by filling non-labeled voxels with the statistical mode of their neighbors’ labels. In the event of a tie, one of the
modes was arbitrarily selected. Each streamline was labeled according to its terminal region pair.

From these data, we built structural brain networks from each of the 72 diffusion spectrum imaging scans.
Consistent with previous work [5, 6, 7, 8, 9, 10, 11, 12, 13], we defined these structural brain networks from the
streamlines linking N = 234 large-scale cortical and subcortical regions extracted from the Lausanne atlas [4]. We
summarize these estimates in a weighted adjacency matrix A whose entries Aij reflect the structural connectivity
between region i and region j (Fig. S1A).

Following [10], here we use an edge weight definition based on the quantitative anisotropy (QA). QA is described
by Yeh et. al (2010) as a measurement of the signal strength for a specific fiber population â in an ODF Ψ(â)
[14, 15]. QA is given by the difference between Ψ(â) and the isotropic component of the spin density function
(SDF, ψ) ISO (ψ) scaled by the SDF’s scaling constant. Along-streamline QA was calculated based on the angles
actually used when tracking each streamline. Although along-streamline QA is more specific to the anatomical
structure being tracked, QA is more sensitive to MRI artifacts such as B1 inhomogeneity. QA is calculated for
each streamline. We then averaged values over all streamlines connecting a pair of regions, and used this value to
weight the edge between two regions.
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1.3 Target Control Model

Here we offer additional derivations related to target control. In particular, we note that if we only care about
changing the state of the target regions, then we can modify the control problem discussed in the main text to the
following:

min
u

∫ T

0
(xT − x)T (xT − x) + ρuTu,

s.t. ẋ(t) = Ax + Bu,

x(0) = x0,

xI(T ) = xIT ,

(1)

where I is the index set of the target regions, Ic the complement, and xI(T ), xIT are the constraints of the vector
to the corresponding regions of I. Similar to the derivation for the optimal control model presented in the main
text, we can obtain Eqn[13] and Eqn[14] in the main text but with constraints pI

c
(T ) = 0 and xI(T ) = xIT .

Without loss of generality, we can assume that x(t) =

[
xI(t)
xI

c
(t)

]
. Otherwise, we can easily reorder the regions

before the computations. We then use these constraints in Eqn[16] in the main text, to get[
pI(T )
pI

c
(T )

]
=

[
v1

v2

]
−
[
M11 M12

M21 M22

] [
xI(T )
xI

c
(T )

]
(2)

where v = E−112 (c̃1 −E11
˜̃
b1 −E12

˜̃
b2) and M = E−112 E11. From Eqn[16], we can get

xI
c
(T ) = M−1

22 (v2 −M21x
I(T )− p(T )I

c
) (3)

pI(T ) = v1 −M11x
I(T )−M12x

Ic(T ) (4)

With p(T ),x(T ) on hand, we can follow Eqn[17] in the main text to compute c̃2 and then x̃(t).

1.4 Specification of the Initial and Target States

In contrast to the model explored in [10], the model we describe above is able to examine arbitrary transitions: that
is, transitions from any given initial state to any given target state. An important question then is which sets of
transitions are biologically relevant for a human brain. As in many complex systems, it is intuitively plausible that
not all possible state transitions are required or even healthy [16]. Here, we choose to focus on trajectories whose
initial state is the brain’s baseline condition: states of high activity in the default mode system, predominantly
located in precuneus, posterior cingulate, and superior frontal cortex [17, 18, 19]. We further constrain ourselves to
studying the simplest of target states, in which high activity is present in primary sensorimotor cortex: specifically
visual, auditory, and motor cortices, which form fundamental drivers for basic human function. Admittedly,
many empirically observed brain states are more complex than those we study here, and in fact many activation
patterns cannot be clearly partitioned pre-specified cognitive systems. Yet, these simplified settings are reasonable
characterizations of a few fundamental activation patterns, and enable us to consider the energetic issues related
to the associated control tasks.

1.5 Traditional Notions of Control Strategies

In the main manuscript, we contrast the energy and length of optimal trajectories driven by so-called cognitive
control regions of the human brain (located in fronto-parietal, cingulo-opercular, and attention systems) with those
driven by regions of the brain theoretically predicted to be effective at 3 unique control strategies studied in the
network control literature [10]: average controllability, modal controllability, and boundary controllability. Here we
describe these control notions mathematically.
Average Controllability Average controllability of a network equals the average input energy from a set of
control nodes and over all possible target states [20]. As a known result, average input energy is proportional to
Trace(W−1K ), the trace of the inverse of the controllability Grammian. Instead, we adopt Trace(WK) as a measure
of average controllability for two main reasons: first, Trace(W−1K ) and Trace(WK) satisfy a relation of inverse
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proportionality (see Supplementary Methods), so that the information obtained from the two metrics are correlated
with one another and, second, WK is typically very ill-conditioned (see paragraph “Global Controllability”) even
for coarse network resolutions, so that Trace(W−1K ) cannot be accurately computed even for small brain networks.
It should be noted that Trace(WK) encodes a well-defined control metric, namely the energy of the network impulse
response or, equivalently, the network H2 norm [21]. Regions with high average controllability are, on average,
most influential in the control of network dynamics over all different target states.
Modal Controllability Modal controllability refers to the ability of a node to control each evolutionary mode
of a dynamical network [22], and can be used to identify states that are difficult to control from a set of control
nodes [10]. Modal controllability is computed from the eigenvector matrix V = [vij ] of the network adjacency
matrix A. By extension from the PBH test [21], if the entry vij is small, then the j-th mode is poorly controllable

from node i. Following [23], we define φi =
∑N

j=1(1− λ2j (A))v2ij as a scaled measure of the controllability of all N
modes λ1(A), . . . , λN (A) from the brain region i. Regions with high modal controllability are able to control all
the dynamic modes of the network, and hence to drive the dynamics towards hard-to-reach configurations.
Boundary Controllability Boundary controllability measures the ability of a set of control nodes to decouple
the trajectories of disjoint brain regions [10]. To evaluate the boundary controllability of different brain regions,
we proceed as follows. First, we compute a robust partition of the brain network as described in [24], and we
identify the set of N1 boundary nodes. We assign to these boundary nodes the boundary controllability value
of 1. Second, following [23], we determine the two-partition of the least controllable subnetwork from its Fiedler
eigenvector, and we identify the additional boundary nodes. We assign to these boundary nodes the boundary
controllability value of (N −N1)/N . Finally, we iterate this process until all nodes have been assigned a boundary
controllability value.

