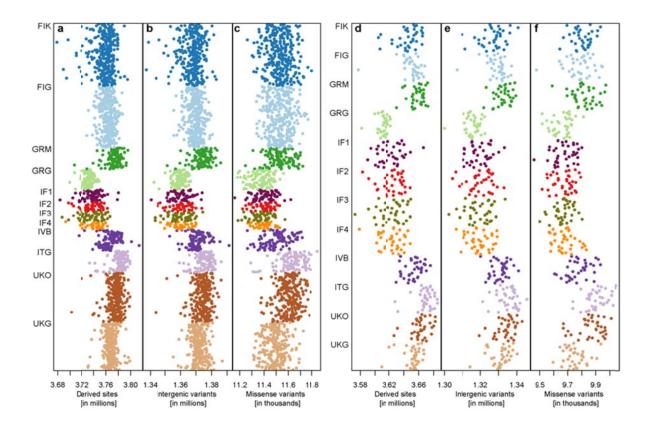
Type of file: PDF Size of file: 0 KB

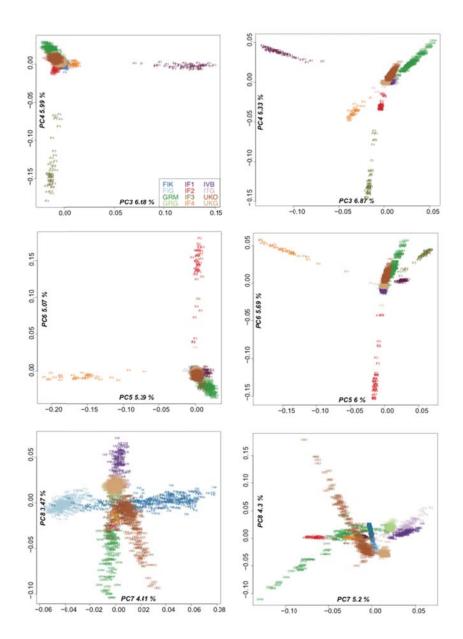
Title of file for HTML: Supplementary Information

Description: Supplementary Figures, Supplementary Tables, Supplementary Notes and

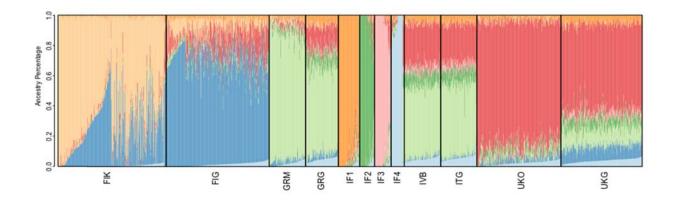
Supplementary References

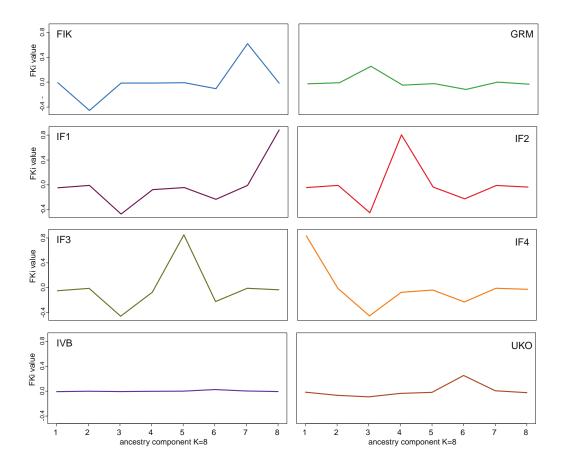

Type of file: pdf

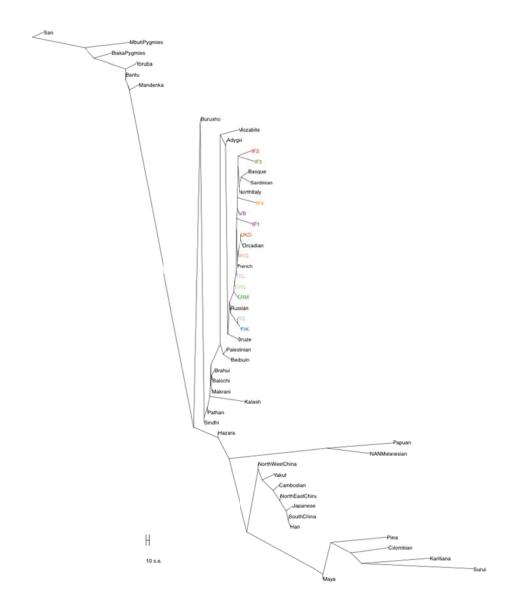
File size:

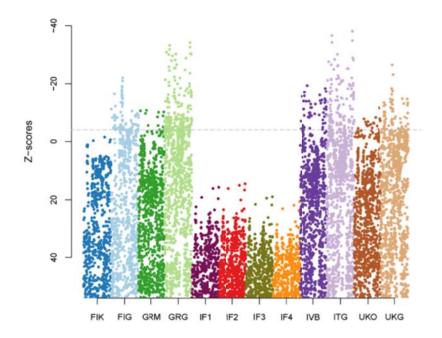

Title of file for HTML: Peer Review File

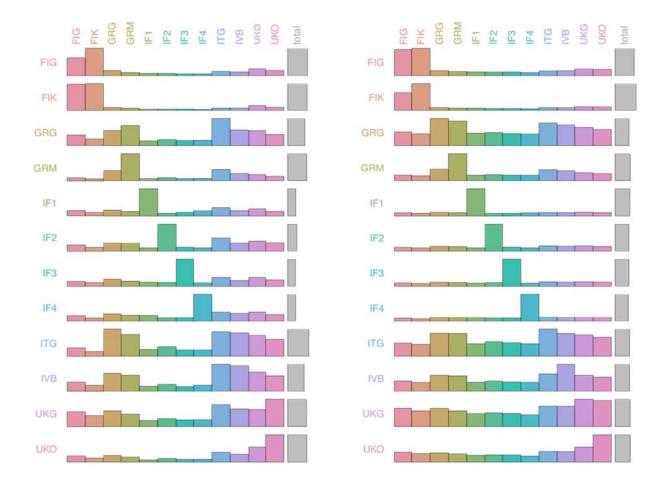
Description:

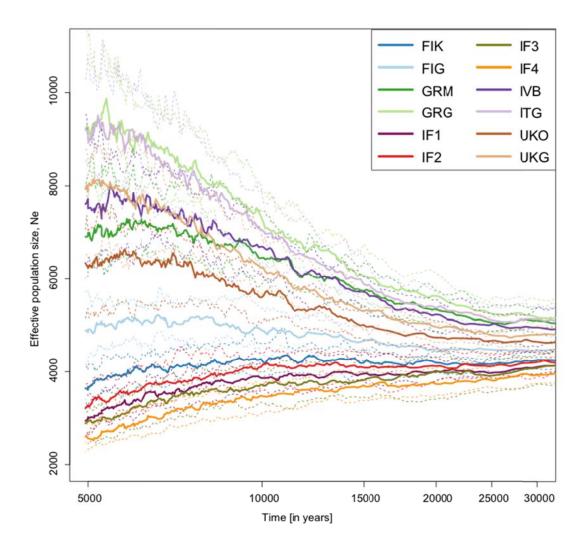

Supplementary Figures

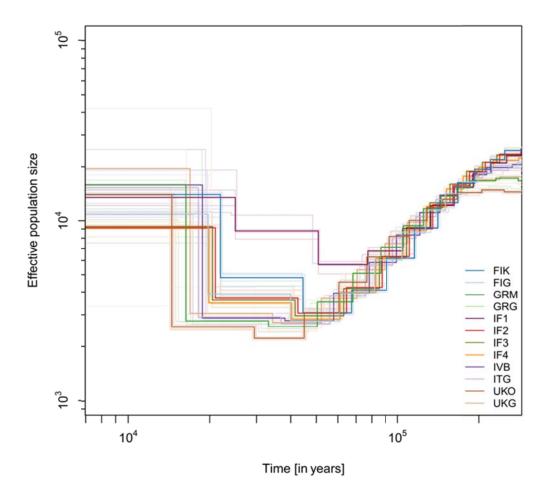

Supplementary Figure 1. Variant sites based on derived allele count in each individual. Left panels (a, b, c) are based on the matched-sample-size and right panels (d, e, f) are based on the minimum-sample-size. The x-axis shows the number of variant sites, and each individual is plotted on the y-axis. The numbers are slightly higher for most of the categories using the sample-size-matched dataset compared with the minimum-sample-size dataset, as the rare variant numbers increase when samples size increase, but the alternative alleles of some these variants are ancestral, which will increase the derived site counts in most of the individuals. We found that singleton counts decrease as sample sizes increase, which is as expected. More variation of the counts is seen in the general populations than in the isolates. Overall, only the Friuli Venezia Giulia isolates - IF1, IF2, IF3 and IF4 - showed lower total variant counts compared to the general population, as is expected. All other isolates showed the opposite pattern, which is most likely due to the ascertainment in sample selection by maximizing the haplotype diversity in each population. GRG showed very low variant counts, which is due to the different variant calling procedure in this population.

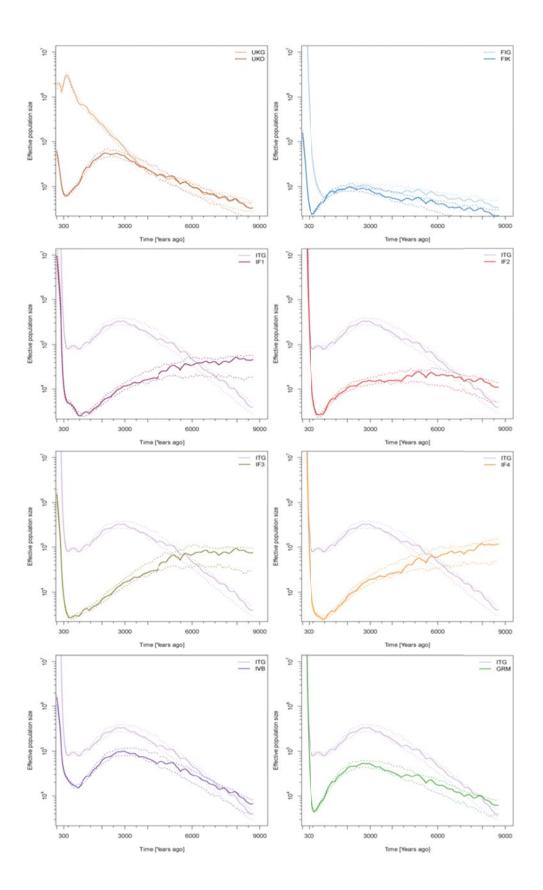

Supplementary Figure 2. PCA plots based on pruned variant dataset with r² <0.4 comparing common variants (MAF >0.05 across all the populations; left) with rare variants (MAF across all the populations ranging between 0.01 and 0.05; right). We used the whole dataset for these analyses, and PCAs were performed using EIGENSTRAT v.501¹. Populations mostly clustered on the PCA according to their geographic locations, and the isolates were positioned close to their corresponding general populations: for example, UKO next to UKG; FIK next to FIG, while all populations from Italy clustered together. The most interesting and striking finding is that the PCA with rare variants separated the populations with higher resolution than that with common variants, especially for the isolated populations from Italy. For example, PC3 and PC4 with rare variants show well-differentiated clusters for IF1, IF2, IF3 and IF4. PC7 and PC8 show additional differentiation for FIK, GRM, IVB and UKO (right panel).

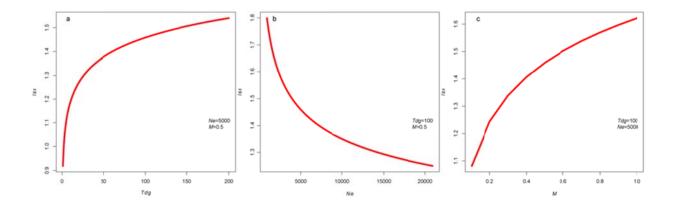

Supplementary Figure 3. ADMIXTURE graph of the populations studied here with K=8. Shared ancestry between the populations studied here was evaluated using ADMIXTURE v1.22², with the whole dataset. The optimal number of clusters was assessed through the cross-validation error procedure². Each ADMIXTURE run was replicated five times with different random seeds. Each isolate shared ancestry components with its closest general population.

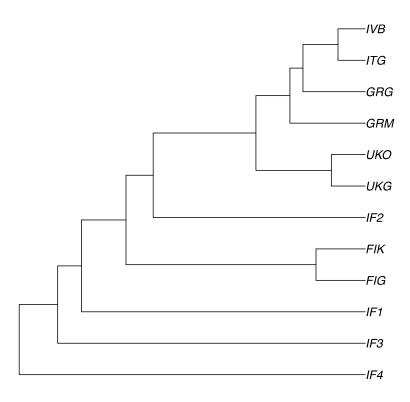

Supplementary Figure 4. FKi values for each population for the ADMIXTURE run with K=8. FKi= fki_{-isolate}-fki_{-general} while fki (i = 1, 2, ...K) is the mean percentage of each ancestry component in each population. At least one ancestry component differed substantially in frequency compared with the general population. The isolates IF1, IF2, IF3 and IF4 have the largest difference compared with their general population ITG, while IVB has the least difference. This could be due to a more pronounced bottleneck in the history of the four IF isolates coupled with high genetic drift (Supplementary Table 6).

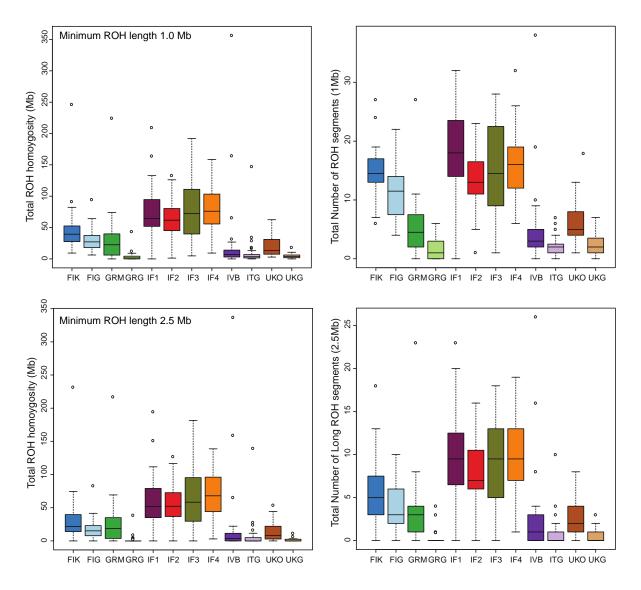

Supplementary Figure 5. Population relationships from TreeMix analysis with worldwide populations from the HGDP-CEPH panel. The analysis used the ancestry graph implemented in TreeMix v.1.12³, using blocks of 200 SNPs to account for linkage disequilibrium, excluding SNPs with MAF <0.01 across all of the samples included here. Each isolate is close to its general population, and also close to other populations from nearby geographic locations. All isolates have longer branches than the general populations, reflecting greater genetic drift. The four north Italian isolates from Friuli Venezia Giulia (IF1, IF2, IF3 and IF4) show the longest branches among all the isolated populations.

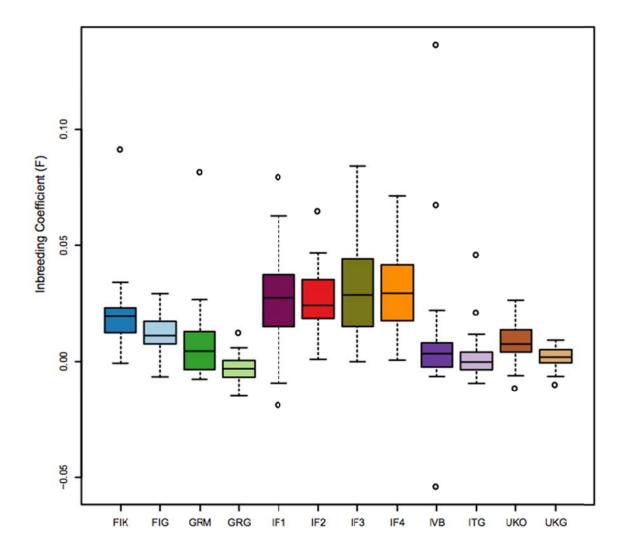

Supplementary Figure 6. Distribution of f3-statistics for each population studied. Each dot represents the f3-statistic population average value of a given population in this study compared with any two populations derived from the rest of the populations in this study and populations from the HGDP. We computed a Z-score using a block jackknife of 500 SNPs and used f3-statistics (Pop1, Pop2; X) where Pop1 and Pop2 are every possible pair of populations in our dataset plus HGDP-CEPH populations, and X is one of the populations in our dataset. The grey dotted line indicates Z scores ≤-4, and scores above the line suggest admixture between two populations. The isolates appear to have had less mixture in their history compared with the general populations. No admixture was detected in the four north Italian isolates IF1, IF2, IF3 and IF4 or FIK. We detect signals of admixture in IVB and GRM, but these remain much less than in the general populations.

