Supplementary information

Palmitic Acid-BSA enhances Amyloid-β production through GPR40mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways

Jeong Yeon Kim^{1, 2, #}, Hyun Jik Lee^{1, 2, #}, Sei-Jung Lee^{3, #}, Young Hyun Jung^{1, 2}, Dae Young Yoo^{2, 4}, In Koo Hwang^{2, 4, 5}, Je Kyung Seong^{2, 4, 5}, Jung Min Ryu⁶, and Ho Jae Han^{1, 2, *}

¹Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.

²BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.

³Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea.

⁴Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.

⁵Korea Mouse Phenotyping Center (KMPC), Seoul 08826, Republic of Korea.

⁶Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea.

^{*}Corresponding author: Ho Jae Han, D.V.M., Ph.D.

Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea

E-mail: hjhan@snu.ac.kr; Tel: 82-2-880-1261; Fax: 82-2-885-2732

[#]The first three authors contributed equally to this work.

Keywords

Alzheimer's disease; palmitic acid; amyloid-β; HIF-1α; NF-κB

Supplementary figure legends

Supplementary Figure S1. Irrelevance of GPR120 in PA-BSA-induced Aβ production.

(a) mRNA expressions of *GPR40*, *GPR120* and *ACTB* were showed with PCR analysis. (b). SK-N-MC cells were transfected with *GPR120* and NT siRNAs prior to incubation with PA-BSA (50 μ M). Protein expression levels of APP, C99 and BACE1 were assessed with western blotting. Data are reported as a mean \pm S.E.M. n = 4. Each blot result shown is representative image. *p < 0.05 versus control.

Supplementary Figure S2. Effect of PA-BSA on intracellular calcium release, ROS production, PKC phosphorylation.

(a) SK-N-MC cells were treated with PA-BSA (50 μ M), and released calcium level was assessed using Fluo3AM staining. (b) SK-N-MC cells were incubated with 50 μ M of PA-BSA for 24 h, and ROS production level was analyzed with DCF-DA staining. Data are presented as a mean \pm S.E.M. *n* = 6. (c) SK-N-MC cells were incubated with PA-BSA (50 μ M) for 0-48 h. The phosphorylation of pan PKC was assessed with western blot. Data are presented as a mean \pm S.E.M. *n* = 3. Each blot result shown is representative image. N.S means not significant.

Supplementary Figure S3. Role of GPR40 receptor signaling activated by PA-BSA in the phosphorylation of p70S6K1 and NF-κB.

(a-c) SK-N-MC cells were pre-treated with GW1100 (10 μ M) for 30 min prior to for 24 h. p-GSK3 β (Ser9), p-p70S6K1 (Thr389), p70S6K1, p-NF- κ B p65 (Ser536), NF- κ B p65 and β -actin were analyzed by western blot. Data are reported as a mean a mean \pm S.E.M. n = 4. Each blot result shown is representative image. *p < 0.05 versus control, *p < 0.05 versus PA-BSA treatment.

Supplementary Figure S4. Effect of *HIF1A* siRNA transfection on HIF-1α expression induced by PA-BSA.

SK-N-MC cells were transfected with HIF1A and NT siRNAs for 12 h prior to incubation of PA-BSA

(50 μ M) for 24 h. The expressions of HIF-1 α and β -actin were analyzed by western blot. Data are reported as a mean \pm S.E.M. n = 3. *p < 0.05 versus control, #p < 0.05 versus PA-BSA treatment.

Supplementary Figure S5. Role of Akt activated by PA-BSA induced-GSK3β phosphorylation.

SK-N-MCs were pre-treated with Akt inhibitor (1 μ M) for 30 min prior to PA-BSA treatment (50 μ M) for 24 h. Cells were blotted with p-GSK3 β , p-Tau (Thr212), p-Tau (Ser396), Tau and β -actin. Data are presented as a mean \pm S.E.M. n = 3. Each blot images are representative. . *p < 0.05 versus control, ${}^{\#}p < 0.05$ versus PA-BSA treatment.

Supplementary Figure S6. Effect of *APP* and *BACE1* siRNAs transfection on expressions of APP and BACE1.

(a) SK-N-MC cells were transfected with *APP* and NT siRNAs for 12 h prior to incubation of PA-BSA (50 μ M) for 24 h. The expressions of APP and β -actin were analyzed by western blot. Data are reported as a mean \pm S.E.M. n = 4. (b) SK-N-MC cells were transfected with *BACE1* and NT siRNAs for 12 h prior to treatment of PA-BSA (50 μ M) for 24 h. The expressions of BACE1 and β -actin were assessed with western blot. Data are presented as a mean \pm S.E.M. n = 4. Each blot result shown is representative image. *p < 0.05 versus control, #p < 0.05 versus PA-BSA treatment.

Supplementary Figure S7. Full-length western blot images of mice brain samples in the figure 1b.

All western blot images are full-length blot images of all mice brain samples in the figure 1b. Dash line box indicates cropped blot image in the figure 1b.

Supplementary Figure S8. Full-length western blot images for brain samples in the figure 1e.