1.6 Resting State Data Acquisition and Preprocessing

While in the main manuscript, we study transitions from a binary initial state (DMN regions “on”) for simplicity,
it is straightforward to generalize the approach to examine fully weighted states. In doing so, the open question
is whether the intuitions gained in the binary state case still hold in the weighted state case. We address this
question by defining a weighted version of the initial state (DMN) estimated from non-invasive neuroimaging
data. Specifically, to extract a continuously-defined default mode state, we examined an independently-acquired
resting-state fMRI dataset consisting of 20 individuals each scanned four separate times [25].

Twenty human participants (nine female; ages 19–53 years; mean age = 26.7 years) with normal or corrected
vision and no history of neurological disease or psychiatric disorders were recruited for this experiment. All partic-
ipants volunteered and provided informed consent in writing in accordance with the guidelines of the Institutional
Review Board of the University of Pennsylvania (IRB #801929). Participants had no prior experience with the
stimuli or the behavioral paradigm. After cleaning to maximize data quality on multiple criteria including sub-
ject motion (see [25]), we retained 16 participants (eight female; ages 19-31 years; mean age = 24.1 years), in
accordance with accepted good practices in this field [26].

Magnetic resonance images were obtained at the Hospital of the University of Pennsylvania using a 3.0 T
Siemens Trio MRI scanner equipped with a 32-channel head coil. T1-weighted structural images of the whole
brain were acquired on the first scan session using a three-dimensional magnetization-prepared rapid acquisition
gradient echo pulse sequence (repetition time (TR) 1620 ms; echo time (TE) 3.09 ms; inversion time 950 ms; voxel
size 1 mm × 1 mm × 1 mm; matrix size 190 × 263 × 165). A field map was also acquired at each scan session (TR
1200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60 degrees; voxel size 3.4 mm × 3.4 mm × 4.0 mm; field of view
220 mm; matrix size 64 × 64 × 52) to correct geometric distortion caused by magnetic field inhomogeneity. In all
resting state runs, T2*-weighted images sensitive to blood oxygenation level-dependent contrasts were acquired
using a slice accelerated multiband echo planar pulse sequence (TR 500 ms; TE 30 ms; flip angle 30 degrees; voxel
size 3.0 mm × 3.0 mm × 3.0 mm; field of view 192 mm; matrix size 64 × 64 × 48).

Cortical reconstruction and volumetric segmentation of the structural data was performed with the Freesurfer
image analysis suite [3]. Boundary-Based Registration between structural and mean functional image was per-
formed with Freesurfer bbregister [27]. Preprocessing of the resting state fMRI data was carried out using FEAT
(FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library). The following pre-statistics
processing was applied: EPI distortion correction using FUGUE [28]; motion correction using MCFLIRT [29];
slice-timing correction using Fourier-space time series phase-shifting; non-brain removal using BET [30]; grand-
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mean intensity normalization of the entire 4D dataset by a single multiplicative factor; highpass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). Nuisance time series were voxelwise re-
gressed from the preprocessed data. Nuisance regressors included (i) three translation (X,Y, Z) and three rotation
(pitch, yaw, roll) time series derived by retrospective head motion correction (R = [X,Y, Z, pitch, yaw, roll]), to-
gether with expansion terms ([R,R2,Rt−1,R

2
t−1]), for a total of 24 motion regressors [31]); (ii) the five first principal

components of non-neural sources of noise, estimated by averaging signals within white matter and cerebrospinal
fluid masks, obtained with Freesurfer segmentation tools and removed using the anatomical CompCor method
(aCompCor) [32]; and (iii) an estimate of a local source of noise, estimated by averaging signals derived from the
white matter region located within a 15 mm radius from each voxel, using the ANATICOR method [33]. Global
signal was also regressed out of the voxel time series due to its demonstrated utility in motion artifact correction
[34].

Previous work has demonstrated that the brain’s resting activity delineates a task-negative network that over-
laps closely with putative default mode network regions [35, 36]. We used a two-stage clustering approach to obtain
an estimate of this state. First, we performed clustering at a subject- and scan-specific level. This process entailed
extracting the average fMRI BOLD signal (global signal regressed) for each of the 234 brain regions described in
the main text, standardizing (z-scoring) regional time series within each session, and clustering brain activity pat-
tern at each time point to one of two clusters based on their similarity (hierarchical agglomerative clustering with
distance metric of “correlation” and “average” linkage function). We then obtained cluster centroids by averaging
the activity patterns of all time points assigned to either cluster. This resulted in two “states” (clusters) for each
individual and for each scan session. Secondly, we performed a group-level clustering analysis. We aggregated
cluster centroids across individuals/scan sessions and repeated the same clustering algorithm described earlier.
This resulted in a group-level bi-partition of brain activity patterns into two distinct states. Based on a visual
inspection and previous descriptions of the default mode network, we considered the first state to be a reasonable
estimate of the putative task-negative network. This state exhibited increased activity in frontal, lateral parietal,
and temporal cortices along with precuneus, agreeing closely with previous descriptions of the default mode net-
work’s topographic distribution [37]. In the Supplemental Results, we use of this continuously-weighted (rather
than binary) DMN state to recalculate optimal trajectories to target states.

