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Supplementary Figure 4. FKi values for each population for the ADMIXTURE run with K=8. 
FKi= fki-isolate-fki-general while fki (i = 1, 2, …K) is the mean percentage of each ancestry 
component in each population. At least one ancestry component differed substantially in 
frequency compared with the general population. The isolates IF1, IF2, IF3 and IF4 have the 
largest difference compared with their general population ITG, while IVB has the least 
difference. This could be due to a more pronounced bottleneck in the history of the four IF 
isolates coupled with high genetic drift (Supplementary Table 6).   
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Supplementary Figure 10. Inference of recent population size changes using IBDNe. Population 
size estimates in recent times (within the last 9,000 years) were inferred from long segments of 
IBD using IBDNe. Isolated and general populations show contrasting patterns of population size 
changes in recent times. We used IBDNe9 to estimate Ne from long segments of identity-by-
descent (IBD). We used IBDseq10 to detect IBD segments in sequence data from chromosome 2 
in all populations. We then used IBDNe with the default parameters and a minimum IBD 
segment length of 2 centiMorgan (cM) units. We assumed a generation time of 29 years. In these 
analyses, we used ITG as the general population for GRM as the variant calling procedure for 
GRG made it unsuitable for this analysis. All general populations (except FIG) show a steady 
increase in size during the past 3,000 years, while the size of all isolates drops within the last 
1000 years, and only recovers in the past few generations. IF1, IF2, IF3 and IF4 appear to have 
the sharpest decrease in population size while the IVB, on the other hand, show a drop in 
population size more limited in time and magnitude. Both FIK and FIG show a decrease in size; 
however, the FIG start increasing in the last 600 years while FIK start increasing only in the past 
300 years. The UKO show a steady population size until 2,700 years ago when population size 
drops sharply and recovers only very recently. The GRG population seems to have been 
dropping in size gradually reaching the smallest size ~600 years ago before increasing in size in 
the past 300 years. All isolates appear to have decreased in size while the general populations 
(except FIG) have increased steadily in size.  
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Supplementary Figure 12. UPGMA tree based on pairwise FST values between each isolate and 
its general population. Genome-wide FST between isolates and their general populations was 
calculated with the software 4P11 using the minimum sample size dataset by removing markers in 
strong LD in the whole dataset and variants with MAF <0.01. A UPGMA tree based on pairwise 
FST was constructed using the R package phangorn12. Only IVB, FIK and UKO show a close 
genetic relationship with their general population, while IF1, IF2, IF3 and IF4 lie far away from 
their general population, which reflects the strong genetic drift in these isolates. GRM and GRG 
are moderately close in the tree, which might reflect intermediate divergence or calling bias. 
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Supplementary Figure 13. Box plots of total length of ROH (left panel) and total number of ROH 
fragments (right panel) per individual. The top panels show ROH fragments longer than 1.0 Mb 
and the lower panels fragments greater than 2.5 Mb. We used the whole sample dataset but 
trimmed the SNPs for these analyses. The runs of homozygosity (ROHs) with a minimum length 
of 1.0 Mb and 2.5 Mb were calculated using PLINK13 with LD pruning. More numbers of ROH 
fragments and total length of the ROH regions are seen in each isolate compared with its general 
population, both for ROH fragments greater than 1.0 Mb and 2.5 Mb. The four Italian isolates, 
IF1, IF2, IF3 and IF4, which are the most isolated, showed these characteristics most markedly, 
while IVB showed them the least, with FIK, GRM and UKO in between.   
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Supplementary Figure 16. The ratios in each isolate compared with its general population, or 
vice-versa, of haplotypes of different length classes (Supplementary Table 9) that are shared. We 
performed optimal k-means clustering on the distribution of the length of haplotypes using the R 
package Ckmeans.1d.dp16 and divided the haplotypes into four classes (short, medium-short, 
medium-long and long) and the characteristics of each class are reported in Supplementary Table 
9. The proportion of different classes of haplotypes in IF1, IF2, IF3, IF4 and FIK are also 
substantially different from their general populations. ITG and FIG, in particular, have a higher 
proportion of shorter haplotypes.  No difference between GRM, IVB and UKO and their general 
populations GRG, ITG and UKG was found. These results again suggest that IF1, IF2, IF3, IF4 
and FIK are more isolated that the other isolates. 
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Supplementary Figure 17. Correlation plots of Isx and different measures of genetic drift. The 
correlation in each plot is labelled, as well as the Pearson correlation coefficient (R2) and its p-
value.  
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Supplementary Figure 18. DVxy statistics using the minimum sample size. (a) DVxy-coding 
statistic in isolates and general populations; (b) DVxy-wg statistics between isolates and general 
population in different CADD score bins.  
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Supplementary Figure 19. DVxy-wg statistics in isolates and general populations, stratified by 
CADD score with different cut-offs and different bins.  
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Supplementary Figure 20. Correlation between Isx and the DVxy (a. with minimum sample size. 
b. with matched sample size) or SVxy statistics (c. minimum sample size). 
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Supplementary Figure 21.  99th percentile of DAF distribution between pairs of populations. For 
each pair of isolate and its general population, genome-wide pairwise derived allele frequency 
differences (deltaDAF) were calculated as described previously17. The sites with extreme 
deltaDAF due to high DAF values in the isolate (HighD sites) were identified by scanning the 
genome in non-overlapping windows of 3,000 SNPs and picking the variant within each window 
with the highest deltaDAF value, provided that deltaDAF was above a threshold between 0.3 and 
0.5. HighD sites were assigned to the population with the highest DAF in the pair.   
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Supplementary Tables 
 