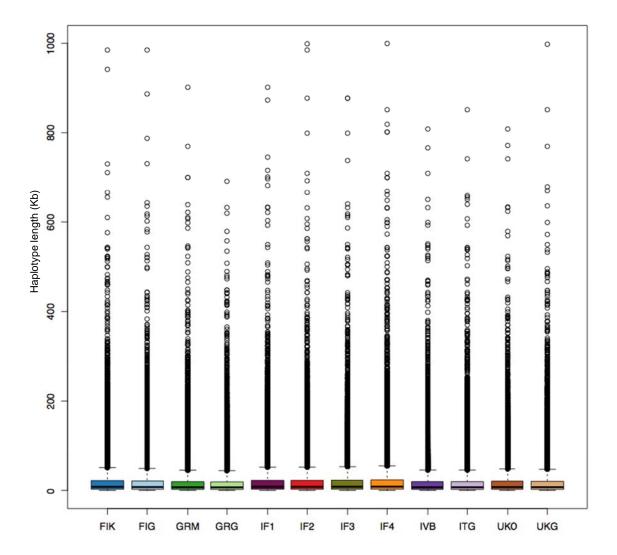

Supplementary Figure 7. Variant sharing at the population level: left, f_2 sharing; right, f_{3-10} sharing. The y axis for the different color bars (except the grey one) is the proportion of the total SNPs of each row, while x axis of each grey bar is the total number of SNPs in each row. In general, each individual shared most f_2 variants with others from their own population, but sharing patterns did differ between populations. Isolates from the Friuli Venezia Giulia villages (IF1, IF2, IF3 and IF4) shared very few f_2 variants with either the closest general population (ITG) or other Friuli Venezia Giulia village populations, confirming that these isolates are indeed isolated and have had little recent admixture with any other population tested. FIK shared many f_2 variants with its closest general population (FIG), but few with other populations, so gene flow/shared ancestry within Finland contrasted with isolation from the rest of the Europe. But IVB, UKO and GRM shared more f_2 variants with both their closest general populations and the other general populations, except FIG, suggesting more extensive recent gene flow among these populations. In contrast, we see much less difference in sharing within the population and between the different populations for the f_{3-10} variants, as expected. These variants are on average older than f_2 variants, and so have had more time to spread among the populations.

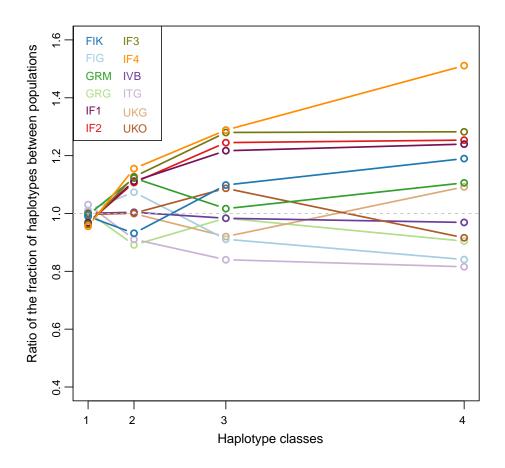

Supplementary Figure 8. LD-based demographic inference for the populations studied – long term Ne from 5,000 years ago to 30,000 thousand years ago. The x-axis shows the time in years before present. The y-axis is the average effective population size (*Ne*) at a particular time. The solid lines are medians, and the dashed lines are the 95th percentiles. Ne were estimated using LD-based methods⁴⁻⁶ in the *NeON* R package⁷ from the minimum dataset with common variants (MAF >5%) only. The Ne is the harmonic mean over all recombination distance classes. The median and confidence interval were estimated using the 50th, 5th and 95th percentiles of the distribution of long-term Ne given the different distance classes. The Ne estimates made here are averaged over coarse time intervals (a thousand years), yet all the isolated population have a substantially smaller Ne than their closest general population up to 10,000 year ago.

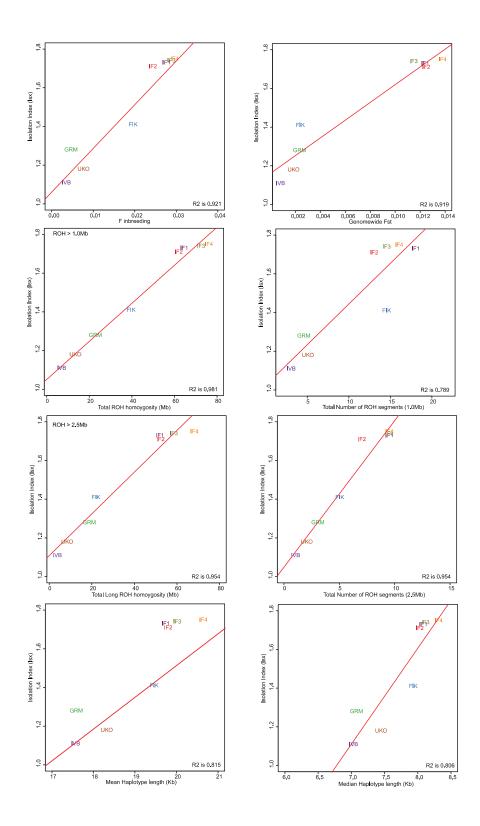

Supplementary Figure 9. Inference of effective population size history using MSMC. The Markovian coalescent (MSMC) method⁸ was used to estimate the effective population size history of the populations using four individuals from each population. We accounted for low-coverage data by using a slow mutation rate of 0.8×10^{-8} mutations per nucleotide per generation and a longer generation time of 33 years, and ran MSMC on four genomes from every population using 40 time intervals, collecting the median from every time segment. The effective population sizes are the median of four individuals from each population estimated from MSMC. Most populations show the distinctive bottleneck of non-African populations with a minimum at ~60,000 years ago. All populations except IF1 appear to have comparable sizes before 20,000 years ago and only minor differences at later times, which are not significant.

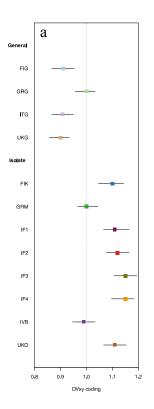

Supplementary Figure 10. Inference of recent population size changes using IBDNe. Population size estimates in recent times (within the last 9,000 years) were inferred from long segments of IBD using IBDNe. Isolated and general populations show contrasting patterns of population size changes in recent times. We used IBDNe⁹ to estimate Ne from long segments of identity-bydescent (IBD). We used IBDseq¹⁰ to detect IBD segments in sequence data from chromosome 2 in all populations. We then used IBDNe with the default parameters and a minimum IBD segment length of 2 centiMorgan (cM) units. We assumed a generation time of 29 years. In these analyses, we used ITG as the general population for GRM as the variant calling procedure for GRG made it unsuitable for this analysis. All general populations (except FIG) show a steady increase in size during the past 3,000 years, while the size of all isolates drops within the last 1000 years, and only recovers in the past few generations. IF1, IF2, IF3 and IF4 appear to have the sharpest decrease in population size while the IVB, on the other hand, show a drop in population size more limited in time and magnitude. Both FIK and FIG show a decrease in size; however, the FIG start increasing in the last 600 years while FIK start increasing only in the past 300 years. The UKO show a steady population size until 2,700 years ago when population size drops sharply and recovers only very recently. The GRG population seems to have been dropping in size gradually reaching the smallest size ~600 years ago before increasing in size in the past 300 years. All isolates appear to have decreased in size while the general populations (except FIG) have increased steadily in size.

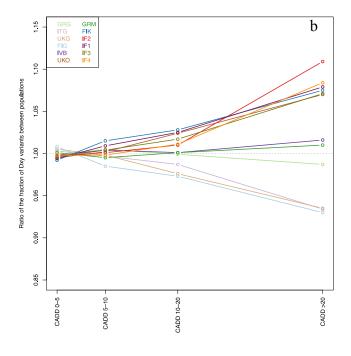

Supplementary Figure 11. The Isolation Index (*Isx*) reflects the demographic history of the isolated population. It increases with (a) deeper divergence time from the general population (Tdg), (b) smaller effective population size (*Ne*) and (c) the level of private isolate ancestry (*M*) (deduced from the level of shared ancestry with the general population).


Supplementary Figure 12. UPGMA tree based on pairwise $F_{\rm ST}$ values between each isolate and its general population. Genome-wide $F_{\rm ST}$ between isolates and their general populations was calculated with the software $4P^{11}$ using the minimum sample size dataset by removing markers in strong LD in the whole dataset and variants with MAF <0.01. A UPGMA tree based on pairwise $F_{\rm ST}$ was constructed using the R package $phangorn^{12}$. Only IVB, FIK and UKO show a close genetic relationship with their general population, while IF1, IF2, IF3 and IF4 lie far away from their general population, which reflects the strong genetic drift in these isolates. GRM and GRG are moderately close in the tree, which might reflect intermediate divergence or calling bias.

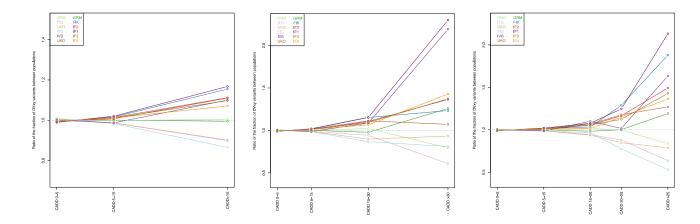

Supplementary Figure 13. Box plots of total length of ROH (left panel) and total number of ROH fragments (right panel) per individual. The top panels show ROH fragments longer than 1.0 Mb and the lower panels fragments greater than 2.5 Mb. We used the whole sample dataset but trimmed the SNPs for these analyses. The runs of homozygosity (ROHs) with a minimum length of 1.0 Mb and 2.5 Mb were calculated using PLINK¹³ with LD pruning. More numbers of ROH fragments and total length of the ROH regions are seen in each isolate compared with its general population, both for ROH fragments greater than 1.0 Mb and 2.5 Mb. The four Italian isolates, IF1, IF2, IF3 and IF4, which are the most isolated, showed these characteristics most markedly, while IVB showed them the least, with FIK, GRM and UKO in between.


Supplementary Figure 14. Inbreeding coefficient (F) values of each individual in each population in this study. F was calculated using the LD-pruned dataset with the function het¹⁴ implemented in PLINK. F showed a very similar pattern to ROH (Supplementary Figure 13).

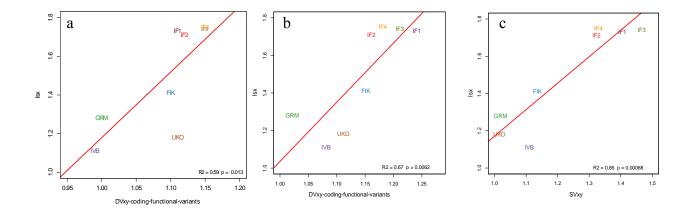

Supplementary Figure 15. Haplotype length distribution in the populations studied. The haplotype block length between variants with D' > 0.85 were estimated using PLINK¹³, via Haploview's interpretation of block definition¹⁵, using the minimum sample size dataset for this analysis, excluding variants with MAF <0.01 across all the individuals in the dataset. The average haplotype length in the isolates IF1, IF2, IF3, IF4 and FIK is significantly longer than in their general populations ITG and FIG, but no difference was observed between GRM, IVB and UKO and their general populations GRG, ITG and UKG.

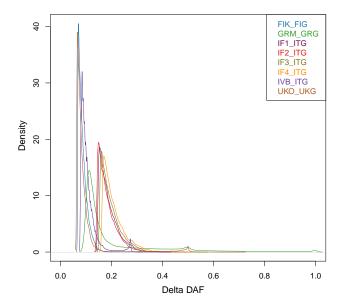


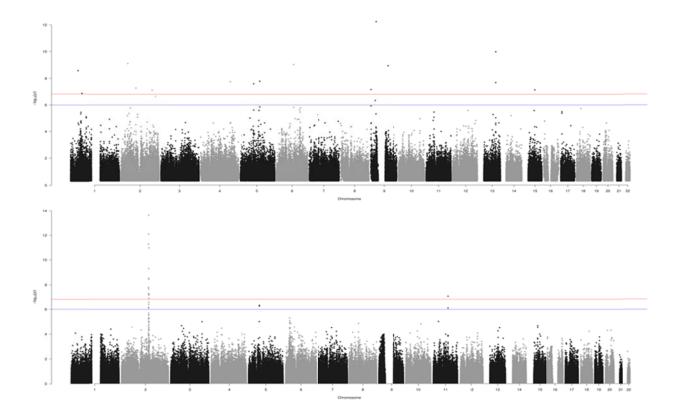
Supplementary Figure 16. The ratios in each isolate compared with its general population, or vice-versa, of haplotypes of different length classes (Supplementary Table 9) that are shared. We performed optimal k-means clustering on the distribution of the length of haplotypes using the R package Ckmeans.1d.dp¹⁶ and divided the haplotypes into four classes (short, medium-short, medium-long and long) and the characteristics of each class are reported in Supplementary Table 9. The proportion of different classes of haplotypes in IF1, IF2, IF3, IF4 and FIK are also substantially different from their general populations. ITG and FIG, in particular, have a higher proportion of shorter haplotypes. No difference between GRM, IVB and UKO and their general populations GRG, ITG and UKG was found. These results again suggest that IF1, IF2, IF3, IF4 and FIK are more isolated that the other isolates.



Supplementary Figure 17. Correlation plots of Isx and different measures of genetic drift. The correlation in each plot is labelled, as well as the Pearson correlation coefficient (R^2) and its p-value.




Supplementary Figure 18. *DVxy* statistics using the minimum sample size. (a) *DVxy-coding* statistic in isolates and general populations; (b) *DVxy-wg* statistics between isolates and general population in different CADD score bins.


Supplementary Figure 19. *DVxy-wg* statistics in isolates and general populations, stratified by CADD score with different cut-offs and different bins.

Supplementary Figure 20. Correlation between Isx and the DVxy (a. with minimum sample size. b. with matched sample size) or SVxy statistics (c. minimum sample size).

Supplementary Figure 21. 99th percentile of DAF distribution between pairs of populations. For each pair of isolate and its general population, genome-wide pairwise derived allele frequency differences (deltaDAF) were calculated as described previously¹⁷. The sites with extreme deltaDAF due to high DAF values in the isolate (HighD sites) were identified by scanning the genome in non-overlapping windows of 3,000 SNPs and picking the variant within each window with the highest deltaDAF value, provided that deltaDAF was above a threshold between 0.3 and 0.5. HighD sites were assigned to the population with the highest DAF in the pair.

Supplementary Figure 22. Scaled SDS values in UKO (top) and UKG (bottom). The red line represents the 99.99th percentile of the distribution while the blue line genome-wide suggested significant p value. The singleton density score (SDS) analyses were performed as described ¹⁸ to one of our isolates (UKO with sample size of 397) and its general population (UKG, the UK10K data, also used in the SDS paper). We successfully replicated the selection signal at the lactose locus in the UKG, and the known selected SNP, rs4988235, is in the 99.99th percentile of the distribution. However, we failed to detect any signal at this locus in the UKO. This suggested that the sample size of UKO is too small for SDS to have power to detect even strong signals. We failed to detect any convincing extra selection signal genomewide in UKO. There are a few SNP signals with high SDS scores, but they are not clustered, and are likely false positives. As UKO has the biggest sample size and second lowest Isx value of our isolates, this suggests that we would not be able to detect any convincing positive selection signals in any of the other isolates studied here.

Supplementary Tables

Supplementary Table 1. Population and dataset information

Population (three letter name)	Sample location	Sample size	Sequence depth	Data published
Kuusamo (FIK)	Kuusamo, Finland	377	4x	No
SISu cohort (FIG)	Suomi, Finland	1564	6x	No
HELIC-MANOLIS (GRM)	Crete, Greece	249	4x	No
TEENAGE (GRG)	Athens, Greece	100	10-30x	No
Friuli Venezia Giulia (all)	Friuli Venezia Giulia, Italy	250	4-10x	No
Friuli Venezia Giulia 1 (IF1)	Friuli Venezia Giulia, Italy	60	4-10x	No
Friuli Venezia Giulia 2 (IF2)	Friuli Venezia Giulia, Italy	45	4-10x	No
Friuli Venezia Giulia 3 (IF3)	Friuli Venezia Giulia, Italy	47	4-10x	No
Friuli Venezia Giulia 4 (IF4)	Friuli Venezia Giulia, Italy	36	4-10x	No
Val Borbera (IVB)	Val Borbera, Italy	225	6x	No
Toscani (ITG)	Toscani, Italy	108	7x	Yes ¹⁹
Orkney (UKO)	Scotland, UK	397	4x	No
UK10K (UKG)	UK (ALSPAC & TwinsUK cohorts)	3781	6.5x	Yes ²⁰

All of the populations have been given a three-letter abbreviation used throughout the text. The first one or two letters identify the country (FI = Finland, GR = Greece, I = Italy, UK = United Kingdom) and the last one or two letters the specific isolate (K = Kuusamo, M = MANOLIS, F = Friuli Venezia Giulia, VB = Val Borbera and O = Orkney) or the general population (G).

Samples from Friuli Venezia Giulia were collected from four different villages and were found to be genetically highly structured, so we treated them as four different isolates, and we also excluded some samples which do not genetically match any of these four groups.

Supplementary Table 2. Genotype discordance with genotype chip data, stratified by SNP class.