2 Supplemental Results

2.1 Effect of ρ and Model Reduction

The trajectory of a given task is a curve from the initial state to the target state. When the system is fully
controlled, the distance to the target state decreases monotonically along the trajectory. In the common solution,
the distance to the target state may increase for a certain period of time (as shown in Fig. 2 in the main text) before
decreasing and eventually reaching zero. In our model, the maximal distance to the target state (also referred to as
the extreme distance) is affected both by the number of control nodes and by the value of the parameter ρ, which
balances the contributions of control energy and trajectory distance in the optimization problem. Intuitively, the
larger the set of control regions, the smaller the extreme distance, due to a more optimal distribution of input energy
(Fig. S1A in this supplement). The role of ρ is also intuitive: when ρ is small, the optimal trajectory could arrive
at the target instantly, requiring a massive amount of energy within a short period of time. Although theoretically
possible, in practice these large input energies lead to numerical instabilities in the trajectory (Fig. S1B in this
supplement). We observe that the trajectory becomes stable when ρ > 0.01. In this study, we set ρ = 1 to
obtain solutions in the stable regime and also to give equal weight to the distance term and the energy term in
the optimization problem.

2.2 Relationship between Control Efficiency and Communicability to the Initial State

In the main manuscript, we observed that control efficiency was positively correlated with the network communica-
bility to the target state. Here we ask whether and how control efficiency is related to the network communicability
to the initial state (activation of the default mode). We observe that the control efficiency is consistently nega-
tively correlated with the communicability with the initial state (see Fig. S3; note that the negative correlation
in the visual transition is not statistically significant). To gain an intuition for these results, we recall that when
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trajectory’s maximal distance to the target state decreases as the number of control nodes increases. (B) The
trajectory’s maximal distance to the target state decreases as the balance parameter ρ increases. The maximal
distance becomes stable when ρ > 0.01.
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Figure S2: Distance and Energy of Optimal Trajectories. (A) Envelopes of expected distance to the target
state as measured by a standard deviation across subjects. (B) Envelopes of the control energy (or input) along
the optimal trajectories to the target state, as measured by a standard deviation across subjects. Color indicates
the target state: green corresponds to the visual system being the target state, blue corresponds to the auditory
system being the target state, and red (in the background) corresponds to the sensorimotor system being the
target state.

9



0 100 200

3.5

4

4.5

5

5.5
× 10

-3

0 100 200

3.5

4

4.5

5

5.5
× 10

-3

0 100 200

3.5

4

4.5

5

5.5
× 10

-3

0 100 200

3.5

4

4.5

5

5.5
× 10

-3
Combination Somatosensory Visual AuditoryA B C D

C
o

n
tr

o
l E

�
ci

e
n

cy

Rank of Communicability with Targets

Figure S3: Correlation between Control Efficiency and the Network Communicability with the Initial
State. Here we show the scatter plot of control efficiency versus normalized network communicability with default
mode regions: (A) overall effect (Spearman r = −0.33, p = 4.2 × 10−7), (B) motor (r = −0.16, p = 1.3 × 10−2),
(C) visual ( r = −0.02, p = 7.8× 10−1) and (D) auditory (r = −0.33, p = 4.2× 10−7).

the brain transitions from the initial state to the target state, the controller needs to increase the activity of the
target regions as well as decrease the activity of the initial state. Thus, to be an optimal controller, there exists a
competition for a region to have high communicability to both the initial state and target states. Our data suggest
that the brain displays an interesting assymetry: it produces the most optimal trajectories when control energy is
injected into regions with high network communicability to the target state, and low network communicability to
the initial state. Note that this assymetry is not required theoretically, and this therefore indicates a potentially
important feature of brain structure and dynamics.

2.3 Weighted Initial States: Default Mode Activation Extracted from Resting fMRI

In the main manuscript, we defined the initial state as a binary vector in which the regions of the default mode
network had activity magnitudes equal to 1 (“on”), while all other regions had activity magnitudes equal to 0
(“off”). Here we ask whether this specific choice of the initial state affected our results, or whether the same
intuitions can be gained using a more continuously weighted notion of the initial state based on DMN activation.
To address this question, we estimated the average DMN activation profile from 20 healthy adult human subject
undergoing state-of-the-art multiband functional MRI at rest (see Supplemental Methods). We then treated this
continuously-valued brain state as the initial state in the estimates of optimal control trajectories. Comparing
Figure. S4 in this supplement to Figure. 3 in the main manuscript, we conclude that the use of a continuously-
weighted DMN state does not significantly change our results regarding the structurally-driven task preferences
of control regions. Indeed, we again find that regions that are close (in terms of walk lengths) to regions of high
activity in the target state are efficient controllers for that specific state transition.

Next, comparing Figure. S5 in this supplement to Figure. 4 in the main manuscript, we conclude that the use of
a continuously-weighted DMN state does not significantly change our results regarding the regional roles in control
tasks. Indeed, we again observe that both the trajectory cost and the energy cost differ by control strategy and by
target state. We quantify this observation using a 2-way ANOVA with both the control strategy and target state
as categorical factors. Using the trajectory cost as the dependent variable, we observed a significant main effect of
control strategy (F = 77.09, p = 2.38×10−40), a significant main effect of target state (F = 30.8, p = 2.83×10−13),
and a significant interaction between control strategy and target state (F = 10.62, p = 7.6 × 10−12). Similarly,
using the energy cost as the dependent variable, we observed a significant main effect of control strategy (F =
64.33, p = 1.05 × 10−34), a significant main effect of target state (F = 38.00, p = 5.45 × 10−16), and a significant
interaction between control strategy and target state (F = 9.47, p = 8.13× 10−10).