Supplementary Table 1. Population and dataset information 

All of the populations have been given a three-letter abbreviation used throughout the text. The 
first one or two letters identify the country (FI = Finland, GR = Greece, I = Italy, UK = United 
Kingdom) and the last one or two letters the specific isolate (K = Kuusamo, M = MANOLIS, F = 
Friuli Venezia Giulia, VB = Val Borbera and O = Orkney) or the general population (G). 

Samples from Friuli Venezia Giulia were collected from four different villages and were found 
to be genetically highly structured, so we treated them as four different isolates, and we also 
excluded some samples which do not genetically match any of these four groups. 

Population (three 
letter name) 

Sample location Sample size Sequence depth Data published  
 

Kuusamo (FIK) Kuusamo, Finland 377 4x No 

SISu cohort (FIG) Suomi, Finland 1564 6x No 

HELIC-MANOLIS 
(GRM) 

Crete, Greece 249 4x No 

TEENAGE (GRG) Athens, Greece 100 10-30x No 

Friuli Venezia Giulia 
(all) 

Friuli Venezia 
Giulia, Italy 

250 4-10x No 

Friuli Venezia Giulia 
1 (IF1) 

Friuli Venezia 
Giulia, Italy 

60 4-10x No 

Friuli Venezia Giulia 
2 (IF2) 

Friuli Venezia 
Giulia, Italy 

45 4-10x No 

Friuli Venezia Giulia 
3 (IF3) 

Friuli Venezia 
Giulia, Italy 

47 4-10x No 

Friuli Venezia Giulia 
4 (IF4) 

Friuli Venezia 
Giulia, Italy 

36 4-10x No 

Val Borbera (IVB) Val Borbera, Italy 225 6x No 

Toscani (ITG) Toscani, Italy 108 7x Yes19 

Orkney (UKO) Scotland, UK 397 4x No 

UK10K (UKG) UK (ALSPAC & 
TwinsUK cohorts) 

3781 6.5x Yes20 
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Supplementary Table 2. Genotype discordance with genotype chip data, stratified by SNP class. 

 
 
 
 
 
 

  

 REF-REF REF-ALT ALT-ALT 
1000 Genomes 1.21% 0.11% 1.06% 
Finland 0.11% 0.37% 0.30% 
UK10K 0.10% 0.32% 0.27% 
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Supplementary Table 4. Numbers and proportions (percentage) of deleterious variants that have 
drifted to high frequency in the isolates compared with all four general populations studied here 

 
 
 
 
 
 
 
 
 
 

Supplementary Table 5. Median numbers of variant sites, homozygous sites, heterozygous sites 
and alleles per genome. The functional annotation used Ensembl 76 VEP pipeline with the “-
pick” option. Numbers to the left-hand side of the grey line are based on the minimum-sample-
size and those on the right-hand side are based on matched-sample-size. hom = homozygous, het 
= heterozygous.  