	REF-REF	REF-ALT	ALT-ALT
1000 Genomes	1.21%	0.11%	1.06%
Finland	0.11%	0.37%	0.30%
UK10K	0.10%	0.32%	0.27%

Supplementary Table 3. Numbers of variants in the different populations stratified by functional category. The functional annotation used the Ensembl 76 VEP pipeline with "-pick" option. 'Novel' variants are those not found in 1000 Genomes Project Phase 3 or UK10K project, and the proportion of novel variants is shown in brackets.

The numbers and proportions of rare variants (MAF) $\leq 2\%$) in each population that are novel are very different, as expected because of the different sample sizes. In contrast, they are not very different for both variants with MAF >2-\(\leq 5\)% and common variants (>5%). It is striking that we still found \sim 10-20 thousand novel variants with MAF >2-\less\infty and 40-50 thousand novel common (MAF >5%) variants even after a comparison with the 1000 Genomes Project Phase 3 and UK10K project. The counts for different functional categories show the same pattern but the proportions of novel rare variants in important functional categories, such as predicted LoF and non-synonymous, are significantly higher than the other variants due to the strength of purifying selection. In total, 4551, 1206 and 1409 unique predicted LoF variants and 94,221, 26,838 and 29,121 non-synonymous variants are found in the MAF bins of $\le 2\%$, $>2-\le 5\%$, and >5% among the 10 newly-sequenced populations here: 23.0%, 1.0% and 0.6% for predicted LoFs and 17.9%, 1.2% and 0.6% for non-synonymous were novel. In all, we find more than 1.4 thousand novel common predicted LoF variants and more than 29 thousand novel non-synonymous ones.

Total	UKO	IVB	7	IF3	IF2	Ē	GRM	GRG	Ę	FIG		POP
4.6k (23.0%) 1.2k (1.0%)	1.9k (21.7%)	1.2k (2.1%)	227 (0.4%)	244 (2.0%)	250 (2.8%)	365 (0.8%)	1.3k (9.5%)	917 (2.0%)	1.3k (18.8%) 305 (2.0%)	2.1k (19.9%) 311 (1.0%)	MAF <=2%	
1 34 (1 0%)	284 (0.4%)	259 (0.0%)	238 (0.4%)	300 (0.3%)	319 (0.9%)	283 (1.8%)	256 (1.6%)	235 (0.4%)	305 (2.0%)	311 (1.0%)	MAF >2-5%	predicted LoF
1 44 (0 6%)	981 (1.2%)	999 (1.2%)	977 (1.2%)	995 (0.9%)	974 (0.6%)	971 (1.0%)	992 (1.0%)	950 (0.7%)	971 (0.9%)	967 (0.8%)	MAF >5%	'n
26 7F (17 9%	39.3 (16.0%)	28.1k (2.3%)	977 (1.2%) 5.2k (2.1%)	995 (0.9%) 5.1k (1.8%)	974 (0.6%) 5.6k (1.8%)	7.6k (2.0%)	3.0k (9.6%)	950 (0.7%) 21.0k (2.1%)	971 (0.9%) 25.6k (14.6%) 7.0k (1.6%)	967 (0.8%) 43.6k (15.8%) 6.9k (0.8%)	MAF <= 2%	
76 8k (1 7k	6.4 k(0.9%)	6.0k (1.1%)	5.1k (1.6%)	6.7k (1.8%)	7.2 k(1.5%)	6.3k (2.3%)	6.1k (1.5%)	5.4 k(0.8%)	7.0k (1.6%)) 6.9k (0.8%)	MAF >2-5%	Nonsynon
29 1k (0 6%)	19.5k (1.0%)	19.6k (0.9%)	19.7k (1.1%) 4.0k (1.5%)	20.0k (1.0%) 3.8 (1.5%)	19.5k (0.9%) 4.2k (1.4%)	19.3k (1.0%)	19.6k (1.0%)	18.5k (0.8%)	19.6k (0.8%)	19.5k (0.9%)	MAF >5%	
60 8k (13 5%		19.6k (0.9%) 20.0k (2.0%)	4.0k (1.5%)	3.8 (1.5%)	4.2k (1.4%)	19.3k (1.0%) 5.7k (1.6%)	19.6k (1.0%) 21.1k (7.1%)	18.5k (0.8%) 15.6k(1.8%)	19.6k (0.8%) 17.0k (10.8%) 5.7k (1.2%)	19.5k (0.9%) 27.9k (12.3%) 5.7k (0.7%)	MAF <=2%	
0 21 6k (0 8%	25.1k (12.3%) 5.3k (0.7%)	5.2k (0.8%)	4.2k (1.1%)	5.3k (1.6%)	5.7k (1.1%)	5.3k (1.4%)	5.4k (1.3%)	4.9k (0.9%)) 5.7k (1.2%)	s) 5.7k (0.7%)	MAF >2-5%	Synon
28.0k (0.4%	20.2k (0.9%)					19.6 (1.0%)		19.5k(0.8%)			MAF >5%	
1.4k (0.6%) 04.2k (17.9%) 26.8k (1.2%) 29.1k (0.6%) 60.8k (13.5%) 21.6k (0.8%) 28.0k (0.4%) 235.1k (14.3%) 83.9k (0.7%) 107.0k (0.3%) 73m (13.8%) 2.9m (0.7%) 4.0m (13.8%) 4.0m (13.8	20.2k (0.9%) 99.0k (12.9%)	20.3k (0.9%) 77.6k (1.8%)	20.1k (1.0%) 15.8k (1.5%)	20.5k (0.9%) 14.7k (1.5%)	20.0k (1.0%) 16.5k (1.3%)	22.1k (1.6%)	20.3k (0.9%) 81.3k (7.5%)	60.2k (1.7%)	20.1k (0.8%) 65.8k (11.7%) 22.7k (1.4%) 76.6k (0.8%) 2.1m (11.0%) 788k (1.2%) 3.0m (0.7%) 389k (11.0%) 144k (1.3%)	20.2k (0.9%) 108.2k (12.6%) 22.5k (0.9%) 76.9k (0.8%)	MAF <= 2%	
6) 83 9k /0 7%	1000	19.8k (0.8%	16.2k (1.3%	21.1k (1.2%	22.2k (1.2%	20.6k (1.4%)	20.5k (1.2%)	18.9k (0.7%)	22.7k (1.4%	s) 22.5k (0.9%	MAF >2-5% MAF >5%	UTR
107 Ok (0.3%	21.2k (0.8%) 76.6k (0.8%)	19.8k (0.8%) 77.2k (0.8%)	16.2k (1.3%) 76.9k (0.9%)	21.1k (1.2%) 78.0k (0.9%)	22.2k (1.2%) 76.7k (0.8%)	20.6k (1.4%) 75.2k (0.9%)	20.5k (1.2%) 77.5k (0.8%)	18.9k (0.7%) 74.5k (0.8%)	76.6k (0.8%)	76.9k (0.8%)	MAF >5%	
7 am (13 8%	3.1m (11.9%)	2.5m (1.7%)	526k (1.3%)	491k6 (1.3%)	543k (1.3%)	742k (1.4%)	2.6m (7.3%)	1.9m (1.6%)	2.1m (11.0%		MAF <=2%	
2 9m (0.7%)) 748k (0.8%)	703k (0.8%)	569k (1.1%)	735k (1.1%)	790k (1.0%)	720k (1.3%)	728k (1.2%)	667k (0.7%)) 788k (1.2%)	3.4m (11.9%) 777k (0.8%)	MAF >2-5% MAF >5%	Intron
	3.0m (3.0m(0.8%)	3.0m (0.8%)	3.0m (0.8%)	3.0m (0.8%)	2.9m (0.8%) 137k (1.4%)	3.0m (0.8%) 490k (7.6%)	3.0m (0.7%)	3.0m (0.7%)	3.0m (MAF >5%	
1 Am (13 9%)	0.8%) 573k (12.0%) 136k (0.8%)	462k (1.8%) 128k (0.8%)	569k (1.1%) 3.0m (0.8%) 97.8k (1.4%) 105k (1.1%)	735k (1.1%) 3.0m (0.8%) 90.5k (1.3%) 135k (1.2%)	3.0m (0.8%) 100k (1.4%) 143k (1.1%)		490k (7.6%)	667k (0.7%) 3.0m (0.7%) 357k (1.7%) 122k (0.7%)	389k (11.0%)	0.7%) 634k(12.4%) 142k(1.0%)	MAF <=2%	
530 7k (0.8%)	136k (0.8%)	128k (0.8%)	105k (1.1%)	135k (1.2%)	143k (1.1%)	131k (1.3%)	133k (1.2%)	122k (0.7%)	144k (1.3%)	142k (1.0%)	MAF >2-5%	Regulatory
(0.3%) 1.4m (13.9%) 530.7k (0.8%) 732.8k (0.4%) 5.7m (13.3%) 2.1m (0.7%) 3.1m (0.3%)	541k (0.9%)	548k (0.9%)	538k (0.9%)	545k (0.9%)	538k (0.8%)	527k (0.9%)	547k (0.9%)	524k (0.8%)	539k (0.8%)	542k (0.8%)	MAF >5%	
7 5 7m (13 3w			381k (1.2%)		393k (1.2%)	540 (1.3%)	1.9m (7.2%)				MAF <=2%	
7 1m (0 7%)	2.2m (11.4%) 550k (0.7%) 2.3m (0.8%)	1.8m (1.6%) 527k (0.8%) 2.4m (0.8%)	381k (1.2%) 419k (1.0%) 2.3m (0.8%)	353k (1.2%) 546k (1.0%) 2.4m (0.7%)		535k (1.2%)	549k (1.1%)	1.4m (1.5%) 500k (0.7%) 2.3m (0.7%)	1.5m (10.7%) 581k (1.1%) 2.3m (0.7%)	2.4m (11.6%) 580k (0.8%) 2.3m (0.7%)	MAF >2-5% MAF >5%	Intergenic
3 1m (0 3%	2.3m (0.8%	2.4m (0.8%)	2.3m (0.8%)	2.4m (0.7%)	578k (1.0%) 2.3m (0.7%)	535k (1.2%) 2.3m (0.8%)	549k (1.1%) 2.4m (0.8%)	2.3m (0.7%)	2.3m (0.7%)	2.3m (0.7%)	MAF >5%	

Supplementary Table 4. Numbers and proportions (percentage) of deleterious variants that have drifted to high frequency in the isolates compared with all four general populations studied here

Isolates	Total	Missense plus LoF	CADD score 15
FIK	70,579	410 (0.58%)	1479 (2.1%)
GRM	49,884	266 (0.53%)	988 (2.0%)
IF1	119,157	689 (0.58%)	2676 (2.2%)
IF2	94,496	518 (0.55%)	2080 (2.2%)
IF3	107,281	616 (0.57%)	2417 (2.3%)
IF4	122,254	688 (0.56%)	2792 (2.3%)
IVB	30,284	154 (0.51%)	530 (1.8%)
UKO	36,512	210 (0.58%)	634 (1.7%)

Supplementary Table 5. Median numbers of variant sites, homozygous sites, heterozygous sites and alleles per genome. The functional annotation used Ensembl 76 VEP pipeline with the "-pick" option. Numbers to the left-hand side of the grey line are based on the minimum-sample-size and those on the right-hand side are based on matched-sample-size. hom = homozygous, het = heterozygous.