Finally, comparing Figure. S6 in this supplement to Figure. 5 in the main manuscript, we conclude that the use
of a continuously-weighted DMN state does not significantly change our results regarding the specificity of control
in health and following injury. Indeed, we again find that the healthy and mTBI group differ in the mean and
standard deviation of energetic impact. Specifically, individuals having experienced mTBI displayed significantly
lower values of average magnitude of energetic impact (permutation test: p = 1.0× 10−5) and lower values of the
average standard deviation of energetic impact (p = 2.0× 10−5).
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Figure S4: Structurally-Driven Task Preference for Control Regions. Using an empirically estimated
DMN activation profile as the initial state, we reproduce the analyses reported in main manuscript Figure 3. (A)
Scatterplot of the control efficiency with the average network communicability to the target regions (Spearman
correlation r = 0.29, p < 4.5 × 10−4). (B–D) Scatter plot of control efficiency versus normalized network com-
municability with regions that are active in the target state: motor (r = 0.42, p = 2.1 × 10−11), extended visual
(r = 0.51, p = 1.1× 10−16), and auditory (r = 0.36, p = 1.0× 10−8).
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Figure S5: Regional Roles in Control Tasks. Using an empirically estimated DMN activation profile as the
initial state, we reproduce the analyses reported in main manuscript Figure 4. (A) The number of these regions
overlapping with the strongest 87 average, modal and boundary control hubs is approximately 40. Different choices
of control strategies result in variation in both (B) trajectory cost and (C) energy cost. Here, HC refers to cognitive
control regions, AC refers to average control hubs, MC refers to modal control hubs, and BC refers to boundary
control hubs.
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Figure S6: Specificity of Control in Health and Following Injury. Using an empirically estimated DMN
activation profile as the initial state, we show the magnitude and standard derivation of energetic impact averaged
over regions and tasks; boxplots indicate variation over subjects. Even after removing the single outlier in the
healthy group, patients with mTBI displayed significantly lower values of average magnitude of energetic impact
(permutation test: p = 1 × 10−5) and lower values of the average standard deviation of energetic impact (p =
2.0× 10−5) than healthy controls.

2.4 Robustness to Perturbation of the Target States

In the main manuscript, we defined the target state as a binary vector in which the regions of (i) auditory, (ii)
extended visual or (iii) motor systems had activity magnitudes equal to 1 (“on”), while all other regions had
activity magnitudes equal to 0 (“off”). Here we ask whether our results are dependent on this specific choice of
the target state. Could the same intuitions could be gained using the target states that were not exactly defined
as a “on-off” binary vector? To address this question, we defined the initial state as the same weighted DMN used
in Fig. S4 and added identically independent distributed Gaussian noise with µ = 0, σ = 0.1 to every region of
the target state. Then – following the analyses presented in Figure 3 in the main manuscript – we calculated the
control efficiency and plotted it as a function of the network communicability to the target state (see Fig. S7).
We observe that regions that are close (in terms of walk lengths) to regions of high activity in the target state are
efficient controllers for that specific state transition. These findings indicate that the results reported in the main
manuscript are robust to weights on the target states.

3 Control Efficiency and Energetic Impact of Cognitive Control Regions

In the main manuscript, we discuss the control efficiency of randomly selected groups of brain regions in Figure
3. An interesting follow-up question is whether commonly studied cognitive control regions (in dorsal and ventral
attention, fronto-parietal and cingulo-opercular areas) have different control efficiency compared to other regions
of the brain. To address this question, we compared the control efficiency between cognitive control regions and
all other regions of the brain, and we observed no significant differences (Fig. S8; p > 0.05 for all comparisons).

In the main manuscript, we also discuss the energetic impact of each brain region. An interesting follow-up
question is whether commonly studied cognitive control regions (in dorsal and ventral attention, fronto-parietal
and cingulo-opercular areas) have different energetic impact compared to other regions of the brain. To address
this question, we compared the energetic impact between cognitive control regions and all other regions of the
brain, and we observe that cognitive control areas show lower energetic impact than other brain areas (see Fig. S9).
This suggests that the control systems possess more redundancy in their control roles than other regions of the
brain.
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Figure S7: Structurally-Driven Task Preference for Control Regions. Using an empirically estimated
DMN activation profile as the initial state and using perturbed target states, we reproduce the analyses reported
in main manuscript Figure 3. (A) Scatterplot of the control efficiency with the average network communicability
to the target regions (Spearman correlation r = 0.22, p < 5.5 × 10−4). (B–D) Scatter plot of control efficiency
versus normalized network communicability with regions that are active in the target state: motor (r = 0.42,
p = 2.6× 10−11), extended visual (r = 0.43, p = 8.4× 10−12), and auditory (r = 0.33, p = 1.7× 10−7).
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Figure S8: Regional Preference of Control Efficiency. We show the control efficiency separately for cognitive
control regions (in dorsal and ventral attention, fronto-parietal and cingulo-opercular areas; referred to in the figure
as “HC”), and all other regions (referred to in the figure as “Other”), separately for (A) all three transitions, (B)
the transition from the default mode system to the motor system, (C) the transition from the default mode system
to the extended visual system, and (D) the transition from the default mode system to the auditory system. We
observe no significant differences between the control efficiency of cognitive control regions and all other regions
in the brain.
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Figure S9: Regional Preference of Energetic Impact. Cognitive control regions (in dorsal and ventral
attention, fronto-parietal and cingulo-opercular areas; referred to in the figure as “HC”) display less energetic
impact than other regions (referred to in the figure as “Other”) in healthy individuals. Permutation test: p =
1× 10−5.
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3.1 Clinical Sensitivity of Control Statistics vs. Graph Metrics

In the main manuscript, we show that patients with mild Traumatic Brain Injury (mTBI) have significantly lower
removal controllability than the healthy group, as measured by lower impact on the required energy for an op-
timal trajectory following the removal of a node from the control set. Here we ask the question whether this
difference between the structural connectomes of the healthy and injured individuals could have been uncovered
by arguably simpler and more common graphic metrics. To address this question, we calculated values for seven
metrics for each subject, including degree, average shortest path length, clustering coefficient, modularity, global
efficiency, and network density (see following section for mathematical definitions). Then, we performed nonpara-
metric permutation tests to determine differences between the healthy and mTBI groups, offering p-values for the
hypothesis:

• H0: The mTBI and healthy groups displayed the same mean values for a given graph metric;

• H1: The mTBI and healthy groups displayed different mean values for a given graph metric.