 
 

Isolates Total Missense plus LoF CADD score  15 

FIK 70,579 410 (0.58%) 1479 (2.1%) 

GRM 49,884 266 (0.53%) 988 (2.0%) 

IF1 119,157 689 (0.58%) 2676 (2.2%) 

IF2 94,496 518 (0.55%) 2080 (2.2%) 

IF3 107,281 616 (0.57%) 2417 (2.3%) 

IF4 122,254 688 (0.56%) 2792 (2.3%) 

IVB 30,284 154 (0.51%) 530 (1.8%) 

UKO 36,512 210 (0.58%) 634 (1.7%) 
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Supplementary Table 6. FKi statistics.  

 
Population Median (FKi) Maximum (FKi) 
FIK/FIG -0.014 0.618 
GRM/GRG -0.025 0.256 
IF1/ITG -0.045 0.882 
IF2/ITG -0.036 0.804 
IF3/ITG -0.041 0.851 
IF4/ITG -0.031 0.834 
IVB/ITG -0.003 0.026 
UKO/UKG -0.023 0.252 

 
FKi median and maximum values for each isolate compared with its general population, using 
K=8 in the ADMIXTRUE analysis 
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Supplementary Table 7. Divergence time of each isolate from its closest general population 
estimated using the LD-based method. 

Isolate Time of divergence from 
the closest general 
population (generations) 

CI (5th - 95th percentile) 

FIK 26 25-28 
GRM 40 38-44 
IF1 154 144-164 
IF2 137 127-146 
IF3 159 148-170 
IF4 176 166-188 
IVB 18 17-19 
UKO 21 18-22 

 

The divergence times estimated from LD have large uncertainties, but we see that FIK, GRM 
and IVB diverged from their closest general population more recently than the four north Italian 
isolates, IF1, IF2, IF3 and IF4. In particular, the divergence time of FIK from FIG around 26 
generations ago (750 years) fits the historical divergence time of mid-16th century.  
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Supplementary Table 8. Demographic parameters and Isx values for each isolate 

Isolated population 
Tdg in generations 

(5-95th percentile) 
M 

Long-term Ne  

(5-95th percentile) 

Isx 

(5-95th percentile) 

FIK 26 (25-28) 0.71 4226 (3972-4399) 1.41(1.39-1.42) 

GRM 40 (38-44) 0.42 6242 (6011-6907) 1.28 (1.25-1.30) 

IF1 154 (144-164) 0.99 3806 (3529-4075) 1.73 (1.70-1.75) 

IF2 137 (127-146) 0.99 3960 (3595-4271) 1.71(1.68-1.73) 

IF3 159 (148-170) 0.99 3656 (3289-3939) 1.74 (1.71-1.77) 

IF4 176 (166-188) 0.91 3390 (3158-3634) 1.75 (1.72-1.77) 

IVB 18 (17-19) 0.31 6439 (5955-6711) 1.11 (1.09-1.12) 

UKO 21(18-22) 0.37 5592 (5248-5990) 1.18 (1.15-1.20) 

As each isolate has a different demographic history, isolation levels are different. IF1, IF2, IF3 
and IF4 are the most isolated populations with the highest Isx values, while IVB is the least 
isolated one with the lowest Isx. The highest Isx values reflect a combination of smaller Ne, 
longer isolation time and lower migration between the isolate and its general population. 
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Supplementary Table 9. Characteristics of each haplotype class. 

 
 
  

Class Description Mean (kb) Standard Deviation (kb) 

1 short 7.1 6.6 

2 medium-short 44.1 14.8 

3 medium-long 118.9 32.3 

4 long 310.2 116.2 
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Supplementary Table 10. Summary of haplotype features in the populations studied. 