All western blot images are full-length blot images of all mice brain samples in the figure 1e. Dash line box indicates cropped blot image in the figure 1e.

Supplementary Figure S9. Full-length western blot images for key data in the figure 2.

All western blot images are full-length blot images of key blot data in the figures 2. Dash line box indicates cropped blot image in the figure 2.

Supplementary Figure S10. Full-length western blot images for key data in the figure 3.

All western blot images are full-length blot images of key blot data in the figure 3. Dash line box indicates cropped blot image in the figure 3.

Supplementary Figure S11. Full-length western blot images for key data in the figure 4.

All western blot images are full-length blot images of key blot data in the figure 4. Dash line box indicates cropped blot image in the figure 4.

Supplementary Figure S12. Full-length western blot images for key data in the figure 5.

All western blot images are full-length blot images of key blot data in the figure 5. Dash line box indicates cropped blot image in the figure 5.

Supplementary Figure S13. Full-length western blot images for key data in the figure 6.

All western blot images are full-length blot images of key blot data in the figure 6. Dash line box indicates cropped blot image in the figure 6.

Supplementary Figure S14. Full-length western blot images for key data in the figure 7.

All western blot images are full-length blot images of key blot data in the figure 7. Dash line box indicates cropped blot image in the figure 7.

Supplementary figures

а

•

b

Sup. Fig. S1

Sup. Fig. S2

0 PA-BSA

0 6

12 24 48 (h)

b

Sup. Fig. S4

Sup. Fig. S5

а

b

Sup. Fig. S6

Sup. Fig. S7

Sup. Fig. S8

Sup. Fig. S9

Sup. Fig. S10

Sup. Fig. S11

Sup. Fig. S13

Supplementary Table S1. Sequences of primers used for RT-PCR and real-time PCR

Gene name	Species	Identification	Sequence (5'-3')	Size (bp)	
GPR40 Human		Sense	CTGGTCTACGCCCTGAACCT	316	
		Antisense	GAGCCTCCAACCCAAAGACC		
GPR120	Human	Sense	CTTCTTCTCCGACGTCAAGG	201	
		Antisense	GGGATAGCGCTGATGAAGAG		
ACTB	Human	Sense	AACCGCGAGAAGATGACC	351	
		Antisense	AGCAGCCGTGGCCATCTC		
APP	Human,	Sense	TAGAAGTAGCAGAGGAGGAAG	244	
	Mouse	Antisense	TACCAGCGGGAGATCATT		
BACE1	Human	Sense	CTGCCTGGATTTCTTCCTATTA	255	
		Antisense	CTTGTGGTGGAGGACATAAG		
GAPDH	Human	Sense	GTCCACCACTGACACGTTG	156	
		Antisense	GGGAAACTGTGGCGTGAT		
Bace1	Mouse	Sense	ACATATCGAGACCTCCGAAAGG	149	
		Antisense	AACTTGTCCGATTCAGTGATGG		
Actb	Mouse	Sense	GCAGGAGTACGATGAGTCCG	239	
		Antisense	ATCCTGAGTCAAAAGCGCCA		

Supplementary Table S2. Sequences of siRNAs used for gene silencing

Target gene	Sequences 5'-3'	Manufacturer
APP	GGUGGGCGGUGUUGUCAUA GGUUCUGGGUUGACAAAUA CGGAAACGAUGCUCUCAUG CUAUUCAGAUGACGUCUUG	Dharmacon
BACE1	GCAAGGAGUACAACUAUGA GGAGGGAGCAUGAUCAUUG UAUGGGAGCUGUUAUCAUG AGACGACUGUUACAAGUUU	Dharmacon
GPR40	CGCUCAACGUCCUGGCCAU GUGACCGGUUACUUGGGAA	Dharmacon
GPR120	GAAAUGACUUGUCGAUUAU CAAGAGCUGUCGUGACUCA GGACUGGUCAUUGUGAUCA GGAAGAGGCUCACGGUAAG	Dharmacon
HIF1A	GCCGCUCAAUUUAUGAAUATT UAUUCAUAAAUUGAGCGGCTT	Dharmacon
Non-targeting	UAGCGACUAAACACAUCAA UUGAUGUGUUUAGUCGCUA	Dharmacon

Supplementary Table S3. Sequences of CHIP primers used for RT-PCR and real-time PCR

Gene	Identification	Sequence (5'-3')	Size (bp)	
APP promoter	Forward	ACTCTCCCTCCCACTGTTCA	178	
for HIF-1α	Reverse	CACCCGAGAGAGACCCCTAG		
BACE1 promoter for HIF-1α	Forward	ACCACCTTCTCCCACTGAGT	161	
	Reverse	CAGGCGCTGGAGATACAGAG		
APP promoter for NF-κB	Forward	ACTCTCCCTCCCACTGTTCA	178	
	Reverse	CACCCGAGAGAGACCCCTAG		
BACE1 promoter for NF-κB	Forward	CTGACAGACGGGAGGTGTG	174	
	Reverse	GGTTTTCGCTTTTCCCTGGG		