We observed that none of these graphic metrics displayed significant differences between the two groups (see
Table. 1 for p-values estimated from non-parametric permutation testing in which the labels of subjects to groups
were permuted uniformly at random. These results indicate that the removal controllability offers novel information
sensitive to clinical status.

In addition to these graph metrics, we also study whether the mean or variance of the weighted degree is
different between the groups. We observe no significant differences (see Fig. S10A–B). we observe no statistically
significant differences (p > 0.05). We also provide a supplementary figure of the structural connectivity matrices
averaged across subject for both groups for comparison (Fig. S10C–D). We observe strong qualitative similarities
between the two matrices, consistent with the results of the statistical analyses.

3.2 Regional Roles in Control Tasks for the mTBI Group

In the main manuscript, we show that for healthy subjects, the control efficiency is positively correlated with
network communicability. Here we ask the question whether this correlation holds for the patients with mTBI.
To address this questions, we calculated the efficiency and communicability on the patients in the mTBI group.
Consistent with our observations in the healthy controls, here we observe again that regions that are close (in
terms of walk lengths) to regions of high activity in the target state are efficient controllers for that specific state
transition (see Fig. S11 and compare to Figure 3 in the main manuscript).

Also in the main manuscript, we show that for healthy subjects, while cognitive control regions cover a broad
swath of frontal and parietal cortex, including medial frontal cortex and anterior cingulate (Fig. 4A in the main
manuscript), the number of these regions that intersect with the strongest 87 average, modal, or boundary con-
trol hubs was less. Interestingly, we find the same phenomenon in the mTBI group (Fig. S12B). These results
suggest that cognitive control regions in the human brain may have distinct capabilities necessary for the specific
transitions required by the brain under the constraints imposed by neuroanatomy and neurophysiology. Sim-
ilar to our approach in the healthy group, we more directly tested this possibility by examining the average
distance (Fig. S12A) and energy (Fig. S12C) for transitions from the default mode to the auditory, extended
visual, and sensorimotor states that are driven by average, modal, and boundary control hubs, or by regions of
fronto-parietal, cingulo-opercular, and attention systems. We again observed that both the trajectory cost and
the energy cost differ by control strategy and by target state. We quantify this observation using a 2-way ANOVA
with both the control strategy and target state as categorical factors. Using the trajectory cost as the dependent
variable, we observed a significant main effect of control strategy (F = 22.58, p = 1.58 × 10−10), a significant
main effect of target state (F = 7.82, p = 6.94 × 10−4), and a significant interaction between control strategy
and target state (F = 2.85, p = 2.92 × 10−2). Similarly, using the energy cost as the dependent variable, we
observed a significant main effect of control strategy (F = 28.04, p = 2.76 × 10−12), a significant main effect of
target state (F = 13.0, p = 1.04 × 10−5), and a significant interaction between control strategy and target state
(F = 9.47, p = 9.89× 10−3). These results indicate that our main reported results for the healthy control cohort
are replicated in the mTBI cohort.

14



Healthy mTBI

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p = 3.4 x 10-1

Healthy mTBI
0.05

0.06

0.07

0.08

0.09

0.1

p = 4.6 x 10-1

M
e

a
n

 o
f 

C
o

n
n

e
ct

iv
it

y

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f 
C

o
n

n
e

ct
iv

it
y

Healthy

50 100 150 200

Region

50

100

150

200

R
e

g
io

n

0

0.1

0.2

0.3

0.4
mTBI

50 100 150 200

Region

50

100

150

200

R
e

g
io

n

0

0.1

0.2

0.3

0.4

C
o

n
n

e
ct

iv
it

y
 S

tr
e

n
g

th

C
o

n
n

e
ct

iv
it

y
 S

tr
e

n
g

th

A B

C D

Figure S10: Difference in Mean and Variance of Connectivity between Healthy and mTBI Cohorts.
Neither (A) mean nor (B) the standard deviation of edge weights within the structural graphs display any sig-
nificant difference between the healthy and mTBI groups. Also shown are the structural connectivity matrices
averaged across subjects for (C) healthy individuals and (D) patients who experienced mTBI.
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Figure S11: Correlation between Control Efficiency and Communicability with Targets for Patients
with Mild Traumatic Brain Injury. Here we show the scatter plot of control efficiency versus normalized
network communicability with regions that are active in target states for patients with mild traumatic brain
injury: (A) Scatterplot of the control efficiency with the average network communicability to the target regions
(Spearman correlation r = 0.23, p = 3.1 × 10−4). (B–D) Scatter plot of control efficiency versus normalized
network communicability with regions that are active in the target state: motor (r = 0.45, p = 5.3 × 10−13),
extended visual (r = 0.36, p = 1.7 × 10−8), and auditory (r = 0.38, p = 2.1 × 10−9). Compare to the results
reported for the healthy controls in Figure 3 in the main manuscript.
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Figure S12: Regional Roles in Control Tasks for the mTBI group. Different choices of control strategies
result in variation in both (A) trajectory cost and (C) energy cost. Here, HC refers to cognitive control regions,
AC refers to average control hubs, MC refers to modal control hubs, and BC refers to boundary control hubs.
Compare to the results reported for the healthy controls in Figure 4 in the main manuscript. (B) The number of
these regions overlapping with the strongest 87 average, modal and boundary control hubs is approximately 40.