 
 
The average haplotype length in the isolates IF1, IF2, IF3, IF4 and FIK is significantly longer 
than in their general populations ITG and FIG, but no difference was observed between GRM, 
IVB and UKO and their general populations GRG, ITG and UKG.  The proportion of different 
classes of haplotypes in IF1, IF2, IF3, IF4 and FIK are also substantially different from in their 
general populations: ITG and FIG, in particular, have a higher proportion of shorter haplotypes.  
No difference between GRM, IVB and UKO and their general populations GRG, ITG and UKG 
was found. These results again suggest that IF1, IF2, IF3, IF4 and FIK are more isolated that the 
other isolates. 
 
  

Population 
Total N. 
haplotype 

Mean 
length 
(kb) 

Mann-
Whitney p-
value  

Median 
(kb) 

5th-95th 
percentile 
(kb) 

Fraction of 
class 1 
haplotype 

Fraction of 
class 2 
haplotype 

Fraction of 
class 3 
haplotype 

Fraction of 
class 4 
haplotype 

FIK 49,693 19.45 < 0.0001 7.92 0.33-75.81 0.7826 0.1579 0.0390 0.0048 

FIG 49,643 18.57 n.a. 7.51 0.30-72.16 0.7910 0.1696 0.0355 0.0040 

GRM 48,771 17.61 0.009117 7.07 0.31-68.62 0.8054 0.1736 0.0331 0.0036 

GRG 48,661 17.12 n.a 6.83 0.29-67.83 0.8095 0.1547 0.0325 0.0032 

IF1 49,986 19.73 < 0.0001 8.07 0.34-77.26 0.7790 0.1764 0.0399 0.0047 

IF2 49,851 19.79 < 0.0001 8.02 0.32-77.64 0.7788 0.1756 0.0408 0.0048 

IF3 49,957 20.01 < 0.0001 8.11 0.33-78.42 0.7744 0.1788 0.0419 0.0049 

IF4 49,657 20.64 < 0.0001 8.31 0.35-79.69 0.7688 0.1833 0.0422 0.0058 

IVB 48,570 17.55 0.5179 7.02 0.30-69.16 0.8048 0.1593 0.0322 0.0037 

ITG 48,371 17.63 n.a 7.03 0.29-68.69 0.8048 0.1587 0.0327 0.0038 

UKO 49,295 18.03 0.02151 7.44 0.31-72-34 0.7952 0.1649 0.0363 0.0035 

UKG 49,062 17.98 n.a 7.26 0.30-69.72 0.7979 0.1648 0.0334 0.0038 
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Supplementary Table 11. Pairwise correlation coefficients (Person’s correlation coefficient, r) 

 

Isx FST F 
ROH  

(1.0 Mb) 
Haplotype

-length 
Dvxy-
coding 

FST 0.975      
F 0.969 0.901     
ROH  
(1.0 Mb) 0.992 0.948 0.955    
Haplotype-
length 0.918 0.866 0.977 0.941   
Dvxy-
coding 0.801 0.772 0.859 0.787 0.848  
SVxy 0.912 0.901 0.905 0.920 0.929 0.72 
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Supplementary Table 12. Rxy statistics. 

 
Overall, we did not find any isolate that showed a significantly higher genetic burden for either 
Rxy-missense or Rxy-LoF variants, although we see a marginally lower genetic burden for 
missense variants in IF1, IF3 and IF4.  Rxy using variants with CADD scores greater than 10 and 
20 should increase statistical power, since we include a larger set of genome-wide functional 
variants. We also failed to find convincing evidence to support higher or lower genetic loads in 
the isolates. These results are consistent with previous studies, as the genetic load is affected by 
both population demography and selection21.  
 