	predicted P Lof P Lof P 260 318 339 260 319 326 325 326 326 326 835 573 319 828 579 263	predicted Lof Nonsynon Lof 11.535k 579 11.535k 260 5.199k 318 6.337k 839 16.732k 581 11.533k 260 5.169k 319 6.364k 840 16.705k 580 11.539k 255 5.090k 326 6.456k 335 16.635k 573 11.338k 253 5.152k 319 6.217k 828 16.526k 579 11.394k 263 5.207k	predicted LoF Nonsynon Synon LoF 11.535K 12.478K 579 11.535K 5.934K 318 6.337k 6.546k 339 16.732k 18.41k 581 11.533K 12.522k 260 5.169k 5.903k 319 6.364k 6.613k 840 16.705k 18.423k 840 11.539k 12.539k 250 5.900k 5.825k 255 5.900k 5.825k 255 5.020k 5.22k 326 6.456k 6.720k 326 6.635k 18.359k 253 5.152k 5.850k 319 6.217k 6.571k 828 16.526k 18.276k 828 16.526k 18.276k 579 11.394k 12.416k 263 5.207k 5.958k	predicted Lof Nonsynon Synon UTR 579 11.535K 12.478K 24.595K 260 5.199k 5.934K 11.469k 318 6.337k 6.546k 13.132k 839 16.732k 18.41k 36.067k 260 5.169k 5.903k 11.419k 331 11.533k 12.522k 24.627k 260 5.169k 5.903k 11.419k 319 6.364k 6.613k 13.209k 840 16.705k 18.423k 36.045k 840 16.539k 12.539k 24.619k 580 11.539k 12.539k 24.619k 580 11.539k 12.539k 24.619k 255 5.090k 5.8255k 11.288k 326 6.635k 18.359k 35.925k 13.38k 12.421k 24.420k 253 5.152k 5.850k 11.333k 13.94k 18.276k 35.749k 263 <th>predicted LoF Nonsynon Lyra Intron Feter LoF LoF 11.535k 12.478k 24.595k 1.913m 579 11.535k 12.478k 24.595k 1.913m 260 5.199k 5.934k 11.469k 910.943k 318 6.537k 6.546k 13.132k 1.002m 839 16.732k 18.41k 36.067k 2.824m 260 5.169k 5.903k 11.419k 907.312k 319 6.364k 6.613k 13.209k 1.008m 840 16.705k 18.423k 36.045k 2.8227m 580 11.539k 12.539k 24.619k 1.920m 255 5.090k 5.825k 11.288k 897.665k 326 6.456k 6.720k 13.316k 1.022m 835 16.635k 18.359k 35.925k 2.818m 836 16.535k 18.359k 35.925k 2.818m 837 11.338k 12.421k 24</th>	predicted LoF Nonsynon Lyra Intron Feter LoF LoF 11.535k 12.478k 24.595k 1.913m 579 11.535k 12.478k 24.595k 1.913m 260 5.199k 5.934k 11.469k 910.943k 318 6.537k 6.546k 13.132k 1.002m 839 16.732k 18.41k 36.067k 2.824m 260 5.169k 5.903k 11.419k 907.312k 319 6.364k 6.613k 13.209k 1.008m 840 16.705k 18.423k 36.045k 2.8227m 580 11.539k 12.539k 24.619k 1.920m 255 5.090k 5.825k 11.288k 897.665k 326 6.456k 6.720k 13.316k 1.022m 835 16.635k 18.359k 35.925k 2.818m 836 16.535k 18.359k 35.925k 2.818m 837 11.338k 12.421k 24
1.328m 3.760m 559 579 612.828k 1.793m - 260 715.095k 1.966m 559 318 1.941m 5.553m 559 839 1.331m 3.763m 1.707k 581 608.952k 1.786m - 260 722.667k 1.979m 1.707k 319 1.939m 5.550m 1.707k 840 1.333m 3.775m 2.761k 580 602.955k 1.767m - 255 729.964k 2.009m 2.761k 326 1.936m 5.541m 2.761k 835 1.317m 3.732m 1.668k 573	1.768m 88.437k 1.328m 3.760m 559 579 809.203k 40.428k 612.828k 1.793m - 260 959.066k 48.037k 715.095k 1.966m 559 318 2.577m 128.864k 1.941m 5.553m 559 839 1.769m 88.697k 1.331m 3.763m 1.707k 581 806.442k 40.131k 608.952k 1.786m - 260 962.268k 48.592k 722.667k 1.979m 1.707k 319 2.575m 128.793k 1.939m 5.550m 1.707k 840 1.772m 88.972k 1.333m 3.775m 2.761k 580 797.349k 39.709k 602.955k 1.767m - 2.55 975.361k 49.304k 729.964k 2.009m 2.761k 326 2.569m 128.696k 1.936m 5.541m 2.761k 835 1.750m 87.661k 1.317m 3.732m 1.668k 573	1.768m 88.437k 1.328m 3.760m 559 579 11.535k 809.203k 40.428k 612.828k 1.793m - 260 5.199k 959.066k 48.037k 715.095k 1.966m 559 318 6.337k 2.577m 128.864k 1.941m 5.553m 559 318 6.337k 2.577m 128.864k 1.941m 5.553m 559 839 16.732k 1.769m 88.697k 1.331m 3.763m 1.707k 581 11.533k 806.442k 40.131k 608.952k 1.786m - 260 5.169k 962.268k 48.592k 722.667k 1.979m 1.707k 319 6.364k 2.575m 128.793k 1.939m 5.550m 1.707k 840 16.705k 1.772m 88.972k 1.333m 3.775m 2.761k 880 11.539k 797.349k 39.709k 602.955k 1.767m - 255 5.090k 975.361k 49.304k 729.964k 2.009m 2.761k 326 6.456k 2.569m 128.696k 1.936m 5.541m 2.761k 835 16.635k 1.750m 87.661k	1.768m 88.437k 1.328m 3.760m 559 579 11.535k 12.478k 809.203k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 959.066k 48.037k 715.095k 1.966m 559 318 6.337k 6.546k 2.577m 128.864k 1.941m 5.553m 559 318 16.337k 16.46k 2.577m 128.864k 1.941m 3.763m 1.707k 581 11.533k 12.522k 806.442k 40.131k 608.952k 1.786m - 260 5.169k 5.903k 962.268k 48.592k 722.667k 1.979m 1.707k 319 6.364k 6.613k 2.575m 128.793k 1.939m 5.550m 1.707k 349 16.705k 18.423k 1.772m 88.972k 1.333m 3.775m 2.761k 880 11.539k 12.539k 797.349k 39.709k 602.955k 1.767m - 255 5.090k 5.825k 975.361k 49.304k 729.964k 2.009m 2.761k 326 6.456k 6.720k 2.569m 128.666k 1.337m 3.732m 1.668k 573	1.768m 88.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.595k 809.203k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 1	1.768m 88.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.595k 1.913m 809.203k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 959.066k 48.037k 715.095k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 959.066k 48.037k 715.095k 1.966m 559 318 6.337k 6.546k 13.132k 1.002m 2.577m 128.864k 1.941m 5.553m 559 339 16.732k 18.41k 36.667k 2.824m 1.769m 88.697k 1.331m 3.763m 1.707k 581 11.533k 12.522k 24.627k 1.915m 806.442k 40.131k 608.952k 1.759m 1.707k 319 6.364k 6.613k 13.209k 1.008m 2.575m 12.809k 1.939m 1.707k 319 6.364k 6.613k 1.239k 2.8227m
Regulatory Intergenic Total Singletons Predicted Loff 88.437k 1.328m 3.760m 559 579 40.428k 612.828k 1.793m - 260 48.037k 715.095k 1.966m 559 318 128.864k 1.941m 5.553m 559 839 88.697k 1.331m 3.763m 1.707k 581 40.131k 608.952k 1.786m - 260 48.592k 722.667k 1.979m 1.707k 319 128.793k 1.939m 5.550m 1.707k 840 88.972k 1.333m 3.775m 2.761k 580 88.972k 1.333m 3.775m 2.761k 580 88.972k 1.333m 3.75m 2.761k 580 88.972k 1.333m 3.75m 2.761k 580 39.709k 602.955k 1.767m - 255 49.354k 729.964k 2.909m 2.761k <td< td=""><td>Regulatory Intergenic Total Singletons Predicted Loff 88.437k 1.328m 3.760m 559 579 40.428k 612.828k 1.793m - 260 48.037k 715.095k 1.966m 559 318 128.864k 1.941m 5.553m 559 839 40.131k 608.952k 1.786m - 260 48.592k 722.667k 1.979m 1.707k 319 128.793k 1.939m 5.550m 1.707k 840 88.972k 1.333m 3.75m 2.761k 580 39.708k 602.955k 1.767m - 255 49.304k 729.964k 1.936m 2.761k 835 128.661k 1.317m 3.732m 1.668k</td><td>Regulatory Intergenic Total Singletons Predicted Lor Nonsynon 88.437k 1.328m 3.760m 559 579 11.535k 40.428k 612.828k 1.793m - 260 5.199k 48.037k 715.095k 1.966m 559 318 6.337k 128.864k 1.941m 5.553m 559 839 16.732k 88.697k 1.331m 3.763m 1.707k 319 6.34k 48.592k 722.667k 1.170m 319 6.34k 128.793k 1.939m 1.707k 319 6.364k 128.793k 1.939m 1.707k 840 16.705k 88.972k 1.333m 3.775m 2.761k 580 11.539k 88.972k 1.333m 3.775m 2.761k 580 11.539k 39.709k 602.955k 1.767m - 255 5.090k 49.304k 729.964k 2.099m 2.761k 835 16.635k</td><td>Regulatory Intergenic Total Singletons Predicted Lof Monsynon Synon 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 48.037k 715.095k 1.996m 559 318 6.337k 6.546k 128.864k 1.941m 559m 559 839 16.732k 18.41k 88.697k 1.331m 3.763m 1.707k 319 6.534k 6.613k 48.592k 722.667k 1.99m 1.707k 840 16.705k 18.42k 48.592k 722.667k 1.979m 1.707k 840 16.705k 18.423k 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 12.8793k 1.939m 3.775m 2.761k 580 11.539k 12.539k 3.900k 5.295k 1.076m - 255 5.090k 5.825k</td><td>Regulatory Intergenic Total Singletons Predicted Lof Monsynon Synon UTR 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.955k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 1 48.037k 715.095k 1.996m 559 318 6.337k 6.546k 13.13k 128.864k 1.941m 5.553m 559 839 16.732k 18.41k 36.067k 40.131k 608.952k 1.786m - 260 5.169k 5.903k 11.419k 48.592k 722.667k 1.99m 1.707k 840 16.705k 18.423k 36.045k 48.592k 1.939m 1.575m 1.707k 840 16.705k 18.423k 36.045k 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 24.619k 88.972k 1.333m 3.775m 2.761k 580<</td><td>Regulatory Interregenic Total Singletons Predicted Lof Nonsynon Synon UTR Litron 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.595k 1.913m 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 48.037k 715.095k 1.966m 559 318 6.337k 6.549k 13.132k 1.002m 128.864k 1.941m 5.553m 559 839 16.732k 18.41k 36.067k 2.824m 40.131k 608.952k 1.786m - 260 5.169k 5.934k 11.419k 907.312k 48.592k 722.667k 1.707k 319 6.364k 6.613k 13.209k 10.08m 128.793k 1.939m 1.707k 840 16.705k 18.423k 36.045k 2.8227m 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 24.519k</td></td<>	Regulatory Intergenic Total Singletons Predicted Loff 88.437k 1.328m 3.760m 559 579 40.428k 612.828k 1.793m - 260 48.037k 715.095k 1.966m 559 318 128.864k 1.941m 5.553m 559 839 40.131k 608.952k 1.786m - 260 48.592k 722.667k 1.979m 1.707k 319 128.793k 1.939m 5.550m 1.707k 840 88.972k 1.333m 3.75m 2.761k 580 39.708k 602.955k 1.767m - 255 49.304k 729.964k 1.936m 2.761k 835 128.661k 1.317m 3.732m 1.668k	Regulatory Intergenic Total Singletons Predicted Lor Nonsynon 88.437k 1.328m 3.760m 559 579 11.535k 40.428k 612.828k 1.793m - 260 5.199k 48.037k 715.095k 1.966m 559 318 6.337k 128.864k 1.941m 5.553m 559 839 16.732k 88.697k 1.331m 3.763m 1.707k 319 6.34k 48.592k 722.667k 1.170m 319 6.34k 128.793k 1.939m 1.707k 319 6.364k 128.793k 1.939m 1.707k 840 16.705k 88.972k 1.333m 3.775m 2.761k 580 11.539k 88.972k 1.333m 3.775m 2.761k 580 11.539k 39.709k 602.955k 1.767m - 255 5.090k 49.304k 729.964k 2.099m 2.761k 835 16.635k	Regulatory Intergenic Total Singletons Predicted Lof Monsynon Synon 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 48.037k 715.095k 1.996m 559 318 6.337k 6.546k 128.864k 1.941m 559m 559 839 16.732k 18.41k 88.697k 1.331m 3.763m 1.707k 319 6.534k 6.613k 48.592k 722.667k 1.99m 1.707k 840 16.705k 18.42k 48.592k 722.667k 1.979m 1.707k 840 16.705k 18.423k 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 12.8793k 1.939m 3.775m 2.761k 580 11.539k 12.539k 3.900k 5.295k 1.076m - 255 5.090k 5.825k	Regulatory Intergenic Total Singletons Predicted Lof Monsynon Synon UTR 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.955k 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 1 48.037k 715.095k 1.996m 559 318 6.337k 6.546k 13.13k 128.864k 1.941m 5.553m 559 839 16.732k 18.41k 36.067k 40.131k 608.952k 1.786m - 260 5.169k 5.903k 11.419k 48.592k 722.667k 1.99m 1.707k 840 16.705k 18.423k 36.045k 48.592k 1.939m 1.575m 1.707k 840 16.705k 18.423k 36.045k 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 24.619k 88.972k 1.333m 3.775m 2.761k 580<	Regulatory Interregenic Total Singletons Predicted Lof Nonsynon Synon UTR Litron 8.437k 1.328m 3.760m 559 579 11.535k 12.478k 24.595k 1.913m 40.428k 612.828k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 48.037k 715.095k 1.966m 559 318 6.337k 6.549k 13.132k 1.002m 128.864k 1.941m 5.553m 559 839 16.732k 18.41k 36.067k 2.824m 40.131k 608.952k 1.786m - 260 5.169k 5.934k 11.419k 907.312k 48.592k 722.667k 1.707k 319 6.364k 6.613k 13.209k 10.08m 128.793k 1.939m 1.707k 840 16.705k 18.423k 36.045k 2.8227m 88.972k 1.333m 3.775m 2.761k 580 11.539k 12.539k 24.519k
Total Singletons predicted lof 3.760m 559 260 1.793m - 260 1.966m 559 318 5.553m 559 839 3.763m 1.707k 581 1.786m - 260 1.979m 1.707k 840 3.775m 2.761k 580 1.767m - 255 2.009m 2.761k 326 5.541m 2.761k 835 3.732m 1.668k 573 1.783m - 253 1.802m - 253 1.802m - 263 1.802m - 263 1.841m 318 317 5.541m 318 841	Total Singletons predicted lof 3.760m 559 260 1.966m 559 318 1.956m 559 389 3.763m 1.707k 581 1.786m - 260 1.979m 1.707k 319 5.550m 1.707k 840 3.775m 2.761k 580 1.767m - 255 2.009m 2.761k 326 5.541m 2.761k 835 3.732m 1.668k 573 1.783m - 253 1.783m - 253 3.738m 1.668k 573 1.783m - 253 1.802m - 253 1.802m - 263 1.937m 318 317 5.541m 318 841	Total Singletons Predicted Lof Monsynon 3.760m 559 1.535k 1.793m - 260 5.199k 1.936m 559 318 6.337k 1.93m - 260 5.199k 1.95mm 559 318 16.337k 5.553mm 559 839 16.732k 3.763mm 1.707k 581 11.533k 1.797m 1.707k 840 16.705k 5.550mm 1.707k 840 16.705k 3.775m 2.761k 580 11.539k 1.767m - 255 5.090k 2.009m 2.761k 326 6.456k 2.009m 2.761k 326 6.456k 5.541m 1.668k 583 11.333k 1.783m - 253 5.152k 1.949m 1.668k 583 16.526k 3.738m 318 579 11.394k 1.802m -	Total Singletons Predicted LoF Nonsynon Synon 3.760m 559 1.535k 12.478k 1.793m - 260 5.199k 5.934k 1.936m 559 318 6.337k 18.41k 1.93m - 260 5.199k 5.934k 5.553m 559 839 16.732k 18.41k 3.763m 1.707k 581 11.533k 12.522k 1.786m - 260 5.169k 5.903k 1.786m - 260 5.169k 5.903k 1.786m - 260 5.169k 5.903k 1.979m 1.707k 840 16.705k 18.423k 1.979m 1.761k 580 11.539k 12.539k 1.767m - 255 5.090k 5.8255k 2.009m 2.761k 326 6.436k 6.720k 5.54m 2.761k 326 6.436k 6.720k 5.54m <td< td=""><td>Total Singletons Predicted LoF Nonsymon Synon UTR 3.760m 559 579 11.535k 12.478k 24.595k 1.793m - 260 5.199k 5.934k 11.469k 1.793m - 260 5.199k 5.934k 11.429k 5.553m 559 839 16.732k 18.41k 36.067k 3.763m 1.707k 581 11.533k 12.522k 24.627k 1.979m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.541m 2.761k 880 11.539k 12.339k 24.619k 1.767m - 255 5.090k 5.825k 11.288k 2.009m 2.761k 835 16.635k</td><td>Total Singletons predicted Lofs Nonsymon Synon UTR Intron 3.760m 559 559 11.535k 12.478k 24.595k 1.913m 1.793m - 260 5.199k 5.934k 11.469k 910.943k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 1.793m 559 318 6.337k 6.546k 13.132k 1.002m 5.553m 559 839 16.732k 18.41k 36.067k 2.824m 3.763m 1.707k 581 11.533k 12.522k 24.627k 1.915m 1.786m - 260 5.169k <t>5.903k 11.419k 907.312k 1.979m 1.707k 840 16.705k 18.423k 36.045k 2.8227m 3.775m 2.761k 880 11.539k 12.539k 24.619k 1.920m 1.767m - 255 5.090k 5.8255k 11.288k 897.655k</t></td></td<>	Total Singletons Predicted LoF Nonsymon Synon UTR 3.760m 559 579 11.535k 12.478k 24.595k 1.793m - 260 5.199k 5.934k 11.469k 1.793m - 260 5.199k 5.934k 11.429k 5.553m 559 839 16.732k 18.41k 36.067k 3.763m 1.707k 581 11.533k 12.522k 24.627k 1.979m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.550m 1.707k 840 16.705k 18.423k 36.045k 5.541m 2.761k 880 11.539k 12.339k 24.619k 1.767m - 255 5.090k 5.825k 11.288k 2.009m 2.761k 835 16.635k	Total Singletons predicted Lofs Nonsymon Synon UTR Intron 3.760m 559 559 11.535k 12.478k 24.595k 1.913m 1.793m - 260 5.199k 5.934k 11.469k 910.943k 1.793m - 260 5.199k 5.934k 11.469k 910.943k 1.793m 559 318 6.337k 6.546k 13.132k 1.002m 5.553m 559 839 16.732k 18.41k 36.067k 2.824m 3.763m 1.707k 581 11.533k 12.522k 24.627k 1.915m 1.786m - 260 5.169k <t>5.903k 11.419k 907.312k 1.979m 1.707k 840 16.705k 18.423k 36.045k 2.8227m 3.775m 2.761k 880 11.539k 12.539k 24.619k 1.920m 1.767m - 255 5.090k 5.8255k 11.288k 897.655k</t>
singletons predicted ILoF 559 579 - 260 559 318 559 839 1.707k 581 - 260 1.707k 319 1.707k 840 2.761k 580 - 255 2.761k 326 2.761k 835 1.668k 573 1.668k 573 1.668k 319 1.668k 828 318 579 318 317 318 841	singletons predicted ILoF 559 579 - 260 559 318 559 839 1.707k 581 - 260 1.707k 319 1.707k 840 2.761k 580 - 255 2.761k 326 2.761k 835 1.668k 573 1.668k 573 1.668k 828 1.668k 828 1.668k 828 318 317 318 317 318 841	Singletons predicted Lof Nonsymon 559 1.1535k - 260 5.199k 559 318 6.337k 559 389 16.732k 1.707k 581 11.533k 1.707k 319 6.364k 1.707k 319 6.456k 2.761k 580 11.539k 2.761k 825 5.090k 2.761k 326 6.456k 2.761k 35 16.638k 1.668k 573 11.383k - 253 5.152k 1.668k 319 6.217k 1.668k 319 6.227k 318 579 11.394k - 2	singletons predicted LoF Nonsynon Synon 559 11.535k 12.478k - 260 5.199k 5.934k 559 318 6.337k 6.546k 559 318 6.337k 15.536k 559 389 16.732k 18.41k 1.707k 581 11.533k 12.522k 1.707k 319 6.364k 6.613k 1.707k 840 16.705k 18.423k 1.707k 840 11.539k 12.539k 2.761k 580 11.539k 12.539k 2.761k 326 6.456k 6.720k 2.761k 326 6.456k 6.720k 2.761k 326 6.456k 6.200k 2.761k 335 16.635k 18.339k 1.668k 573 11.383k 12.421k 1.668k 319 6.217k 6.571k 1.668k 319 6.217k 6.571k 1.668k	Singletons predicted Lof Nonsynon Synon UTR 559 159 11.535k 12.478k 24.595k - 260 5.199k 5.934k 11.499k 559 318 6.337k 6.546k 13.122k 559 318 6.337k 6.546k 13.122k 559 318 6.337k 6.543k 11.419k 1.707k 581 11.533k 12.522k 24.627k 1.707k 319 6.364k 6.613k 13.209k 1.1707k 840 16.705k 18.423k 36.045k 2.761k 840 16.705k 18.239k 24.619k 2.761k 326 6.456k 6.720k 13.316k 2.761k 335 16.635k 18.359k 35.925k 1.668k 335 16.635k 18.359k 35.925k 1.668k 319 6.217k 6.571k 13.314k 1.668k 319 6.217k 6.571k 13.14	Singletons predicted LoF Nonsynon Synon UTR Intron 559 1.535k 1.2478k 24.595k 1.913m 559 260 5.199k 5.934k 11.469k 910.943k 559 318 6.337k 6.546k 13.132k 1.002m 559 839 16.732k 18.41k 36.067k 2.824m 1.707k 581 11.533k 12.522k 24.627k 1.915m 1.707k 319 6.364k 6.613k 13.209k 1.008m 1.707k 840 16.705k 18.423k 36.045k 2.8227m 1.707k 840 16.505k 12.539k 24.619k 1.920m 2.761k 580 11.539k 12.539k 24.619k 1.920m 2.761k 326 6.456k 6.720k 13.316k 1.022m 2.761k 326 6.456k 6.720k 13.316k 1.022m 2.761k 332 16.635k 18.359k 35.92
predicted	predicted	predicted Nonsynon Lof 11.535k 579 11.535k 260 5.199k 318 6.337k 839 16.732k 581 11.533k 260 5.169k 319 6.364k 840 16.705k 255 5.090k 326 6.456k 835 16.638k 573 11.383k 253 5.152k 319 6.217k 828 16.526k 579 11.394k 263 5.207k 317 6.191k 841 16.618k	predicted LoF Nonsynon Synon LoF 11.535K 12.478K 579 11.535K 5.934K 318 6.337K 6.546K 839 16.732K 18.41K 581 11.533K 12.522K 260 5.169K 5.903K 319 6.364K 6.613K 480 11.539K 12.539K 580 11.539K 12.539K 255 5.909K 5.8255K 326 6.456K 6.720K 835 16.635K 18.359K 573 11.383K 12.421K 253 5.152K 5.850K 319 6.217K 6.571K 828 16.526K 18.276K 579 11.394K 12.416K 263 5.207K 5.958K 317 6.191K 6.457K 841 16.618K 18.380K	predicted Lof Nonsynon Synon UTR 579 11.535K 12.478K 24.595K 260 5.199K 5.934K 11.469K 318 6.337K 6.546K 13.132K 839 16.732K 18.41K 36.067K 840 5.934K 11.253K 12.522K 24.627K 580 11.539K 12.539K 24.619K 840 16.705K 18.423K 36.045K 580 11.539K 12.539K 24.619K 255 5.090K 5.8255K 11.288K 326 6.456K 6.720K 13.316K 835 16.635K 18.359K 35.925K 573 11.383K 12.421K 24.420K 253 5.152K 5.850K 11.335K 319 6.217K 6.571K 13.114K 828 16.526K 18.276K 35.749K 253 5.152K 5.850K 11.335K 319 6.217K 6.571K </td <td>predicted LoF Nonsynon Synon UTR Intron 579 11.535K 12.478K 24.595K 1.913m 260 5.199K 5.934K 11.469K 910.943K 339 16.732K 18.41K 36.667K 2.824m 581 11.533K 12.522K 24.627K 19.15m 260 5.169K 5.903K 11.419K 907.312K 319 6.364K 6.613K 13.209K 1.08m 840 16.705K 18.423K 36.045K 2.8227m 880 11.539K 12.539K 24.619K 1.920m 255 5.090K 5.8255K 11.288K 897.665K 326 6.456K 6.720K 13.316K 1.022m 835 16.635K 18.359K 35.925K 2.818m 573 11.388K 12.421K 24.420K 18.98m 573 11.384K 12.421K 24.420K 1.905m 253 5.152K 5.850K 11.35K<</td>	predicted LoF Nonsynon Synon UTR Intron 579 11.535K 12.478K 24.595K 1.913m 260 5.199K 5.934K 11.469K 910.943K 339 16.732K 18.41K 36.667K 2.824m 581 11.533K 12.522K 24.627K 19.15m 260 5.169K 5.903K 11.419K 907.312K 319 6.364K 6.613K 13.209K 1.08m 840 16.705K 18.423K 36.045K 2.8227m 880 11.539K 12.539K 24.619K 1.920m 255 5.090K 5.8255K 11.288K 897.665K 326 6.456K 6.720K 13.316K 1.022m 835 16.635K 18.359K 35.925K 2.818m 573 11.388K 12.421K 24.420K 18.98m 573 11.384K 12.421K 24.420K 1.905m 253 5.152K 5.850K 11.35K<
_	_	Nonsynon 11.535k 5.199k 6.337k 16.732k 11.533k 5.169k 6.364k 11.539k 5.090k 6.456k 11.539k 5.090k 6.456k 11.538k 5.152k 6.217k 16.526k 11.383k 5.152k 6.217k 6.217k 6.217k 6.526k	Nonsynon Synon 11.535k 12.478k 5.199k 5.934k 6.337k 6.546k 16.732k 18.41k 11.533k 12.522k 5.169k 5.903k 6.364k 6.613k 16.705k 18.423k 11.539k 12.539k 5.900k 5.8255k 6.456k 6.720k 16.635k 18.359k 11.383k 12.421k 5.152k 5.850k 6.217k 6.571k 16.526k 18.276k 11.394k 12.416k 5.207k 5.958k 6.191k 6.457k 16.618k 18.380k	Nonsynon Synon UTR 11.535k 12.478k 24.595k 5.199k 5.934k 11.469k 6.337k 6.546k 13.132k 16.732k 18.41k 36.067k 11.533k 12.522k 24.627k 5.164k 6.613k 13.209k 6.564k 6.613k 13.209k 6.570k 18.423k 36.045k 11.539k 12.539k 24.619k 5.090k 5.8255k 11.288k 6.456k 6.720k 13.316k 16.635k 18.359k 35.925k 11.383k 12.421k 24.420k 5.152k 5.850k 11.335k 6.517k 6.571k 13.114k 16.526k 18.276k 35.749k 11.394k 12.416k 24.418k 5.207k 5.958k 11.485k 6.618k 18.359k 35.923k 6.618k 18.257k 21.2923k 11.394k 12.416k 24.418k	Nonsynon Synon UTR Intron 11.535k 12.478k 24.595k 1.913m 5.199k 5.934k 11.469k 910.943k 6.37k 6.546k 13.132k 1.002m 16.732k 18.41k 36.067k 2.824m 11.533k 12.522k 24.627k 1.915m 5.169k 5.903k 11.419k 907.312k 6.364k 6.613k 13.209k 1.008m 16.705k 18.423k 36.045k 2.8227m 11.539k 12.539k 24.619k 1.920m 5.090k 5.8255k 11.288k 897.665k 6.456k 6.720k 13.316k 1.022m 11.539k 12.421k 24.420k 1.898m 5.152k 5.850k 11.335k 907.572k 6.517k 6.577k 13.314k 907.572k 6.217k 6.578k 11.485k 907.594k 16.528k 12.416k 24.418k 1.903m 5.191k 6.45
	lonsynon 11.535k 5.199k 6.337k 16.732k 11.533k 5.169k 6.364k 11.539k 16.705k 11.539k 16.636k 11.539k 5.090k 6.456k 16.635k 11.388k 5.152k 6.456k 11.383k 5.152k 6.456k 11.383k 5.152k 6.5152k 6.217k 6.217k 6.217k 6.217k 6.217k		\$ynon 12.478k 5.934k 6.546k 18.41k 12.522k 5.903k 6.613k 18.423k 12.539k 5.8255k 6.720k 18.359k 12.421k 5.855k 6.571k 18.359k 12.421k 5.850k 6.571k 18.276k 18.276k 6.457k 18.380k	Synon UTR 12.478k 24.595k 5.934k 11.469k 6.546k 13.132k 18.41k 36.067k 12.522k 24.627k 5.903k 11.419k 6.613k 13.209k 18.423k 36.045k 12.539k 24.619k 5.8255k 11.288k 6.720k 13.316k 18.359k 35.925k 12.421k 24.420k 5.850k 11.335k 6.571k 13.114k 18.276k 35.749k 12.416k 24.418k 5.958k 11.485k 6.457k 12.923k 13.80k 35.893k 13.454h 13.454k	Synon UTR Intron 12.478k 24.595k 1.913m 5.934k 11.469k 910.943k 6.546k 13.132k 1.002m 18.41k 36.067k 2.824m 12.522k 24.627k 1.915m 5.903k 11.419k 907.312k 6.613k 13.209k 1.008m 18.423k 36.045k 2.8227m 12.539k 24.619k 1.920m 5.8255k 11.288k 897.655k 6.720k 13.316k 1.022m 18.359k 35.925k 2.818m 12.421k 24.420k 1.898m 5.850k 11.335k 907.572k 6.571k 13.114k 990.794k 18.276k 35.749k 2.806m 12.418k 1.903m 5.925k 6.571k 13.114k 990.794k 18.276k 35.749k 2.806m 12.418k 1.903m 5.925k 2.586k 2.2818m 5.893k 2