3.3 Specificity of Control in Health and Following Injury: Effect of node elimination on
distance cost

In the main manuscript, we observe that both the mean and standard deviation of energetic impact across regions
display significant differences between the healthy and mTBI group. Here we ask whether a similar differences
could be observed for the distance of the trajectory. We define the trajectory impact in a manner identical to the
energetic impact except substituting the trajectory distance for the trajectory energy. Using this approach, we
observe that patients with mTBI display a lower trajectory impact than healthy controls (Fig. S13; compare to
Figure 5 in the main manuscript). These findings support the notion that mTBI patients display a loss of specificity
in putative control roles, suggesting greater susceptibility to damage-induced noise in neurophysiological processes.

3.4 Regional Drivers of Group Differences in Energetic Impact

In the main manuscript, we show that the energetic impact distinguishes the healthy and mTBI group. To further
investigate the source of the group difference in energetic impact that we observe at the level of the whole brain, we
determine which specific regions displayed the greatest group differences in energetic impact. Using a 2-sample t-
test, we observe that the following seven regions showed lower energetic impact in mTBI in comparison to controls
(p < 0.001, uncorrected): lateral orbitofrontal cortex, 2 subregions within the superior parietal cortex, the banks
of the superior temporal sulcus, 2 subregions of the superior temporal cortex, and the putamen. Importantly,
two of these areas were located in the attention control circuit, four were located in the target area, and one
was located in the subcortex. We next asked whether the weighted degrees of these regions were significantly
different between the two groups. We observed that except for one attentional region, the other regions all display
significantly lower weighted nodal strength in the healthy group (p < 0.05, uncorrected), which is consistent with
the relationship between connectivity-to-target and control efficiency (See Figure S4, 7). These results suggest
that the changes in control efficiency can be tracked back to alterations of edge weights, but that the sensitivity
of metrics to connectome alterations in mTBI is greater for the control efficiency than for the weighted degree.
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Figure S13: Specificity of Control in Health and Following Injury: Effect of node elimination on
distance cost. Here we replace the energetic impact with the analogous definition of trajectory impact. As in
Figure 5 in the main manuscript, we plot the magnitude and standard derivation of trajectory impact averaged
over regions and tasks; boxplots indicate variation over subjects. Patients with mTBI displayed significantly lower
values of average magnitude of trajectory impact (permutation test: p = 4.0 × 10−5) and lower values of the
average standard deviation of energetic impact (p = 2.0× 10−5) than healthy controls.

4 Supplemental Discussion

4.1 Energetic versus distance constraints

It is important to mention our considerations in choosing the value of ρ. Note that ρ is the value in the optimization
function that tunes the relative contribution of the energetic cost and the trajectory cost. Energetic costs have
been frequenctly discussed in the context of brain dynamics across organisms, and indeed are thought to limit
both evolution [39] and function [40], driving the costs of establishing and maintaining connections between neural
units [41]. These energetic constraints exist at the molecular [42] and tissue [43, 44, 45] scales, and also exist
across a wide range of temporal scales [46, 47] impacting on brain state transitions [44, 48, 49, 50]. Distance
constraints, on the other hand, effectively tune the smoothness of the trajectory from one state to another, by
extension effectively helping to minimize the time of the transition. This constraint is arguably less well-studied,
but indicates the intuitive desire to minimize the traversal of brain (and by extension) cognitive states that are
not critically necessary for the state transition. This constraint would decrease movement of the brain to states far
away from the initial and final states, such as those characteristic of unhealthy cognitive function [51]. Moreover,
intuitively the distance constraint could encourage focused transitions [52], rather than transitions that move to
many irrelevant states before arriving at the target [53]. Because we are unaware of empirical work offering expicit
estimates for the preference of the brain for energetic versus distance constraints, we choose the most natural
starting point, which is where both constraints provide equal influence on the optimization.

5 Appendix: Mathematical Definitions of Graph Metrics

In this section, we briefly offer mathematical definitions of the several graph metrics that we examined: degree,
average shortest path length, clustering coefficient, modularity, global efficiency, and network density.
Degree. The degree ki of node i is defined as the number of connections emanating from node i: ki =

∑
j∈V aij

where aij is the adjacency matrix and V is the set of all nodes. Similarly, for a weighted network wij , we can
calculate the weighted degree of i as kwi =

∑
j∈V wij .

Shortest path length. The shortest path length between node i and node j is defined as the length of the
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DEG CPL C-COEF MODU L-EFF G-EFF DEN

p 0.3635 0.1791 0.4338 0.4208 0.1460 0.3220 0.3635

Table 1: The p-values for Non-parametric Permutation Tests Assessing Differences in Graphic Met-
rics Values Between Healthy Adults and Patients with mTBI. In this table, we list the p-values from
the non-parametric permutation tests in which the labels of subjects to groups (healthy or mTBI) are permuted
uniformly at random. The p-value is the minimum of the two one-sided p-values with no assumptions on the sign
of the difference. Abbreviations are as follows: DEG refers to degree, CPL refers to characteristic path length,
C-COEF refers to clustering coefficient, MODU refers to modularity, L-EFF refers to local efficiency, G-EFF refers
to global efficiency, and DEN refers to network density.

shortest path starting from node i and ending at node j:

dij =
∑

auv∈g{i←j}

auv, (5)

where g{i←j} is the shortest path (geodesic) between region i and j. The weighted shortest path length dWij between
node i and node j is defined using the weighted geodesics as well as the map wij → f(wuv) from weight to distance.
Characteristic path length. The characteristic path length of the network is defined as average of the shortest
paths between all pairs of nodes:

L =
1

n

∑
i∈V

Li, (6)

where Li is the average distance between node i and all other nodes. For weighted graphs, we replace the Li with
the weighted average distance LW

i .
Clustering coefficient. The clustering coefficient of the network can be defined as the ratio of the number of
existing triangles to the number of possible triangles:

C =
1

n

∑
i∈V

Ci =
1

n

∑
i∈V

2ti
ki(ki − 1)

, (7)

where Ci is the clustering coefficient of node i and ti is the number of triangles attached to node i. For a weighted

graph, we can define CW = 1
n

∑
i∈V C

W
i = 1

n

∑
i∈V

2tWi
ki(ki−1) .

