I. Deterministic Description

Enzymatic Futile Cycle. In the deterministic case, the enzymatic futile cycle system,
Fig. 1, has three mass-conservation constraints,

X0 +C. )+ X (1)+C_(1)=X, = Const [S1]

where C,, refers to the fraction of the enzyme being tied in the enzyme—substrate

complex, e.g., C,,_ =E,, o X" . Additionally,

E.(t)+C,(t)=E!(t)=E, = Const, and
[S2]
E ()+C_(t)=E"(t)=E_ = Const,

where E,, is a constant total enzyme level.

Using constraints in Egs. S1 and S2, classical mass-action kinetics equations describing
the deterministic time evolution of the signal species concentrations in the quasi-steady-
state regime could be written in the form of Michaelis—Menten (MM) approximation as

(1-3):

[S1]

dC,, -0 = X+X =X,=Const,

[S3]
dX' =-A(X)dt =-dX with A(X)=-k,C (X,0)+k C (X ,1),
where A(X) corresponds to the deterministic drift,
C.ON= and C(x == E ) sy
K, +X K +X K +X,-X

k

K., are the Michaelis constants for the substrate reaction with E+T/_ < X,+K,, .

_ are the catalytic constants of the enzyme (the complex to product reaction rates), and

+/

Note that the deterministic stationary response curve, R, given in Eq. 1 and obtained

from Eqgs. S3 and S4, is quadratic, i.e., at most two solutions are possible and at most one
is stable. That is, the deterministic description of the system predicts a monostable
behavior for any set of parameters. In fact, this system has a unique positive real

root, X (E,), satisfying X < X,, which could be ascertained by, for example, noting
that A'(X) < 0. That is, every steady state is a down-going root of 4(X), i.e., stable,

which in turn implies that such a root is unique on any interval for which A(X) is



continuous, including X < X, . The solution has a characteristic sigmoidal shape that

approaches step function for certain parameters [resulting in zero-order ultrasensitivity
(ZOU)]. An example of such a family of curves is shown in Fig. 6.

Extended System. In the numerical analysis section of our work we consider an
extended chemical system, for which basic enzymatic futile cycle reactions (Expression
7) (Fig. 1) are augmented with the external driver reaction set (Expression 8). To validate
that the effects we are proposing to numerically substantiate are indeed stochastic in
nature, we briefly consider the deterministic description of this extended reaction system.

The chemical kinetic equations for this system can be readily written as

* d
% =k, C, + ki Cs —k X7 Z+ =k E. X" — (kg +k3)Cs
[SS5]
dE, . (1£D)dN dN
—=(kyy, +h)C, —k,ELX - a£h — a =(k_y N +k_5,)E, —(kyN+ky,)N;

dt 2 dt’ d
where we used X/ X" = X~ for notational convenience.

For the parameter set considered, this system has a unique positive fixed point at

X =1766.1, C. = 21719, E, =6149, N=2213, E_=6562, C = 43438 and X =168.79,
which is also a stable node. It further does not exhibit any significant deviations from the
deterministic behavior solely due to the internal noise in cycle reactions (Expression 7)

(Fig. 7).

Thus, we can elucidate analytically and verify numerically (data not shown) that the
deterministic analysis of this system dynamics predicts some form of exponential decay
toward the steady state, as would be expected classically.

I1. Stochastic Description

Without loss of generality we apply the noise to the forward enzyme concentration (see
Fig. 1) in a way that does not alter the basal level of the enzyme (preserving its average
concentration but not the enzyme-complex mass-conservation constraints given earlier)
under the stationary density, so that results could be compared against the deterministic
predictions. These conditions impose a stability constraint on the driver process and turn
the deterministic Egs. S2 into

E.()+C,()=E ()=E, +N,,

[S6]
E ()+C_(t)=E'(t)=E_ = Const,

where E, is the constant basal enzyme concentration level and N, is a zero-mean noise

process, which describes the nature of the perturbations relevant to the particular system.
As discussed earlier, this noise in the activity of the forward enzyme could be due to the



stochasticity in its synthesis and degradation, physical fluctuations in temperature, pH,
ligand binding, etc., or may be an appropriate representation of the suitably complex
dynamics of the enzyme or its precursor activities propagated from the upstream
pathways or systems within the organism. (Note that in the interests of clarity we are
considering the internal noise in the cycle mechanism itself to be insignificant in
comparison to the external one. This is a reasonable assumption, as was briefly discussed
earlier; however, we could have introduced the internal noise into the analytical approach
explicitly by, for example, adding another corresponding stochastic term at this point.)

External Noise. Depending on the complexity of the external driver, the total
concentration of the forward enzyme, E! (¢), could be described in a variety of ways.