Supplementary Table 6. FKi statistics.

Population	Median (FKi)	Maximum (FKi)
FIK/FIG	-0.014	0.618
GRM/GRG	-0.025	0.256
IF1/ITG	-0.045	0.882
IF2/ITG	-0.036	0.804
IF3/ITG	-0.041	0.851
IF4/ITG	-0.031	0.834
IVB/ITG	-0.003	0.026
UKO/UKG	-0.023	0.252

FKi median and maximum values for each isolate compared with its general population, using K=8 in the ADMIXTRUE analysis

Supplementary Table 7. Divergence time of each isolate from its closest general population estimated using the LD-based method.

Isolate	Time of divergence from the closest general population (generations)	CI (5 th - 95 th percentile)
FIK	26	25-28
GRM	40	38-44
IF1	154	144-164
IF2	137	127-146
IF3	159	148-170
IF4	176	166-188
IVB	18	17-19
UKO	21	18-22

The divergence times estimated from LD have large uncertainties, but we see that FIK, GRM and IVB diverged from their closest general population more recently than the four north Italian isolates, IF1, IF2, IF3 and IF4. In particular, the divergence time of FIK from FIG around 26 generations ago (750 years) fits the historical divergence time of mid-16th century.

Supplementary Table 8. Demographic parameters and *Isx* values for each isolate

Isolated population	Tdg in generations (5-95 th percentile)	M	Long-term <i>Ne</i> (5-95 th percentile)	Isx (5-95 th percentile)
FIK	26 (25-28)	0.71	4226 (3972-4399)	1.41(1.39-1.42)
GRM	40 (38-44)	0.42	6242 (6011-6907)	1.28 (1.25-1.30)
IF1	154 (144-164)	0.99	3806 (3529-4075)	1.73 (1.70-1.75)
IF2	137 (127-146)	0.99	3960 (3595-4271)	1.71(1.68-1.73)
IF3	159 (148-170)	0.99	3656 (3289-3939)	1.74 (1.71-1.77)
IF4	176 (166-188)	0.91	3390 (3158-3634)	1.75 (1.72-1.77)
IVB	18 (17-19)	0.31	6439 (5955-6711)	1.11 (1.09-1.12)
UKO	21(18-22)	0.37	5592 (5248-5990)	1.18 (1.15-1.20)

As each isolate has a different demographic history, isolation levels are different. IF1, IF2, IF3 and IF4 are the most isolated populations with the highest Isx values, while IVB is the least isolated one with the lowest Isx. The highest Isx values reflect a combination of smaller Ne, longer isolation time and lower migration between the isolate and its general population.

Supplementary Table 9. Characteristics of each haplotype class.

Class	Description	Mean (kb)	Standard Deviation (kb)
1	short	7.1	6.6
2	medium-short	44.1	14.8
3	medium-long	118.9	32.3
4	long	310.2	116.2

Supplementary Table 10. Summary of haplotype features in the populations studied.

Population	Total N. haplotype	Mean length (kb)	Mann- Whitney p- value	Median (kb)	5 th -95 th percentile (kb)	Fraction of class 1 haplotype	Fraction of class 2 haplotype	Fraction of class 3 haplotype	Fraction of class 4 haplotype
FIK	49,693	19.45	< 0.0001	7.92	0.33-75.81	0.7826	0.1579	0.0390	0.0048
FIG	49,643	18.57	n.a.	7.51	0.30-72.16	0.7910	0.1696	0.0355	0.0040
GRM	48,771	17.61	0.009117	7.07	0.31-68.62	0.8054	0.1736	0.0331	0.0036
GRG	48,661	17.12	n.a	6.83	0.29-67.83	0.8095	0.1547	0.0325	0.0032
IF1	49,986	19.73	< 0.0001	8.07	0.34-77.26	0.7790	0.1764	0.0399	0.0047
IF2	49,851	19.79	< 0.0001	8.02	0.32-77.64	0.7788	0.1756	0.0408	0.0048
IF3	49,957	20.01	< 0.0001	8.11	0.33-78.42	0.7744	0.1788	0.0419	0.0049
IF4	49,657	20.64	< 0.0001	8.31	0.35-79.69	0.7688	0.1833	0.0422	0.0058
IVB	48,570	17.55	0.5179	7.02	0.30-69.16	0.8048	0.1593	0.0322	0.0037
ITG	48,371	17.63	n.a	7.03	0.29-68.69	0.8048	0.1587	0.0327	0.0038
UKO	49,295	18.03	0.02151	7.44	0.31-72-34	0.7952	0.1649	0.0363	0.0035
UKG	49,062	17.98	n.a	7.26	0.30-69.72	0.7979	0.1648	0.0334	0.0038

The average haplotype length in the isolates IF1, IF2, IF3, IF4 and FIK is significantly longer than in their general populations ITG and FIG, but no difference was observed between GRM, IVB and UKO and their general populations GRG, ITG and UKG. The proportion of different classes of haplotypes in IF1, IF2, IF3, IF4 and FIK are also substantially different from in their general populations: ITG and FIG, in particular, have a higher proportion of shorter haplotypes. No difference between GRM, IVB and UKO and their general populations GRG, ITG and UKG was found. These results again suggest that IF1, IF2, IF3, IF4 and FIK are more isolated that the other isolates.

Supplementary Table 11. Pairwise correlation coefficients (Person's correlation coefficient, r)

	Isx	$F_{ m ST}$	F	ROH (1.0 Mb)	Haplotype -length	Dvxy- coding
$\overline{F_{ m ST}}$	0.975					
F	0.969	0.901				
ROH						
(1.0 Mb)	0.992	0.948	0.955			
Haplotype-						
length	0.918	0.866	0.977	0.941		
Dvxy-						
coding	0.801	0.772	0.859	0.787	0.848	
SVxy	0.912	0.901	0.905	0.920	0.929	0.72

Supplementary Table 12. Rxy statistics.

Population			Rxy -variants with	Rxy -variants with
pair	Rxy - missense	Rxy -LoF	CADD>10	CADD>20
FIK-FIG	1.007 (1.002-1.013)	0.991 (0.967-1.014)	1.000 (0.999-1.000)	0.998 (0.995-1.002)
GRM-GRG	1.017 (1.005-1.029)	1.047 (0.993-1.102)	1.011 (1.010-1.013)	1.011 (1.005-1.016)
GRM-ITG	-	-	1.000 (0.999-1.002)	0.996 (0.991-1.000)
IF1- ITG:60	0.983 (0.972-0.995)	1.005 (0.954-1.057)	0.995 (0.993-0.997)	0.988 (0.981-0.995)
IF2- ITG:45	0.989 (0.978-1.000)	0.963 (0.910-1.016)	0.993 (0.991-0.995)	0.985 (0.978-0.992)
IF3- ITG:47	0.984 (0.973-0.996)	0.979 (0.926-1.032)	0.995 (0.993-0.997)	0.988 (0.980-0.995)
IF4- ITG:36	0.982 (0.969-0.995)	0.966 (0.910-1.022)	0.992 (0.990-0.995)	0.988 (0.980-0.997)
IVB-ITG	0.971 (0.717-1.227)	1.000 (0.967-1.033)	0.993 (0.992-0.994)	0.986 (0.982-0.990)
UKO-UKG	1.009 (1.003-1.016)	1.019 (0.984-1.055)	1.003 (1.002-1.004)	1.004 (1.001-1.008)

Overall, we did not find any isolate that showed a significantly higher genetic burden for either *Rxy-missense* or *Rxy-LoF* variants, although we see a marginally lower genetic burden for missense variants in IF1, IF3 and IF4. *Rxy* using variants with CADD scores greater than 10 and 20 should increase statistical power, since we include a larger set of genome-wide functional variants. We also failed to find convincing evidence to support higher or lower genetic loads in the isolates. These results are consistent with previous studies, as the genetic load is affected by both population demography and selection²¹.

Supplementary Table 13. *DVxy-coding* statistics in each population. The value at the top of each cell is the median and below in brackets are the 95th percentiles. Coding DVs are missense plus LoF variants.