Modularity. The modularity of the network is defined as the normalized sum of the modularity function over
the given partition:

Q =
1

2m

∑
i,j∈V

(aij −
kikj
2m

)δcicj , (8)

where ci is the cluster label of region i and 2m =
∑

i,j∈V aij . For a weighted graph, we can define QW =

1
2mW

∑
i,j∈V (wij −

kWi kWj
2mW )δcicj .

Global efficiency. The global efficiency of a network is defined as the average of the inverse of the shortest path
lengths:

E =
1

n

∑
i∈V

Ei =
1

n

∑
i∈V

∑
j∈V,j 6=i d

−1
ij

n− 1
, (9)

where Ei is the local efficiency of node i. For a weighted graph, we can replace the dij with the weighted distance
dWij .
Density. The density of the network is defined as the ratio of the number of existing edges to the number of
possible edges:

di =
∑
ij

2aij
n(n− 1)

, (10)

where [aij ] is the adjacency matrix and n is the number of nodes.
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6 Appendix: Partition of Brain Systems

Here we provide the list of our partition of brain regions in Lausane atlas with 234 regions in Table. 2.

Region Name Hemisphere System

1 lateralorbitofrontal 1 R ventral attention
2 lateralorbitofrontal 2 R ventral attention
3 lateralorbitofrontal 3 R ventral attention
4 lateralorbitofrontal 4 R ventral attention
5 parsorbitalis 1 R cingulo opercular
6 frontalpole 1 R fronto parietal
7 medialorbitofrontal 1 R fronto parietal
8 medialorbitofrontal 2 R fronto parietal
9 medialorbitofrontal 3 R fronto parietal
10 parstriangularis 1 R fronto parietal
11 parstriangularis 2 R fronto parietal
12 parsopercularis 1 R cingulo opercular
13 parsopercularis 2 R cingulo opercular
14 rostralmiddlefrontal 1 R cingulo opercular
15 rostralmiddlefrontal 2 R cingulo opercular
16 rostralmiddlefrontal 3 R cingulo opercular
17 rostralmiddlefrontal 4 R cingulo opercular
18 rostralmiddlefrontal 5 R cingulo opercular
19 rostralmiddlefrontal 6 R cingulo opercular
20 superiorfrontal 1 R default mode
21 superiorfrontal 2 R default mode
22 superiorfrontal 3 R default mode
23 superiorfrontal 4 R default mode
24 superiorfrontal 5 R default mode
25 superiorfrontal 6 R default mode
26 superiorfrontal 7 R default mode
27 superiorfrontal 8 R default mode
28 caudalmiddlefrontal 1 R fronto parietal
29 caudalmiddlefrontal 2 R fronto parietal
30 caudalmiddlefrontal 3 R fronto parietal
31 precentral 1 R somatosensory
32 precentral 2 R somatosensory
33 precentral 3 R somatosensory
34 precentral 4 R somatosensory
35 precentral 5 R somatosensory
36 precentral 6 R somatosensory
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37 paracentral 1 R somatosensory
38 paracentral 2 R somatosensory
39 paracentral 3 R somatosensory
40 rostralanteriorcingulate 1 R cingulo opercular
41 caudalanteriorcingulate 1 R cingulo opercular
42 posteriorcingulate 1 R default mode
43 posteriorcingulate 2 R default mode
44 isthmuscingulate 1 R default mode
45 postcentral 1 R somatosensory
46 postcentral 2 R somatosensory
47 postcentral 3 R somatosensory
48 postcentral 4 R somatosensory
49 postcentral 5 R somatosensory
50 supramarginal 1 R cingulo opercular
51 supramarginal 2 R cingulo opercular
52 supramarginal 3 R cingulo opercular
53 supramarginal 4 R cingulo opercular
54 superiorparietal 1 R dorsal attention
55 superiorparietal 2 R dorsal attention
56 superiorparietal 3 R dorsal attention
57 superiorparietal 4 R dorsal attention
58 superiorparietal 5 R dorsal attention
59 superiorparietal 6 R dorsal attention
60 superiorparietal 7 R dorsal attention
61 inferiorparietal 1 R fronto parietal
62 inferiorparietal 2 R fronto parietal
63 inferiorparietal 3 R fronto parietal
64 inferiorparietal 4 R fronto parietal
65 inferiorparietal 5 R fronto parietal
66 inferiorparietal 6 R fronto parietal
67 precuneus 1 R default mode
68 precuneus 2 R default mode
69 precuneus 3 R default mode
70 precuneus 4 R default mode
71 precuneus 5 R default mode
72 cuneus 1 R visual
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73 cuneus 2 R visual
74 pericalcarine 1 R visual
75 pericalcarine 2 R visual
76 lateraloccipital 1 R visual
77 lateraloccipital 2 R visual
78 lateraloccipital 3 R visual
79 lateraloccipital 4 R visual
80 lateraloccipital 5 R visual
81 lingual 1 R visual
82 lingual 2 R visual
83 lingual 3 R visual
84 fusiform 1 R visual
85 fusiform 2 R visual
86 fusiform 3 R visual
87 fusiform 4 R visual
88 parahippocampal 1 R other
89 entorhinal 1 R visual
90 temporalpole 1 R other
91 inferiortemporal 1 R visual
92 inferiortemporal 2 R visual
93 inferiortemporal 3 R visual
94 inferiortemporal 4 R visual
95 middletemporal 1 R other
96 middletemporal 2 R other
97 middletemporal 3 R other
98 middletemporal 4 R other
99 bankssts 1 R auditory
100 superiortemporal 1 R auditory
101 superiortemporal 2 R auditory
102 superiortemporal 3 R auditory
103 superiortemporal 4 R auditory
104 superiortemporal 5 R auditory
105 transversetemporal 1 R auditory