One simple, yet biochemically meaningful approach is to look at it in terms of the
straightforward production—degradation reactions subject to noise, which in a basic
differential equation form could be written as

dE! (t)=(P—-k,E! (t))dt +2dB,, [S7]

where P is the rate of enzyme creation (e.g., by synthesis, activation, vesicle release,
etc.), k, is its effective degradation rate (e.g., proteolysis, inactivation, competitive

inhibition, etc.) taken the same for free and complexed forms, and X is the fluctuation
intensity. This model reflects fundamental cellular dynamics, is consistent with the prior
assumptions, and also corresponds to a version of an Ornstein—Uhlenbeck process with a

nonzero stationary average <E ! (t)> = P/k, = E . Note that although a protein-production

rate in a cell is often considered to be deterministically constant, it has been repeatedly
shown to be a rather noisy process (4-6), thus substantially increasing the potential range
of X . Then, assuming that the production—degradation and diffusion rates for enzyme
concentration are also much faster than the observation time scale, its total stationary
concentration can be taken in the “white noise,” £(¢), limit (7-9) as

El(=E, +0é@), [S8]

where o =X/k, . That is, this example provides an explicit case of a relatively simple,

yet biochemically meaningful mechanism that can serve to generate and impart the
external noise on the enzymatic futile cycle in a manner consistent with the general
considerations of this work such as those outlined in Eq. S6.

Finally, it might be of interest to note here that because the total concentration of the
forward enzyme is independent of the cycle dynamics (Expression 7), its behavior
remains the same as described by Eqs. S7 and S8 or any similar stand-alone driver
whether coupled to the cycle or not. Thus, from the (bio)engineering standpoint, the
behavior of the cycle could then be viewed as a noninterfering sensor not only of the
stationary levels but of the temporal evolution of the total stochastic enzyme
concentration as well.



Stochastic MM Model. As noted earlier, deterministic dynamics of the enzymes
comprising the futile cycle is typically considered in MM limit (Eqs. S1-S4). We now
look at the effects of applying the noise driver described in the previous section to one of
the futile cycle enzymes and outline the conditions whereby its dynamics could still be
considered within MM context, augmented by the appropriate stochastic effector.

In the limit of cycle reaction rates that are significantly faster than those of the noise-
generating process (such as that described above) and in the absence of internal noise,
futile cycle dynamics becomes deterministic conditional on the total concentration of the
forward enzyme. That is, if

Pr{ET ()= X, + K, }<<1, [S9]

the MM limit for substrate/product drift (Eqs. S3 and S4) will still hold in probability,
thus replacing the classical deterministic criterion given earlier. For drivers of the type
given in Eqs. S7 and S8, this condition could be validated explicitly, because their
probability density is found analytically. Specifically, Ornstein—Uhlenbeck process

stationary probability density is normal with Var[E” (t — ©0)]=2?/2k, (9), thus the
validity criterion for the stochastic MM model of the futile cycle could be taken as

E+32

v 2k,

Then, combining Eqs. S3 and S4 with Eq. S8 recasts the problem into Langevin form,
yielding a stochastic MM expression for the level of X as

< X,+K,. [S10]

vt - ax :{k+E+X kEX }m ok X

: ——dB,. [S11]
K. +X K +X K, +X

+

Solving for the level of X directly by using Eq. S11 is difficult, and the answer is
rather complex. However, because we are presently most interested in the response curve,
R ,,, which requires the knowledge of the stationary system properties only, our
approach is to start with the associated Fokker—Planck equation for the probability
density of X, . It can be directly written from S11 as

oOP(X;t) 0 (k+E+X kEX JP(X;t) 1 0 [( ok, X

2
= _ —— P(X;t) | . [S12]
ot oX \K,+X K +X K +X

20X

This equation has the stationary limit, 0P(X;¢)/dt — 0, solution



B C 2A(X’) ol C ~
EX=55 expu DO dX}——D( 0 exp[-p(X)], [S13]

where ¢(X) = —jwd){ ', yielding an explicit form for the stationary probability

¥ DX
density of a noisy futile cycle

P(X)=C [1 + ’; J exp{—%(haux; K,) —k_E_I_<X;K+/_,X0>)} [S14]

(ok.)

~ X,
where C is the normalization constant chosen so that ‘[0 P (X)dX =1 and

I(X;K,)=X+K, In[X/K_], [S15]

2 2
17(X;K+)=X—K-(K++K'+2X°) In| X +(2K++K7)ln£ _ KX 1 s16]
(K_+X,) K +X,-X K K +X, X

+

From Eqgs. S14-S16 we immediately get the expression for the stationary state nullcline,

0

_ap,(X) 2 (k p L) o) (ok, VK,

=—p, (X )75 S17
(3X x. pc( ss)(UkJr)Z 8X aX X(K++X)jx [ ]

or, equivalently, the response curve (Eq. 3).