Populatio n	No. of missense DVs	No. of coding DVs	No. of intergenic DVs	DVx- missense	DVx- coding	DVxy - missense	DVxy – coding
FIK	694	724	42662	1.27	1.28	1.14	1.14
	(657-735) 610	(663-772) 626	(39870-45600) 42459	(1.25-1.30) 1.12	(1.25-1.32)	(1.10-1.20) 0.88	(1.10-1.20) 0.87
FIG	(553-644)	(573-667)	(38294-45351)	(1.07-1.15)	(1.08-1.17)	(0.83-0.91)	(0.83-0.91)
GRM	1053	1084	75156	1.20	1.2	1.02	1.02
	(984-1111)	(1014-1153)	(70312-79977)	(1.17-1.22)	(1.17-1.21)	(1-1.05)	(0.99-1.04)
GRG	1176	1200	84491	1.18	1.18	0.98	0.98
	(1091-1242)	(1116-1254)	(80696-90914)	(1.15-1.20)	(1.15-1.2)	(0.96-1.00)	(0.96-1.01)
IF1	2020	2086	123238	1.33	1.31	1.24	1.24
	(1666-2113)	(1726-2170)	(108383-131977)	(1.3-1.35)	(1.29-1.33)	(1.22-1.27)	(1.21-1.27)
IF2	2345	2414	139062	1.29	1.29	1.17	1.16
	(1969-2461)	(2053-2528)	(121300-147611)	(1.27-1.3)	(1.28-1.30)	(1.15-1.18)	(1.15-1.18)
IF3	1868	1926	109618	1.32	1.32	1.21	1.22
	(1596-1961)	(1607-2019)	(94308-116039)	(1.31-1.34)	(1.31-1.34)	(1.2-1.23)	(1.20-1.24)
IF4	1600	1655	99244	1.28	1.28	1.18	1.18
	(1344-1666)	(1392-1740)	(87929-105109)	(1.26-1.3)	(1.26-1.3)	(1.16-1.21)	(1.16-1.21)
IVB	814	850	52765	1.29	1.31	1.06	1.08
	(743-862)	(784-897)	(48339-55892)	(1.27-1.32)	(1.29-1.33)	(1.03-1.09)	(1.05-1.12)
ITG_IF1	1903	1948	159276	1.07	1.08	0.81	0.81
	(1786-2004)	(1850-2039)	(145544-168162)	(1.06-1.09)	(1.06-1.09)	(0.79-0.82)	(0.79-0.82)
ITG_IF2	2784	2860	209247	1.10	1.11	0.86	0.86
	(2645-2938)	(2755-3038)	(192533-222310)	(1.10-1.12)	(1.1-1.12)	(0.85-0.87)	(0.85-0.87)
ITG_IF3	2696	2768	201718	1.09	1.09	0.82	0.82
	(2555-2825)	(2607-2910)	(189391-213989)	(1.08-1.10)	(1.08-1.10)	(0.81-0.83)	(0.81-0.83)
ITG_IF4	2198	2240	169550	1.08	1.08	0.85	0.85
	(2072-2305)	(2112-2360)	(158619-182002)	(1.06-1.09)	(1.06-1.10)	(0.83-0.86)	(0.83-0.86)
ITG_IVB	672	674	47913	1.21	1.21	0.94	0.93
	(609-700)	(614-717)	(44727-51476)	(1.19-1.25)	(1.18-1.23)	(0.91-0.97)	(0.89-0.95)
UKO	482	486	30663	1.28	1.29	1.14	1.11
	(436-506)	(440-516)	(28650-32864)	(1.24-1.31)	(1.27-1.33)	(1.09-1.19)	(1.07-1.17)
UKG	383	398	28584	1.13	1.15	0.88	0.90
	(340-401)	(349-419)	(26464-30568)	(1.08-1.16)	(1.1-1.18)	(0.84-0.92)	(0.85-0.94)

Supplementary Table 14. *DVxy-wg* statistics for each population. The value at the top of each cell is the median and below in brackets are the 95th percentiles.

Population s	%. of DV CADD 0-5	% of DV CADD 5-10	%. of DV CADD 10-20	%. of DV CADD >20	DVxy CADD 0-5	DVxy CADD 5- 10	DVxy CADD 10- 20	DVxy CADD >20
FIK	76.59	15.62	6.68	1.10	0.991	1.014	1.021	1.387
	(76.3-	(15.52-	(6.58-	(1.05-1.15)	(0.986-	(0.999-	(0.987-	(1.266-
	76.83)	15.75)	6.82)		0.998)	1.035)	1.048)	1.509)
FIG	77.36	15.36	6.55	0.81	1.009	0.986	0.979	0.721
	(77.12-	(15.24-	(6.41-	(0.76 - 0.85)	(1.002-	(0.966-	(0.954-	(0.663 - 0.79)
	77.48)	15.52)	6.67)		1.014)	1.001)	1.013)	
GRM	77.67	15.37	6.18	0.81	1.000	1.008	1.025	1.081
	(77.49-	(15.27-	(6.10-	(0.78 - 0.84)	(0.997-	(0.996-	(1.005-	(0.996-
	77.84)	15.46)	6.23)		1.005)	1.017)	1.052)	1.121)
GRG	77.39	15.39	6.03	0.75	1.000	0.992	0.975	0.925
	(77.17-	(15.27-	(6.02-	(0.73 - 0.79)	(0.995-	(0.983-	(0.95-	(0.901-
	77.54)	15.51)	6.06)		1.003)	1.004)	0.995)	1.017)
IF1	76.54	15.76	6.7	1.00	0.989	1.012	1.058	1.354
	(76.35-	(15.63-	(6.58-	(0.96-1.03)	(0.985-	(0.998-	(1.028-	(1.261-
	76.81)	15.85)	6.77)		0.995)	1.022)	1.081)	1.439)
IF2	76.71	15.65	6.66	1.01	0.994	1.006	1.027	1.211
	(76.5-	(15.48-	(6.60-	(0.96-1.04)	(0.991-	(0.987-	(1.004-	(1.154-
	76.92)	15.76)	6.72)		1.000)	1.014)	1.049)	1.295)
IF3	76.77	15.53	6.74	0.99	0.993	1.004	1.045	1.166
	(76.49-	(15.35-	(6.61-	(0.95-1.04)	(0.990-	(0.993-	(1.019-	(1.089-1.27)
	77.08)	15.65)	6.82)		0.998)	1.014)	1.066)	
IF4	76.78	15.68	6.56	0.95	0.994	1.011	1.022	1.180
	(76.65-	(15.36-	(6.45-	(0.92 - 0.98)	(0.990-	(0.989-	(0.994-	(1.120-
II ID	77.26)	15.77)	6.67)	0.00	1.001)	1.022)	1.048)	1.267)
IVB	77.18	15.42	6.49	0.92	1.000	0.976	1.045	1.095
	(76.97-	(15.27-	(6.40-	(0.87 - 0.98)	(0.997-	(0.959-	(1.016-	(1.018-
ITC IE1	77.42)	15.52)	6.58)	0.74	1.005)	0.986)	1.077)	1.191)
ITG_IF1	77.33	15.57	6.34		1.011	0.989	0.974	0.825
	(77.13-	(15.48-	(6.30- 6.42)	(0.72 - 0.77)	(1.005-	(0.978-	(0.954-	(0.772-
ITC IE2	77.44) 77.19	15.71) 15.53	6.46	0.82	1.015) 1.006	1.002) 0.994	0.996) 0.945	0.866) 0.739
ITG_IF2	(77.07-	(15.5-15.58)	(6.38-	(0.78-0.84)	(1.000-	(0.986-	(0.925-	(0.695-
	77.28)	(13.3-13.36)	6.55)	(0.78-0.84)	1.000-	1.014)	0.923	0.793)
ITG IF3	77.28)	15.48	6.48	0.86	1.009)	0.996	0.973)	0.793)
110_113	(76.97-	(15.44-	(6.41-	(0.83-0.89)	(1.002-	(0.987-	(0.938-	(0.787-
	77.31)	15.58)	6.56)	(0.03-0.07)	1.010)	1.007)	0.981)	0.918)
ITG IF4	77.07	15.58	6.51	0.82	1.006	0.989	0.978	0.848
110_114	(76.86-	(15.42-	(6.39-	(0.79-0.85)	(0.999-	(0.979-	(0.955-	(0.789-
	77.36)	15.68)	6.61)	(0.77-0.03)	1.011)	1.011)	1.006)	0.893)
ITG_IVB	77.3	15.77	6.15	0.81	1.000	1.025	0.957	0.914
110_111	(77.08-	(15.64-	(6.11-	(0.79-0.84)	(0.995-	(1.014-	(0.929-	(0.840-
	77.4)	15.87)	6.30)	(0.77 0.04)	1.003)	1.043)	0.984)	0.982)
UKO	76.79	15.75	6.49	0.94	0.993	1.019	1.016	1.205
2110	(76.54-	(15.57-	(6.41-	(0.87-1.01)	(0.989-	(1.006-	(0.991-	(1.089-
	77.07)	15.89)	6.65)	(5.5. 1.51)	0.997)	1.034)	1.035)	1.294)
UKG	77.38	15.45	6.38	0.78	1.007	0.981	0.984	0.830
2120	(77.14-	(15.22-	(6.30-	(0.74-0.82)	(1.003-	(0.967-	(0.966-	(0.773-
	77.63)	15.59)	6.55)	, ,	1.011)	0.994)	1.009)	0.918)

Supplementary Table 15. G_{SV} and SVxy statistics in each pair of populations.

				Total				percentage of the				
			Total	number of	percentage of the	percentage of the	percentage of the	non-essential				
		Total	number of	non-	essential genes	non-essential	essential genes with	genes with SV>1				
		number of	essentail	essentail	with SV>1 in	genes with SV>1 in	SV>1 in general	in general		Gsv_general		
Population pairs	Isx	genes	genes	genes	isolates	isolates	population	population	Gsv_isolates	population	Mean_SVxy	SD_SVxy
FIK_FIG	1.41	2957	271	2609	0.76	0.75	0.66	0.72	1.01	0.92	1.134	0.061
GRM_GRG	1.28	3131	308	2823	0.75	0.71	0.69	0.71	1.06	0.97	1.016	0.063
IF1_ITG	1.73	2473	231	2242	0.79	0.77	0.68	0.72	1.03	0.94	1.403	0.103
IF2_ITG	1.71	2757	264	2493	0.78	0.76	0.68	0.72	1.03	0.94	1.321	0.085
IF3_ITG	1.74	2624	251	2373	0.82	0.78	0.64	0.71	1.05	0.90	1.464	0.114
IF4_ITG	1.75	2550	253	2297	0.72	0.77	0.69	0.71	0.94	0.97	1.327	0.085
IVB_ITG	1.11	3953	387	3566	0.72	0.72	0.68	0.71	1.00	0.96	1.108	0.062
UKO UKG	1.18	3540	357	3183	0.72	0.73	0.67	0.72	0.99	0.93	1.012	0.049

The isolates showed a higher proportion of essential genes with SV >1 relative to non-essential ones, compared with their general populations. The distribution of Gsv scores in the isolates is significantly different from the scores in the general populations (Mann-Whitney U test, p value = 0.0039) with relatively higher values of Gsv in the isolates. The SVxy statistics are significantly greater than 1 for FIG and four Italian isolates, IF1, IF2, IF3 and IF4, but not for GRM, IVB and UGO, which could be due to the separate calling method for the GRG and sample ascertainment for all three. Overall, both *Gsv* and *SVxy* statistics suggest a relaxation of purifying selection in the isolates.

Supplementary Table 16. Summary of numbers of highly differentiated sites in the isolates.

				PCadapt outlier with	Pcadapt outlier with	Pcadapt outlier with
	DeltaDA	F DeltaDAF	DeltaDAF	deltaDAF	deltaDAF	deltaDAF
	≥0.5	≥0.4	≥0.3	≥0.5	≥0.4	≥0.3
FIG-FIK	0	0	1	0	0	0
GRG-GRM	0	0	0	0	0	0
ITG-IF1	6	28	52	0	23	119
ITG-IF2	1	17	52	0	16	204
ITG-IF3	4	36	54	0	26	249
ITG-IF4	6	49	54	0	57	516
ITG-IVB	3	8	22	0	0	0
UKG-UKO	35	45	52	0	4	6

We identified in total 47, 170 and 249 unique HighD sites in the eight isolates with deltaDAF greater than or equal to 0.5, 0.4 and 0.3, respectively. We did not find any sites in the FIK with deltaDAF greater than 0.5 and only one site with deltaDAF greater than 0.3, which reflects the recent divergence from FIG. The UKO showed the highest number of HighD sites with deltaDAF \geq 0.5. However, of the sites with deltaDAF \geq 0.5, 42 of 47 lie in segmental duplication regions, or other repeat regions, which are likely artifacts. However, one of the other five is the well-known lactose tolerance SNP (rs4988183) in IF1 compared with ITG. IF1's ancestral population is from north Europe, so this is likely to represent a site selected between north and south European populations, rather than IF1-specific selection. We failed to find compelling biological evidence for positive selection at the other four sites.

Supplementary Table 17. Overlap between highly differentiated sites from both HighD analyses and PCAdapt. The highlighted variants are the ones shared among IF2, IF3 and IF4.