106 insula 1 R fronto parietal
107 insula 2 R fronto parietal
108 insula 3 R fronto parietal
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109 thalamusproper R subcortical
110 caudate R subcortical
111 putamen R subcortical
112 pallidum R subcortical
113 accumbensarea R subcortical
114 hyppocampus R subcortical
115 amygdala R subcortical
116 lateralorbitofrontal 1 L ventral attention
117 lateralorbitofrontal 2 L ventral attention
118 lateralorbitofrontal 3 L ventral attention
119 lateralorbitofrontal 4 L ventral attention
120 parsorbitalis 1 L cingulo opercular
121 frontalpole 1 L fronto parietal
122 medialorbitofrontal 1 L fronto parietal
123 medialorbitofrontal 2 L fronto parietal
124 parstriangularis 1 L fronto parietal
125 parsopercularis 1 L cingulo opercular
126 parsopercularis 2 L cingulo opercular
127 rostralmiddlefrontal 1 L cingulo opercular
128 rostralmiddlefrontal 2 L cingulo opercular
129 rostralmiddlefrontal 3 L cingulo opercular
130 rostralmiddlefrontal 4 L cingulo opercular
131 rostralmiddlefrontal 5 L cingulo opercular
132 rostralmiddlefrontal 6 L cingulo opercular
133 superiorfrontal 1 L default mode
134 superiorfrontal 2 L default mode
135 superiorfrontal 3 L default mode
136 superiorfrontal 4 L default mode
137 superiorfrontal 5 L default mode
138 superiorfrontal 6 L default mode
139 superiorfrontal 7 L default mode
140 superiorfrontal 8 L default mode
141 superiorfrontal 9 L default mode
142 caudalmiddlefrontal 1 L fronto parietal
143 caudalmiddlefrontal 2 L fronto parietal
144 caudalmiddlefrontal 3 L fronto parietal
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145 precentral 1 L somatosensory
146 precentral 2 L somatosensory
147 precentral 3 L somatosensory
148 precentral 4 L somatosensory
149 precentral 5 L somatosensory
150 precentral 6 L somatosensory
151 precentral 7 L somatosensory
152 precentral 8 L somatosensory
153 paracentral 1 L somatosensory
154 paracentral 2 L somatosensory
155 rostralanteriorcingulate 1 L cingulo opercular
156 caudalanteriorcingulate 1 L cingulo opercular
157 posteriorcingulate 1 L default mode
158 posteriorcingulate 2 L default mode
159 isthmuscingulate 1 L default mode
160 postcentral 1 L somatosensory
161 postcentral 2 L somatosensory
162 postcentral 3 L somatosensory
163 postcentral 4 L somatosensory
164 postcentral 5 L somatosensory
165 postcentral 6 L somatosensory
166 postcentral 7 L somatosensory
167 supramarginal 1 L cingulo opercular
168 supramarginal 2 L cingulo opercular
169 supramarginal 3 L cingulo opercular
170 supramarginal 4 L cingulo opercular
171 supramarginal 5 L cingulo opercular
172 superiorparietal 1 L dorsal attention
173 superiorparietal 2 L dorsal attention
174 superiorparietal 3 L dorsal attention
175 superiorparietal 4 L dorsal attention
176 superiorparietal 5 L dorsal attention
177 superiorparietal 6 L dorsal attention
178 superiorparietal 7 L dorsal attention
179 inferiorparietal 1 L fronto parietal
180 inferiorparietal 2 L fronto parietal
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181 inferiorparietal 3 L fronto parietal
182 inferiorparietal 4 L fronto parietal
183 inferiorparietal 5 L fronto parietal
184 precuneus 1 L default mode
185 precuneus 2 L default mode
186 precuneus 3 L default mode
187 precuneus 4 L default mode
188 precuneus 5 L default mode
189 cuneus 1 L visual
190 pericalcarine 1 L visual
191 lateraloccipital 1 L visual
192 lateraloccipital 2 L visual
193 lateraloccipital 3 L visual
194 lateraloccipital 4 L visual
195 lateraloccipital 5 L visual
196 lingual 1 L visual
197 lingual 2 L visual
198 lingual 3 L visual
199 lingual 4 L visual
200 fusiform 1 L visual
201 fusiform 2 L visual
202 fusiform 3 L visual
203 fusiform 4 L visual
204 parahippocampal 1 L other
205 entorhinal 1 L visual
206 temporalpole 1 L other
207 inferiortemporal 1 L visual
208 inferiortemporal 2 L visual
209 inferiortemporal 3 L visual
210 inferiortemporal 4 L visual
211 middletemporal 1 L other
212 middletemporal 2 L other
213 middletemporal 3 L other
214 middletemporal 4 L other
215 bankssts 1 L auditory
216 bankssts 2 L auditory
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217 superiortemporal 1 L auditory
218 superiortemporal 2 L auditory
219 superiortemporal 3 L auditory
220 superiortemporal 4 L auditory
221 superiortemporal 5 L auditory
222 transversetemporal 1 L auditory
223 insula 1 L fronto parietal
224 insula 2 L fronto parietal
225 insula 3 L fronto parietal
226 insula 4 L fronto parietal
227 thalamusproper L subcortical
228 caudate L subcortical
229 putamen L subcortical
230 pallidum L subcortical
231 accumbensarea L subcortical
232 hyppocampus L subcortical
233 amygdala L subcortical
234 brainstem L other

Table 2: In this table, we list the system allocation of each brain region in Lausane atlas on the scale of 234
regions.
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