  

Population 
pair Rxy - missense Rxy -LoF 

Rxy -variants with 
CADD>10 

Rxy -variants with 
CADD>20 

FIK-FIG 1.007 (1.002-1.013) 0.991 (0.967-1.014) 1.000 (0.999-1.000) 0.998 (0.995-1.002) 
GRM-GRG 1.017 (1.005-1.029) 1.047 (0.993-1.102) 1.011 (1.010-1.013) 1.011 (1.005-1.016) 
GRM-ITG - - 1.000 (0.999-1.002) 0.996 (0.991-1.000) 
IF1- ITG:60 0.983 (0.972-0.995) 1.005 (0.954-1.057) 0.995 (0.993-0.997) 0.988 (0.981-0.995) 
IF2- ITG:45 0.989 (0.978-1.000) 0.963 (0.910-1.016) 0.993 (0.991-0.995) 0.985 (0.978-0.992) 
IF3- ITG:47 0.984 (0.973-0.996) 0.979 (0.926-1.032) 0.995 (0.993-0.997) 0.988 (0.980-0.995) 
IF4- ITG:36 0.982 (0.969-0.995) 0.966 (0.910-1.022) 0.992 (0.990-0.995) 0.988 (0.980-0.997) 
IVB-ITG 0.971 (0.717-1.227) 1.000 (0.967-1.033) 0.993 (0.992-0.994) 0.986 (0.982-0.990) 
UKO-UKG 1.009 (1.003-1.016) 1.019 (0.984-1.055) 1.003 (1.002-1.004) 1.004 (1.001-1.008) 
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Supplementary Table 13. DVxy-coding statistics in each population. The value at the top of each 
cell is the median and below in brackets are the 95th percentiles. Coding DVs are missense plus 
LoF variants. 

 

 
  

Populatio
n 

No. of 
missense 

DVs 

No. of coding 
DVs 

No. of intergenic 
DVs 

DVx-
missense 

DVx-
coding 

DVxy - 
missense 

DVxy – 
coding 

FIK 
694 

(657-735) 
724 

(663-772) 
42662 

(39870-45600) 
1.27 

(1.25-1.30) 
1.28 

(1.25-1.32) 
1.14 

(1.10-1.20) 
1.14 

(1.10-1.20) 

FIG 
610 

(553-644) 
626 

(573-667) 
42459 

(38294-45351) 
1.12 

(1.07-1.15) 
1.13 

(1.08-1.17) 
0.88 

(0.83-0.91) 
0.87 

(0.83-0.91) 

GRM 
1053 

(984-1111) 
1084 

(1014-1153) 
75156 

(70312-79977) 
1.20 

(1.17-1.22) 
1.2 

(1.17-1.21) 
1.02 

(1-1.05) 
1.02 

(0.99-1.04) 

GRG 
1176 

(1091-1242) 
1200 

(1116-1254) 
84491 

(80696-90914) 
1.18 

(1.15-1.20) 
1.18 

(1.15-1.2) 
0.98 

(0.96-1.00) 
0.98 

(0.96-1.01) 

IF1 
2020 

(1666-2113) 
2086 

(1726-2170) 
123238 

(108383-131977) 
1.33 

(1.3-1.35) 
1.31 

(1.29-1.33) 
1.24 

(1.22-1.27) 
1.24 

(1.21-1.27) 

IF2 
2345 

(1969-2461) 
2414 

(2053-2528) 
139062 

(121300-147611) 
1.29 

(1.27-1.3) 
1.29 

(1.28-1.30) 
1.17 

(1.15-1.18) 
1.16 

(1.15-1.18) 

IF3 
1868 

(1596-1961) 
1926 

(1607-2019) 
109618 

(94308-116039) 
1.32 

(1.31-1.34) 
1.32 

(1.31-1.34) 
1.21 

(1.2-1.23) 
1.22 

(1.20-1.24) 

IF4 
1600 

(1344-1666) 
1655 

(1392-1740) 
99244 

(87929-105109) 
1.28 

(1.26-1.3) 
1.28 

(1.26-1.3) 
1.18 

(1.16-1.21) 
1.18 

(1.16-1.21) 

IVB 
814 

(743-862) 
850 

(784-897) 
52765 

(48339-55892) 
1.29 

(1.27-1.32) 
1.31 

(1.29-1.33) 
1.06 

(1.03-1.09) 
1.08 

(1.05-1.12) 