	POP-pair	SNP	CHR	Location	Ancestral_allele	Derived_allele	General_DAF	Isolate_DAF	Delta_DAF	HGNC symbol	Consequence	CADD score
	IF1-ITG	rs112863601	2	208802168	С	T	0.311	0.717	0.405	PLEKHM3	intron_variant	2.454
	IF1-ITG	rs9828592	3	33044339	T	С	0.491	0.875	0.384	GLB1	intron_variant	2.785
	IF1-ITG	rs1398759	3	124888905	G	С	0.434	0.817	0.383	SLC12A8	intron_variant	1.764
	IF1-ITG	rs1789693	11	74887165	Α	T	0.250	0.708	0.458	SLCO2B1	intron_variant	7.651
	IF1-ITG	rs28520541	12	121997478	Α	G	0.208	0.575	0.368	KDM2B	intron variant	6.89
	IF1-ITG	rs2389240	13			С	0.250	0.625	0.375	CLDN10-AS1	<u>−</u> .	3.996
	IF1-ITG	rs3843738	17	43739194	Α	G	0.316	0.683	0.367	RP11-105N13.4		8.144
	IF1-ITG	rs55893840	17	71000371	Α	G	0.255	0.717	0.462	SLC39A11		0.382
	IF2-ITG		1			С	0.415		0.418		_	0.195
			2								_	1.049
						Т					_	0.024
											_	4.403
F2-17G F3-1966S0597 \$3,9002471 G T \$0,401 \$0,878 \$0,477 \$-\$ intergenic_variant F1-217G F3-12789966 \$11 \$9,0041999 \$A \$G \$0,288 \$0,711 \$0,423 \$CNTS intron_variant F1-217G F3-19789966 \$17 \$43,095815 \$C \$T \$0,170 \$0,611 \$0,441 \$CTD-2540LS.6 \$non_coding_transcript_variant F1-217G F3-395686 \$17 \$43,0958 \$17 \$43,0958 \$17 \$43,0958 \$17 \$43,0958 \$17 \$43,0958 \$17 \$10,00371 \$18,00071 \$1												
F2-TFG F31789966 11 99041999 A G 0.288 0.711 0.423 CNTNS intron_variant F12-FTG F31030552 14 71085815 C T 0.170 0.611 0.441 CTD-2540L5.6 non_coding_transcript_variant F12-FTG F34956586 17 4430958 T C 0.283 0.722 0.439 SPNS2 intron_variant F12-FTG F35893840 17 71000371 A G 0.255 0.633 0.379 SC139411 intron_variant F12-FTG F31391086 2 29615864 C T 0.028 0.436 0.408 ALK intron_variant F12-FTG F31493927 3 19340911 C T 0.316 0.745 0.429 KCNH8 intron_variant F12-FTG F3497937 7 50907588 C A 0.349 0.766 0.417 KBTBD8 downstream_gene_variant F12-FTG F335587464 8 121924092 C T 0.274 0.670 0.397 R911-369K17.1 upstream_gene_variant F12-FTG F3152947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant F12-FTG F3103552 14 7108815 C T 0.170 0.617 0.447 CTD-2540L5.6 non_coding_transcript_variant F12-FTG F3119141 16 84437223 T C 0.406 0.798 0.392 ATP2C2 intron_variant F12-FTG F31533306 17 71000371 A G 0.255 0.596 0.341 SC139411 intron_variant F12-FTG F31533306 21 41157658 C G 0.215 0.660 0.447 ACS52 intron_variant F12-FTG F31393086 2 29615864 C T 0.387 0.486 0.447 ACS52 intron_variant F12-FTG F31393086 2 29615864 C T 0.387 0.847 0.460 ACM49 ACS52 intron_variant F12-FTG F3249340 2 53466691 G T 0.387 0.847 0.460 ACM49 ACS52 intron_variant F12-FTG F3249340 2 53466691 G T 0.387 0.447 0.460 ACM49 ACS52 intron_variant F12-FTG F3249340 2 53466691 G T 0.387 0.440 ACS 2 intron_variant F12-FTG F3249340 2 53466691 G T 0.387 0.440 ACS 2 intron_variant F12-FTG F3249340 2 53466691 G T 0.387 0.440 ACS 2 intron_variant F12-FTG F3475409 7 83621932 T C 0.360 0.597 0.440 ACS 2 intron_variant												0.218
IF2-ITG F31030552 14 71085815 C T 0.170 0.611 0.441 CTD_2540L5.6 non_coding_transcript_variant IF2-ITG F33495686 17 4745058 T C 0.283 0.722 0.439 SPNS2 Intron_variant IF3-ITG F31391086 2 29615864 C T 0.028 0.436 0.408 ALK Intron_variant IF3-ITG F31493927 3 19340911 C T 0.316 0.745 0.229 KCNH8 Intron_variant IF3-ITG F3459575 3 67061960 G A 0.349 0.766 0.417 KBTBDB downstream_gene_variant IF3-ITG F3459797 7 50907588 C A 0.344 0.840 0.496 AC004920.3 non_coding_transcript_variant IF3-ITG F35587464 B 121924092 C T 0.274 0.670 0.397 RP11-369K17.1 May a price P3-1TG F315587464 B 121924092 C T 0.274 0.670 0.397 RP11-369K17.1 May a price P3-1TG F3155947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant IF3-ITG F3155947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant IF3-ITG F3155947 12 119456896 C T 0.184 0.670 0.487 CTD_2540L5.6 non_coding_transcript_variant IF3-ITG F3155947 12 119456896 C T 0.170 0.617 0.447 CTD_2540L5.6 non_coding_transcript_variant IF3-ITG F3155336 14 71005371 A G 0.255 0.650 0.341 SLG39411 intron_variant IF3-ITG F3153336 14 1375658 C G 0.203 0.638 0.436 IGSF5 intron_variant IF3-ITG F34194 2 153466691 G T 0.387 0.847 0.460 MNIL2 intron_variant IF4-ITG F3329027 1 47982652 A G 0.175 0.553 0.847 0.400 MNIL2 intron_variant IF4-ITG F342602 6 6165468 T C 0.156 0.597 0.442 RP11-138117.1 non_coding_transcript_variant IF4-ITG F342602 6 6165468 T C 0.156 0.597 0.442 RP11-138117.1 non_coding_transcript_variant IF4-ITG F3426386 8 315312 C A 0.231 0.708 0.477 CMD Intron_variant IF4-ITG F3426386 8 315312 C A 0.231 0.708 0.477 CMD Intron_variant IF4-ITG F3498407 10 0.005202 G A 0.198 0.639										CNTN5		1.274
											_	
IF2-ITG F55893840 17 71000371 A G 0.255 0.633 0.379 SLC39A11 intron_variant IF3-ITG F13391086 2 29615864 C T 0.028 0.436 0.408 ALK Intron_variant Intron_variant IF3-ITG F1493927 3 19340911 C T 0.316 0.745 0.429 KCNH8 Intron_variant IF3-ITG F5649575 3 67061960 G A 0.349 0.766 0.417 KBTBD8 downstream_gene_variant IF3-ITG F58497937 7 50907588 C A 0.344 0.670 0.397 RP11-369K17.1 upstream_gene_variant IF3-ITG F335587464 8 121924092 C T 0.274 0.670 0.397 RP11-369K17.1 upstream_gene_variant IF3-ITG F3304148 12 10870231 T C 0.226 0.617 0.391 VBX3 intron_variant IF3-ITG F31559947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant IF3-ITG F31030552 14 71085815 C T 0.170 0.617 0.447 CTD-254015.6 non_coding_transcript_variant IF3-ITG F55593840 17 71000371 A G 0.255 0.596 0.341 SLG39A11 intron_variant IF3-ITG F55593840 17 71000371 A G 0.255 0.596 0.341 SLG39A11 intron_variant IF3-ITG F5719508 20 33487278 T C 0.212 0.660 0.447 ACSS2 intron_variant IF3-ITG F5719508 21 41956552 A G 0.175 0.553 0.379 DIP2A intron_variant IF3-ITG F53391806 2 29615864 C T 0.028 0.431 0.402 ALK intron_variant IF4-ITG F534194 2 153466691 G T 0.387 0.849 0.440 RPI1-38I17.1 non_coding_transcript_variant IF4-ITG F544569386 8 3515312 C A 0.245 0.667 0.441 SRM34 intron_variant IF4-ITG F549386 8 3515312 C A 0.231 0.709 0.667 0.441 IPMK intron_variant IF4-ITG F549386 8 3515312 C A 0.231 0.667 0.441 IPMK intron_variant IF4-ITG F549386 8 3515312 C A 0.231 0.709 0.667 0.441 IPMK intron_variant IF4-ITG F549386 8 3515312 C A 0.231 0.709 0.667 0.441 IPMK intron_variant IF4-ITG F549386 8 3515312 C A 0.231 0.709 0.667 0.441 IPMK intron_												4.955
IF3-ITG rs13391086 2											_	0.382
F3-ITG F31493927 3 19340911 C T 0.316 0.745 0.429 KCNH8 intron_variant International I											_	1.049
F3-ITG F36549575 3 67061960 G A 0.349 0.766 0.417 KBTBD8 downstream_gene_variant IF3-ITG F3947937 7 50907588 C A 0.344 0.840 0.496 AC00492.0 non_coding_transcript_variant F3-ITG F35587464 8 121924092 C T 0.274 0.670 0.397 RP11-369K17.1 upstream_gene_variant IF3-ITG F37304148 12 10870231 T C 0.226 0.617 0.391 YBX3 intron_variant IF3-ITG F31525947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant IF3-ITG F3119141 16 84437223 T C 0.406 0.798 0.392 ATP2C2 intron_variant IF3-ITG F355893840 T 7 1000371 A G 0.255 0.596 0.341 SLC39A11 intron_variant IF3-ITG F355893840 T 7 1000371 A G 0.255 0.596 0.341 SLC39A11 intron_variant IF3-ITG F355893840 T 7 1000371 A G 0.255 0.596 0.341 SLC39A11 intron_variant IF3-ITG F355893840 T 7 1000371 A G 0.255 0.596 0.341 SLC39A11 intron_variant IF3-ITG F3574950 20 33487278 T C 0.212 0.660 0.447 ACSS2 intron_variant IF3-ITG F35839327 1 47792652 A G 0.175 0.553 0.379 DIP2A intron_variant IF4-ITG F353391086 2 29615864 C T 0.028 0.431 0.402 ALK intron_variant IF4-ITG F3313813 4 137859741 G C 0.113 0.597 0.442 RP11-13817.1 non_coding_transcript_variant IF4-ITG F344602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG F344602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG F344604 7 83621932 T C 0.245 0.667 0.421 SEM3Aa intron_variant IF4-ITG F344602 6 6165468 T C 0.245 0.667 0.421 SEM3Aa intron_variant IF4-ITG F344602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG F344602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG F344602 6 6165468 T C 0.245 0.667 0.421 0.708 0.477 C 0.421											_	
F3-ITG											_	1.357
F3-ITG												3.003
F3-HTG												2.682
F3-ITG												3.961
F3-ITG F											_	10.07
F3-ITG											_	3.787
F3-ITG												
F3-ITG											_	1.02
F3-ITG F51153336 21											_	0.382
F3-ITG rs2839327 21 47982652 A G G G G G G G G G											_	1.417
F4-ITG r513391086 2 29615864 C T 0.028 0.431 0.402 ALK intron_variant IF4-ITG r56734194 2 153466691 G T 0.387 0.847 0.460 FMNL2 intron_variant IF4-ITG r53020453 3 39325523 T C 0.113 0.597 0.484 CX3CR1 upstream_gene_variant IF4-ITG r53113813 4 137859741 G C 0.156 0.597 0.442 RP11-138117.1 non_coding_transcript_variant IF4-ITG r5434602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG r54475409 7 83621932 T C 0.245 0.667 0.421 SEMA3A intron_variant IF4-ITG r52469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant IF4-ITG r57092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant IF4-ITG r511222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant IF4-ITG r5199984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant IF4-ITG r51030552 14 71085815 C T 0.170 0.667 0.497 CTD-2540L5.6 non_coding_transcript_variant IF4-ITG r5191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG r5483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG r5483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG r54956586 17 4430958 T C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG r5483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG r5483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG r5483293 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant Intron_variant IF4-ITG r555893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant IF4-ITG IF4-ITG r555893840 17 71000371 A G 0.255 0.255 0.370 SLC39A11 intron_variant IF4-ITG IF4-ITG r555893840 17 71000371 A G											_	1.322
F4-ITG F56734194 2 153466691 G T 0.387 0.847 0.460 FMNL2 intron_variant IF4-ITG F3020453 3 39325523 T C 0.113 0.597 0.484 CX3CR1 upstream_gene_variant IF4-ITG F3113813 4 137859741 G C 0.156 0.597 0.442 RP11-138117.1 non_coding_transcript_variant IF4-ITG F3434602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant IF4-ITG F3475409 7 83621932 T C 0.245 0.667 0.421 SEMA3A intron_variant IF4-ITG F32469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant IF4-ITG F37092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant IF4-ITG F311222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant IF4-ITG F3199984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant IF4-ITG F31030552 14 71085815 C T 0.170 0.667 0.497 CTD-2540L5.6 non_coding_transcript_variant IF4-ITG F38037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant IF4-ITG F391732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG F3483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG F3483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG F3483293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG F3483293 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant Intron_variant IF4-ITG F355893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant Intron_variant IF4-ITG F355893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant IF4-ITG F365586 T3 T4300527 T3 T4300527											_	0.634
F4-ITG											intron_variant	1.049
F4-ITG rs434602 6 6165468 T C C C C C C C C C											intron_variant	3.689
F4-ITG rs434602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant F14-ITG rs4475409 7 83621932 T C 0.245 0.667 0.421 SEMA3A intron_variant F14-ITG rs2469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant F14-ITG rs7092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant F14-ITG rs11222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant F14-ITG rs199984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant F14-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant F14-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant F14-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant F14-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant F14-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant												2.529
F4-ITG rs4475409 7 83621932 T C 0.245 0.667 0.421 SEMA3A intron_variant F4-ITG rs2469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant F4-ITG rs7092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant F4-ITG rs11222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant F4-ITG rs199984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant F4-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant F4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant F4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant F4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant F4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant			4	137859741	G						non_coding_transcript_variant	
F4-ITG rs2469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant IF4-ITG rs7092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant IF4-ITG rs11222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant IF4-ITG rs199984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant IF4-ITG rs10130552 14 71085815 C T 0.170 0.667 0.497 CTD-2540L5.6 non_coding_transcript_variant IF4-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant IF4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant		rs434602		6165468	Т	С	0.307	0.736	0.430	F13A1	intron_variant	2.308
F4-ITG rs7092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant IF4-ITG rs11222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant IF4-ITG rs19984077 13 110078785 T C 0.142 0.639 0.497 - intergenic_variant IF4-ITG rs10130552 14 71085815 C T 0.170 0.667 0.497 CTD-2540L5.6 non_coding_transcript_variant IF4-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant IF4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs4475409	7	83621932	T	С	0.245	0.667	0.421	SEMA3A	intron_variant	0.982
F4-ITG rs11222788 11 131649367 C G G G.137 G.597 G.460 NTM intron_variant Iff-ITG rs199984077 13 110078785 T C G.142 G.639 G.497 - intergenic_variant Iff-ITG rs10130552 14 71085815 C T G.170 G.667 G.497 CTD-2540L5.6 non_coding_transcript_variant G.569 G.156 G.569 G.414 RP11-326A13.1 downstream_gene_variant G.4176 F3191732434 16 3131937 A C G.288 G.792 G.504 RP11-473M2O.9 non_coding_transcript_variant G.4176 F3483293 16 88028003 G A G.363 G.750 G.387 BANP intron_variant G.4176 F4-ITG rs24956586 17 4430958 T C G.283 G.611 G.328 SPNS2 intron_variant G.4176 G	IF4-ITG	rs2469386	8	3515312	С	Α	0.231	0.708	0.477	CSMD1	intron_variant	0.515
IF4-ITG rs19984077 13 110078785 T C C C C C C C C C	IF4-ITG	rs7092649	10	60005202	G	Α	0.198	0.639	0.441	IPMK	intron_variant	1.301
F4-ITG rs10130552 14 71085815 C T 0.170 0.667 0.497 CTD-2540L5.6 non_coding_transcript_variant F4-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant F4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant F4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant F4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant F4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs11222788	11	131649367	С	G	0.137	0.597	0.460	NTM	intron_variant	2.81
IF4-ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11-326A13.1 downstream_gene_variant IF4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs199984077	13	110078785	T	С	0.142	0.639	0.497	-	intergenic_variant	1.337
IF4-ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11-473M20.9 non_coding_transcript_variant IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs10130552	14	71085815	С	T	0.170	0.667	0.497	CTD-2540L5.6	non_coding_transcript_variant	3.316
IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs8037845	15	93805290	С	G	0.156	0.569	0.414	RP11-326A13.1	downstream_gene_variant	0.105
IF4-ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant IF4-ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG	rs191732434	16	3131937	Α	С	0.288	0.792	0.504	RP11-473M20.9	non_coding_transcript_variant	0.132
IF4-ITG rs34956586 rs55893840 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant	IF4-ITG					Α			0.387			1.159
IF4-ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant			17								_	4.955
_											_	0.382
											_	1.417
IF4-ITG rs140038 22 36964359 C T 0.340 0.778 0.438 CACNG2 intron variant											_	6.845

PCAdapt-fast version was applied to each pair of populations separately (one isolate and its corresponding general population) using the whole-sample dataset for variants with MAF >0.05. Subsequently the p-values were transformed into q-values using the R package qvalue (http://github.com/jdstorey/qvalue) to filter the SNPs with false discovery rate (FDR) <0.1. All the variants were further filtered by requiring the derived allele frequency in isolates to be > 0.30. In total, 1077 sites met these criteria, with IF4 having the most; we did not find any sites in FIK, IVB and GRM (Supplementary Data). 39 of these sites overlapped with the HighD sites. We did not find any missense, LoF or other coding functional changes in the overlap, but three SNPs had

CADD scores greater than 5, indicating that they are potentially functionally important. The most interesting finding from these analyses was that six of these variants are shared between different isolates from Italy: IF2, IF3 and IF4. We interpret these as sites that were potentially positively selected in the ITG for the ancestral allele after the population split from the isolates. However, the underlying selection force is unclear. Four SNPs lie in the protein-coding genes *ALK*, *SPNS2*, *SLC39A11* and *ACSS2*, and may merit future follow-up. *ALK* is a gene involved in obesity²² and glucose homeostasis²³ traits; *SPNS2* is also implicated in obesity²⁴. *SLC39A11* was linked to pathways associated with relative hand skill²⁵, and finally *ACSS2* was linked to protein C levels²⁶.

Supplementary Notes

Variant calling and counts

SNP site selection

SNP sites were included based on the following cumulative strategy (i.e. a + b + c): a) all sites in the isolates: FIK, GRM, IF1, IF2, IF3, IF4, IVB and UKO and the general population FIG. b) all sites in the 1000 Genomes Phase 3 populations, thus also including the Toscani from Italy (ITG, labelled as TSI in 1000 Genomes publications). c) all sites with a non-reference allele count, AC \geq 5 in the UKG.

Additionally, we required a non-reference allele count, $AC \ge 1$, within the input set of individuals, a technicality due to some call sets having been made together with external data, thus avoiding sites which are not polymorphic in the samples used. Only the autosomes were considered.

Genotype likelihood calculation

Genotype likelihoods were calculated with samtools/bcftools (0.2.0-rc9) on the dataset above, plus the 21 other worldwide populations in the 1000 Genomes Phase 3 data¹⁹:

```
samtools mpileup -IE -C50 -d100000 -t DP,DP4 -l wgs.isolates.union.AC1.vcf.gz bcftools call -mAC alleles -f GQ,GP -T wgs.isolates.union.AC1.alleles.gz
```

We dropped three samples from IVB (EGAN00001098982, XX129575 and XX021810) and two samples from UKO (EGAN00001098982 and EGAN00001010505) due to their high ratio of heterozygous to homozygous calls compared to all other samples. This can be a sign of contamination or different ancestry.

Genotype calling

Genotypes were called and phased using Beagle v4 (r1274)²⁷. The input genotype likelihood VCFs were split into regions containing a minimum of 3000 sites with 500 buffer sites on either side of the region.

```
java $jvm_args -jar b4.r1274.jar
phase-its=5
nthreads=12
gl=$region.in.vcf.gz
out=$region.out
```

The overlapping output region VCFs were then ligated to per-chromosome VCF files using 'beftools concat –l'.

Annotation

Only the INFO/DP and FORMAT/GT from the original vcf files were kept, while the INFO/AC, INFO/AN, INFO/AF, INFO/NS were added with bcftools to annotate the complete dataset. INFO/AA (ancestral allele) was added with fill-aa using files from the 1000 Genome Phase 3 ancestral allele file.

INFO/GERP was added using beftools annotate.

The ID column was filled with rsIDs from dbSNP141 using bcftools annotate. Variant Effect predictor (VEP) annotation from Ensembl 76 was added with:

```
variant effect predictor.pl
  --assembly GRCh37
  --everything
  --allele number
  --plugin Condel,/path/to/config/Condel/config/,b
  --plugin Blosum62
  --plugin LoF, human ancestor fa:/path/to/human ancestor.fa.rz
  -- format vcf
  --vcf
  --cache
  --dir/path/to/vep cache
  --no progress
  --quiet
  --offline
  --force overwrite
  --no stats
```

including the LOFTEE plugin (https://github.com/konradjk/loftee) for identifying LoF (loss-of-function) variation.

Files and availability

- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.vcf.gz: phased genotype calls in VCF format
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.bcf: phased genotype calls in BCF format
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.sites.vcf.gz: sites-only VCF files
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.vcf.gz.stats: stats file generated by 'bcftools stats'
- {CHROM}.ISOLATES-summary.pdf: default summary slides from 'beftools stats'
- README.20140815: this file
- ISOLATES.panel: lists all 9,375 samples and their cohort
- ISOLATES.cohorts: lists the cohorts
- 1000G related individuals.txt: lists related individuals in the Phase3 release.
- UK10K_exclusion_from_association.txt: lists samples excluded from certain downstream UK10K analyses due to relatedness, non-European-ness, etc.

All of these files are publicly available from the EGA (accession number: EGAD00001002014) under managed access following completion of a data access agreement.