Eq. 3 provides an expression for the level of response X in terms of the other
parameters of the system. Because this is a quartic polynomial in X, we can write down
its general analytical solution X = X (k,,_,K,,_,o,E__),but the expression is

unwieldy and its meaning is opaque. However, it tells us that at most four real roots are
possible, and thus at most two would be stable. That is, in our formulation, stochastic
description of the system allows for the potentially bistable behavior, whereby the
monostable classical response is split into two stable stationary states through noise-
induced bifurcation of the cycle. As we further demonstrate in this work, this analytically
predicted bimodality of the stationary distribution is manifested by means of the
dynamically bistable behavior of individual system trajectories in the concentration

+/ =2 /=

space. In particular, for a set level of £, = <Ef (t)> , the concentration of the cycle

—>
substrate/product flip-flops between the two stable states with finite average transition
time in a stochastic oscillatory manner under appropriate noise, thus introducing at least
two new information channels to the functional repertoire of this mechanism: amplitude
and frequency modulation.



It might be of interest to note that the same results could be alternatively obtained by
considering the down-going roots of the function

a(X) = A(X)-%D'(X) [S18]

as discussed in ref. 9. The relevant conclusion that could be drawn immediately from this
approach is that if the noise on X is additive, i.e., D(X) = D (a frequently considered

simple noise model in many applications), then it affects neither the number nor the
location of system stationary states. However, if the noise is multiplicative, i.e.,
D(X) # Const., both properties could be changed and other effects ensue. In addition to

further highlighting that the previously described effects have nothing to do with ZOU,
this framework helps show how noise-induced phenomena could, among other things, be
made easier to recognize and its potential effects be accounted for, particularly when
considered within the context of (bio)chemical applications.

The results in Eqs. S14-S16 may now be used further to explicitly calculate the full

stationary probability density for the futile cycle system (within the limits our analytical
framework) with a given parameter set and, as such, its other properties, including first-
passage time moments and oscillation frequency as outlined earlier. For example, Fig. 9

shows the plot of the probability density of X~ for a sample system.

Stochastic Amplification. A noisy enzymatic driver imparts stochastic amplification
properties on the product concentration that are quite apart from its deterministic
function. To see this, simply note from the deterministic response curve, Eq. 1, that

E?(X. ) is a monotonically increasing function (see Fig. 6). In the noisy case, a positive
diffusion term, A, is further subtracted from the deterministic response, Eq. 3:
EY(X,)=E!(X,)-A(X,). Thus, for some chosen level of enzyme driver, e, , the

deterministic signal, X’ satisfies e, = E¢(X "), while the noisy signal, X", with the
same basal enzyme input yields e, = E? (X" )~ A(X_"). Comparing the two cases, we
see that /(X V) > E?(X."), i.e., because the function is monotonically increasing,

XV > X, which confirms stochastic amplification.

ss 2

As noted earlier, amplification properties of a mechanism are typically quantified as gain
(Eq. 4). Scaling by 4k, /2 , the futile cycle gain in the limit of small external noise signal

amplitudes o(E,) — 0 becomes

o(E,)

G, (X, (E,);0(E,)—>0)— 2010810[@

[S19]
| KX (K +X,-X.) |

kE (K, +X (K, -3X,+4X ) +k E (K_+X,-2X )(K, +3X,)+2X2)

E



and in the limit of large external noise o(E,) — o, it is simply

Gy (Xss (E,);0(E,) > oo) — 20 loglo{%} ) [S20]
o +

where X =X _(E,)=X_(E, ;0 =0). An example of analytical predictions of

stochastic gain induced in the cycle mechanism vs. numerical calculations is shown in
Fig. 8.

Note that this effect should not be confused with that of stochastic resonance (10), a
phenomena long known to occur in various biological organisms (11, 12), which has a
resonant frequency and requires in its basic definition a weak oscillatory baseline signal
to be present, thus limiting the relevance of the effect only to those systems in which such
conditions are present. No such requirement exists for the effect discussed herein.