Variant calling for GRG

100 samples from the HELIC TEENAGE (TEENs of Attica: Genes and Environment) cohort composed of young adults from Athens, Greece, were sequenced at 30X depth using the Illumina HiSeq X Ten platform. Variants were called on a per-sample basis using samtools 0.1.18 against the union of all 29,210,157 sites that were called as non-monomorphic in the whole dataset in the section 1.2. The calling omitted indels and sites where read depth exceeded 3,000 times the average read depth (100,000 reads). Individual VCFs were then merged using beftools. Across called variants, mean read depth was 32.4X.

Validation

To assess the performance of the genotype calling from the low coverage data, we compared the genotypes against genotype chip data available for a subset of the cohorts. Chip data was available for 1,772 samples in the 1000 Genomes Phase3 cohort, 489 samples in the SISu and Kuusamo cohorts (FIG and FIK) and 2,402 samples in the UK10K cohort (UKG). Discordance rates for each cohort on chromosome 20 are shown in Supplementary Table 2.

Consortium funding support

UK10K: ALSPAC: This study makes use of data generated by the UK10K Consortium. The Wellcome Trust provided funding for UK10K (WT091310). Medical Research Council (S. Ring, MC_UU_12015/2, MR/J012165/1 to L. Paternoster, MC_UU_12013/1-9 to N. J. Timpson, G. D. Smith, D. Evans, T. Gaunt, H. Shihab). The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and they will serve as guarantors for the contents of this paper. GWAS data was generated by Sample Logistics and Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory Corportation of America) using support from 23andMe. TwinsUK: TwinsUK receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London, Wellcome Trust Sanger Institute and National Eye Institute. The Wellcome Trust provided funding for UK10K (WT091310). EU grant EU FP7 (257082, HEALTH-F5-2011-282510). We are extremely grateful to all the participants who took part in this study, those who helped recruitment and the whole TUK team.

ORCADES: ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336.

HELIC MANOLIS: This work was funded by the Wellcome Trust (WT098051) and the European Research Council (ERC-2011-StG 280559-SEPI). The MANOLIS study is dedicated to the memory of Manolis Giannakakis, 1978-2010. We thank the residents of the Mylopotamos villages for taking part. The HELIC study has been supported by many individuals who have contributed to sample collection (including Antonis Athanasiadis, Olina Balafouti, Christina Batzaki, Georgios Daskalakis, Eleni Emmanouil, Pounar Feritoglou, Chrisoula Giannakaki, Margarita Giannakopoulou, Kiki Kaldaridou, Anastasia Kaparou, Vasiliki Kariakli, Stella Koinaki, Dimitra Kokori, Maria Konidari, Hara Koundouraki, Dimitris Koutoukidis, Vasiliki Mamakou, Eirini Mamalaki, Eirini Mpamiaki, Nilden Selim, Nesse Souloglou, Maria Tsoukana, Dimitra Tzakou, Katerina Vosdogianni, Niovi Xenaki, Eleni Zengini), data entry (Thanos Antonos, Dimitra Papagrigoriou, Betty Spiliopoulou), sample logistics (Sarah Edkins, Emma Gray), genotyping (Suzannah Bumpstead, Robert Andrews, Hannah Blackburn, Doug Simpkin, Siobhan Whitehead), research administration (Anja Kolb-Kokocinski, Carol Smee, Danielle Walker) and informatics (Kathleen Stirrups, Martin Pollard, Josh Randall).

SISu Consortium: The Sequencing Initiative Suomi (SISu) project is an international collaboration between research groups aiming to build tools for genomic medicine (www.sisuproject.fi). These groups are generating whole genome and whole exome sequence

data from Finnish samples and provide data resources for the research community. Key groups of the project are from Universities of Eastern Finland, Oulu and Helsinki and The Institute for Health and Welfare, Finland, Lund University, The Wellcome Trust Sanger Institute, University of Oxford, The Broad Institute of Harvard and MIT, University of Michigan, Washington University in St. Louis, and University of California, Los Angeles (UCLA). The project is coordinated in the Institute for Molecular Medicine Finland at the University of Helsinki. AP and SR are supported by the Academy of Finland (grant no. 251704, 286500, 293404 to AP, and 251217, 285380 to SR), the Wellcome Trust (WT089061 and WT089062), Juselius Foundation, Finnish Foundation for Cardiovascular Research and Biocentrum Helsinki (to SR). HC was supported by the Doctoral Programme in Biomedicine (DPBM), University of Helsinki. PP was supported by the Nordic Information for Action eScience Center NIASC/NordForsk (grant no. 62721 to AP, PP & SR) and by IUT20-60 Omics for health: an integrated approach to understand and predict human disease.

Data Access Agreement

WTSI Data Access Agreement

WELLCOME TRUST SANGER INSTITUTE

DATA ACCESS AGREEMENT (August 2014 v7)

These terms and conditions govern access to the managed access datasets (details of which are set out in Appendix I) to which the User Institution has requested access. The User Institution agrees to be bound by these terms and conditions.

Definitions

Authorised Personnel: The individuals at the User Institution to whom WTSI grants access to the Data. This includes the User, the individuals listed on the User Institution's initial request for access to the Data and any other individuals for whom the User Institution subsequently requests access to the Data. Details of the initial Authorised Personnel are set out in Appendix I.

Data: The managed access datasets to which the User Institution has requested access.

Data Producers: WTSI and the collaborators listed in Appendix I responsible for the development, organisation, and oversight of the Data.

External Collaborator: A collaborator of the User, working for an institution other than the User Institution.

Project: The project for which the User Institution has requested access to the Data. A description of the Project is set out in Appendix II.

Publications: Includes, without limitation, articles published in print journals, electronic journals, reviews, books, posters and other written and verbal presentations of research.

Research Participant: An individual whose data form part of the Data.

Research Purposes: shall mean research that is seeking to advance the understanding of genetics and genomics, including the treatment of disorders, and work on statistical methods that may be applied to such research.

User: The principal investigator for the Project.

User Institution(s): The Institution that has requested access to the Data.

WTSI: Genome Research Limited, operating as the Wellcome Trust Sanger

Institute	

Terms of the Agreement

- 1. The User Institution agrees to only use the Data for the purpose of the Project (described in Appendix II) and only for Research Purposes. The User Institution further agrees that it will only use the Data for Research Purposes which are within the limitations (if any) set out in Appendix I.
- 2. The User Institution agrees to preserve, at all times, the confidentiality of the Data. In particular, it uncertakes not to use, or attempt to use the Data to compromise or otherwise infringe the confidentiality of information on Research Participants. Without prejudice to the generality of the foregoing, the User Institution agrees to use at least the measures set out in Appendix I to protect the Data.
- 3. The User Institution agrees to protect the confidentiality of Research Participants in any research papers or publications that they prepare by taking all reasonable care to limit the possibility of identification.
- 4. The User Institution agrees not to link or combine the Data to other information or archived data available in a way that could re-identify the Research Participants, even if access to that data has been formally granted to the User Institution or is freely available without restriction.
- 5. The User Institution agrees only to transfer or disclose the Data, in whole or part, or any material derived from the Data, to the Authorised Personnel. Should the User Institution wish to share the Data with an External Collaborator, the External Collaborator must complete a separate application for access to the Data.
- 6. The User Institution agrees that the Data Producers, and all other parties involved in the creation, funding or protection of the Data: a) make no warranty or representation, express or implied as to the accuracy, quality or comprehensiveness of the Data; b) exclude to the fullest extent permitted by law all liability for actions, claims, proceedings, demands, losses (including but not limited to loss of profit), costs, awards damages and payments made by the Recipient that may arise (whether directly or indirectly) in any way whatsoever from the Recipient's use of the Data or from the unavailability of, or break in access to, the Data for whatever reason and; c) bear no responsibility for the further analysis or interpretation of these Data.
- 7. The User Institution agrees to follow the Fort Lauderdale Guidelines (http://www.wellcome.ac.uk/stellent/groups/corporatesite/@policy_communications/documents/web_document/wtd003207.pdf) and the Toronto Statement

Wellcome Trust Sanger Institute, Genome Research Limited (reg no. 2742969) is a charity registered in England with number 1021457

(http://www.nature.com/nature/journal/v461/n7261/full/461168a.html). This includes but is not limited to recognising the contribution of the Data Producers and including a proper acknowledgement in all reports or publications resulting from the use of the Data.

- 8. The User Institution agrees to follow the Publication Policy in Appendix III. This includes respecting the moratorium period for the Data Producers to publish the first peer-reviewed report describing and analysing the Data.
- 9. The User Institution agrees not to make intellectual property claims on the Data and not to use intellectual property protection in ways that would prevent or block access to, or use of, any element of the Data, or conclusion drawn directly from the Data.
- 10. The User Institution can elect to perform further research that would add intellectual and resource capital to the data and decide to obtain intellectual property rights on these downstream discoveries. In this case, the User Institution agrees to implement licensing policies that will not obstruct further research and to follow the U.S. National Institutes of Health Best Practices for the Licensing of Genomic Inventions (2005)

(https://www.icgc.org/files/daco/NIH_BestPracticesLicensingGenomicInventions_20 05_en.pdf) in conformity with the Organisation for Economic Co-operation and Development Guidelines for the Licensing of the Genetic Inventions (2006) (http://www.oecd.org/science/biotech/36198812.pdf).

- 11. WTSI is funded by the Wellcome Trust whose charitable objective is to improve health. If results arising from the User Institution's use of the Data could provide health solutions for the benefit of people in the developing world, the User Institution agrees to offer non-exclusive licenses to such results on a reasonable basis for use in low income and low-middle income countries (as defined by the World Bank) to any party that requests such a license solely for uses within these territories.
- 12. The User Institution agrees to destroy/discard the Data held, once it is no longer used for the Project, unless obliged to retain the data for archival purposes in conformity with audit or legal requirements.
- 13. The User Institution will notify WTSI within 30 days of any changes or departures of Authorised Personnel.
- 14. The User Institution will notify WTSI prior to any significant changes to the protocol for the Project.
- 15. The User Institution will notify WTSI as soon as it becomes aware of a breach of the terms or conditions of this agreement.

- 16. WTSI may terminate this agreement by written notice to the User Institution. If this agreement terminates for any reason, the User Institution will be required to destroy any Data held, including copies and backup copies. This clause does not prevent the User Institution from retaining the data for archival purpose in conformity with audit or legal requirements.
- 17. The User Institution accepts that it may be necessary for the Data Producers to alter the terms of this agreement from time to time. As an example, this may include specific provisions relating to the Data required by Data Producers other than WTSI. In the event that changes are required, the Data Producers or their appointed agent will contact the User Institution to inform it of the changes and the User Institution may elect to accept the changes or terminate the agreement.
- 18. If requested, the User Institution will allow data security and management documentation to be inspected to verify that it is complying with the terms of this agreement.
- 19. The User Institution agrees to distribute a copy of these terms to the Authorised Personnel. The User Institution will procure that the Authorised Personnel comply with the terms of this agreement.
- 20. This agreement (and any dispute, controversy, proceedings or claim of whatever nature arising out of this agreement or its formation) shall be construed, interpreted and governed by the laws of England and Wales and shall be subject to the exclusive jurisdiction of the English courts.

APPENDIX I - DATASET DETAILS

Dataset Reference(s)

FAKE_EGA_ID:2569827c-94f9-4bdc-8c7c-d946a30711c0

Name of project that created the dataset

Low-depth whole genome sequencing across multiple isolated populations

Names of other data producers

Daniela Toniolo DIBIT-San Raffaele Scientific Institute Milano

Veikko Salomaa National Institute for Health and Welfare, Finland (THL)
Dr. Satu Mannisto National Institute for Health and Welfare, Finland (THL)

George Dedoussis Harokopio University, Athens

Paolo Gasparini Trieste University

Dr. Jim Wilson The University of Edinburgh

Professor George Cavey Smith

University of Bristol

Tim Spector KCL

Wellcome Trust Sanger Institute, Genome Research Limited (reg no. 2742969) is a charity registered in England with number 1021457

Aarno Palotie Institute for Molecular Medicine Finland (FIMM). The

Broad Institute of MIT and Harvard

Specific limitations on areas of research

None

Minimum protection measures required

Security Level: 2

File access: Data can be held in unencrypted files on an institutional compute system, with Unix user group read/write access for one or more appropriate groups but not Unix world read/write access behind a secure firewall. Laptops holding this data should have password protected logins and screenlocks (set to lock after 5 min of inactivity). If held on USB keys or other portable hard drives, the data must be encrypted.

APPENDIX II - PROJECT DETAILS

Details of dataset(s)

FAKE_EGA_ID:2569827c-94f9-4bdc-8c7c-d946a30711c0

Description of the project

-- TEST --

User Institution

Affiliation: Wellcome Trust Sanger Institute

Mailing Address: Wellcome Trust Sanger Institute, Genome Campus, Hinxton,

CB101SA, United Kingdom

Principal Investigator: Stephen Rice

Individuals who the User Institution wishes to have access to the Data

APPENDIX III - PUBLICATION POLICY

WTSI are committed to the principles of rapid data release. WTSI intend to publish the results of our analysis of this data set and do not consider its deposition into public databases to be the equivalent of such publications. WTSI anticipate that the data set could be useful to other qualified researchers for a variety of purposes. However, some areas of work are therefore subject to a publication moratorium.

The publication moratorium covers any publications (including oral

Wellcome Trust Sanger Institute, Genome Research Limited (reg no. 2742969) is a charity registered in England with number 1021457

communications) that describe the use of the dataset. For research papers, submission for publication should not occur until 12 months after these data were first made available on the relevant hosting database, unless WTSI has provided written consent to earlier submission.

In any publications based on this data, please describe how the data can be accessed, including the name of the hosting database (e.g., The European Genome-phenome Archve at the European Bioinformatics Institute) and its accession numbers (e.g., EGAS00000000029), and acknowledge its use in a form agreed by the User Institution with WTSI.

Supplementary References

- 1. Price, A.L. *et al.* Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* **38**, 904-909 (2006).
- 2. Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res* **19**, 1655-1664 (2009).
- 3. Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from genomewide allele frequency data. *PLoS Genet* **8**, e1002967 (2012).
- 4. Hill, W.G. Estimation of effective population size from data on linkage disequilibrium. *Genetical Res.* **38**, 209-216 (1981).
- 5. Hayes, B.J., Visscher, P.M., McPartlan, H.C. & Goddard, M.E. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. *Genome Res* **13**, 635-643 (2003).
- 6. Tenesa, A. *et al.* Recent human effective population size estimated from linkage disequilibrium. *Genome Res* **17**, 520-526 (2007).
- 7. Mezzavilla, M. & Ghirotto, S. *Neon*: An R package to estimate human effective population size and divergence time from patterns of linkage disequilibrium between SNPs. *J Comput Sci Syst Biol* **8**, 37-44 (2015).
- 8. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. *Nat Genet* **46**, 919-925 (2014).
- 9. Browning, S.R. & Browning, B.L. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. *Am J Hum Genet* **97**, 404-418 (2015).
- 10. Browning, B.L. & Browning, S.R. Detecting identity by descent and estimating genotype error rates in sequence data. *Am J Hum Genet* **93**, 840-851 (2013).
- 11. Benazzo, A., Panziera, A. & Bertorelle, G. 4P: fast computing of population genetics statistics from large DNA polymorphism panels. *Ecol Evol* **5**, 172-175 (2014).
- 12. Schliep, K.P. phangorn: phylogenetic analysis in R. *Bioinformatics* 27, 592-3 (2011).
- 13. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-575 (2007).
- 14. Polasek, O. *et al.* Comparative assessment of methods for estimating individual genomewide homozygosity-by-descent from human genomic data. *BMC Genomics* **11**, 139 (2010).
- 15. Gabriel, S.B. *et al.* The structure of haplotype blocks in the human genome. *Science* **296**, 2225-2229 (2002).
- 16. Wang, H. & Song, M. Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming. *The R Journal* **3**, 29-33 (2011).
- 17. Colonna, V. *et al.* Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. *Genome Biol* **15**, R88 (2014).
- 18. Field, Y. *et al.* Detection of human adaptation during the past 2000 years. *Science* **354**, 760-764 (2016).
- 19. The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature* **526**, 68-74 (2015).

- 20. The UK10K Consortium. The UK10K project identifies rare variants in health and disease. *Nature* **526**, 82-90 (2015).
- 21. Do, R. *et al.* No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. *Nat Genet* **47**, 126-131 (2015).
- 22. Locke, A.E. *et al.* Genetic studies of body mass index yield new insights for obesity biology. *Nature* **518**, 197-206 (2015).
- 23. Palmer, N.D. *et al.* Genetic variants associated with quantitative glucose homeostasis traits translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium. *Diabetes* **64**, 1853-1866 (2015).
- 24. Comuzzie, A.G. *et al.* Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. *PLoS One* **7**, e51954 (2012).
- 25. Brandler, W.M. *et al.* Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. *PLoS Genet* **9**, e1003751 (2013).
- 26. Athanasiadis, G. *et al.* A genome-wide association study of the Protein C anticoagulant pathway. *PLoS One* **6**, e29168 (2011).
- 27. Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am J Hum Genet* **81**, 1084-1097 (2007).