Stochastic Signaling. As has been noted, analytically quantifying frequency-domain
behavior of system oscillations is, in general, significantly more difficult than its
amplitude, because the former is determined by the overall shape of the probability
distribution of the process, whereas the latter substantially depends only on the position
of its stationary states. A basic measure of such behavior is oscillation period, which in
this case is itself a stochastic quantity. To derive an analytical expression for the first
moment of the oscillation period (Eq. §), we decompose it into forward and backward
transition time moments,

(T(x;, = X)) =(T(X,, > X)+T(X « X))

[S21]
=(T(X), > X)) +(T(X, > X))
that for a one-dimensional bistable system could be written explicitly (9, 13) as
2 DR (X
[S22]

) 1 X2 2dX
(T, - X0 =l soormo

[ ax'P.ox,
where X! < X’ . Combining Egs. S21 and S22 we then obtain the equality in Eq. 5.

To obtain the asymptotic expansion of the equality in Eq. 5 we first substitute Eq. S13 in

2A(X")
D(X')

2
T(X, = X2)== dXexp[ ax’ =
( )= [ oo | c

}: 2 [axexlpx)].  [s23)



For a bistable distribution, the integrand in Eq. S23 has a single maximum at the saddle
point, X' . As a Laplace integral, it can now be expanded asymptotically (14) in the

small noise limit, o — 0, as

Jax explpx)] o) o S s
) “PX,)  HE,) DUXP,)

Substituting S24 into S23 yields Eq. 5 for the average oscillation period

8z

~ [S25]
DX, )P(X,,)\=¢"(X,)

(T(X), = X))

Because Eq. S25 implicitly depends on the normalization constant, C', which does not
have an explicit analytical expression, it might be of interest to note that an expression for

average period that is independent of C can be provided. Because a bistable distribution
1,2

integrand in Eq. S13 has double maxima at the stationary states, X ;~, its asymptotic

expansion is

1 © dx \/g e*f/f(X.fv)
= — (X)) |~ .
¢~ I pon e dl- 2.5 "X DX1)

[S26]

Combining S23-S26 gives an explicit analytical expression

1 w2 2 X A oK) #XD)
(T = x)=¢ [ eplpn]~ 3t (27]
C X\ =12 D(X () P"(X ;) —9"(X )

that is independent of C, asymptotic in the same limit, c — 0.

Relationship to ZOU. In the classical deterministic limit, behavior of the enzymatic
cycle mechanism has been studied extensively within the ZOU context noted earlier (15-
17). Although many aspects of this treatment are still applicable in the stochastic case, the
effects discussed earlier (notably the stochastic amplification and signaling) are
fundamentally different from ZOU in both their nature and origin, because they are solely
induced and can be substantially regulated by noise. Specifically, observing a sharp
sigmoidal response of the deterministic futile cycle switch shown in Fig. 6 may lead one
to assume naively that if the system were close enough to the transition region, bistability
might simply be induced by the E, “noise envelope” spreading to the opposite side of

the switch. This is a fundamentally inappropriate way of looking at an individual
mechanism not only because the ZOU description is not applicable to systems with low
molecular count (18) but also because using it within such an analysis would assume that



the shape of the response curve shown in Fig. 6 remains the same when transitioning
from the deterministic to the stochastic treatment, which is manifestly incorrect, as can be

seen by comparing Eqgs. 1 and 3. In fact, because R, (X', E ;E_) =0 represents a

relationship between stationary-state levels of the enzyme and substrate/product, we
should expect, in general, to get a different relationship for different types of the external
noise driver, thus rendering the aforementioned logic further invalid. To put this in
different terms, for each different system master equation that incorporates an external
noise as a set of additional reactions and thus defines a different joint probability

solution, a different relationship between X and E, would arise. That is, noise acts as
an operator, altering the form of the response relationship, R, = N [R,], and,

potentially, the dynamic behavior of the system relative to its unperturbed state as shown
in Eq. 3. In particular, this means that noise regulation may offer new methods of control
over this mechanism or, conversely, be helpful in inferring the structure of the larger
networks in which these systems are embedded (as is discussed further in the article).

II1. Additional Citations

a. In situ biochemical systems with enzymatic cycles (19-26)
b. Nonlinear stochastic effects (27-31)
c. Stochastic effects in biomolecular systems (32-36), including metabolism (37, 38) as
well as signal transduction and gene expression (39-41)
d. Enzymatic futile cycles in:
1. GTPase cycles (42)
ii. Mitogen-activated protein cascades (43-45)
iii. Glucose mobilization (46)
iv. Cell division/apoptosis (47)
v. Checkpoint control (48)
vi. Actin treadmilling (49)
vii. Metabolism (50)
viii. Two-component systems and phosphorelays (51-53)
e. Chaotic process in cardiac or neural tissue (54, 55)
f. Multiplexing in calcium spiking (56-60)
g. Using noise filtering for (bio)chemical system structure inference (61-63)
h. Chemical master equation (64-67)
1. Filtering and shaping of oscillatory signals by biological systems (68-72)
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