ITG_IF1 
1903 

(1786-2004) 
1948 

(1850-2039) 
159276 

(145544-168162) 
1.07 

(1.06-1.09) 
1.08 

(1.06-1.09) 
0.81 

(0.79-0.82) 
0.81 

(0.79-0.82) 

ITG_IF2 
2784 

(2645-2938) 
2860 

(2755-3038) 
209247 

(192533-222310) 
1.10 

(1.10-1.12) 
1.11 

(1.1-1.12) 
0.86 

(0.85-0.87) 
0.86 

(0.85-0.87) 

ITG_IF3 
2696 

(2555-2825) 
2768 

(2607-2910) 
201718 

(189391-213989) 
1.09 

(1.08-1.10) 
1.09 

(1.08-1.10) 
0.82 

(0.81-0.83) 
0.82 

(0.81-0.83) 

ITG_IF4 
2198 

(2072-2305) 
2240 

(2112-2360) 
169550 

(158619-182002) 
1.08 

(1.06-1.09) 
1.08 

(1.06-1.10) 
0.85 

(0.83-0.86) 
0.85 

(0.83-0.86) 

ITG_IVB 
672 

(609-700) 
674 

(614-717) 
47913 

(44727-51476) 
1.21 

(1.19-1.25) 
1.21 

(1.18-1.23) 
0.94 

(0.91-0.97) 
0.93 

(0.89-0.95) 

UKO 
482 

(436-506) 
486 

(440-516) 
30663 

(28650-32864) 
1.28 

(1.24-1.31) 
1.29 

(1.27-1.33) 
1.14 

(1.09-1.19) 
1.11 

(1.07-1.17) 

UKG 
383 

(340-401) 
398 

(349-419) 
28584 

(26464-30568) 
1.13 

(1.08-1.16) 
1.15 

(1.1-1.18) 
0.88 

(0.84-0.92) 
0.90 

(0.85-0.94) 
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Supplementary Table 14. DVxy-wg statistics for each population. The value at the top of each 
cell is the median and below in brackets are the 95th percentiles. 

Population
s 

%. of DV 
CADD 0-5 

% of DV 
CADD 5-10 

%. of DV 
CADD 
10-20 

%. of DV 
CADD 

>20 

DVxy  
CADD 0-5 

DVxy  
CADD 5-

10 

DVxy  
CADD 10-

20 

DVxy  
CADD >20 

FIK 76.59 
(76.3-
76.83) 

15.62 
(15.52-
15.75) 

6.68 
(6.58-
6.82) 

1.10 
(1.05-1.15) 

0.991 
(0.986-
0.998) 

1.014 
(0.999-
1.035) 

1.021 
(0.987-
1.048) 

1.387 
(1.266-
1.509) 

FIG 77.36 
(77.12-
77.48) 

15.36 
(15.24-
15.52) 

6.55 
(6.41-
6.67) 

0.81 
(0.76-0.85) 

1.009 
(1.002-
1.014) 

0.986 
(0.966-
1.001) 

0.979 
(0.954-
1.013) 

0.721 
(0.663-0.79) 

GRM 77.67 
(77.49-
77.84) 

15.37 
(15.27-
15.46) 

6.18 
(6.10-
6.23) 

0.81 
(0.78-0.84) 

1.000 
(0.997-
1.005) 

1.008 
(0.996-
1.017) 

1.025 
(1.005-
1.052) 

1.081 
(0.996-
1.121) 

GRG 77.39 
(77.17-
77.54) 

15.39 
(15.27-
15.51) 

6.03 
(6.02-
6.06) 

0.75 
(0.73-0.79) 

1.000 
(0.995-
1.003) 

0.992 
(0.983-
1.004) 

0.975 
(0.95-
0.995) 

0.925 
(0.901-
1.017) 

IF1 76.54 
(76.35-
76.81) 

15.76 
(15.63-
15.85) 

6.7 
(6.58-
6.77) 

1.00 
(0.96-1.03) 

0.989 
(0.985-
0.995) 

1.012 
(0.998-
1.022) 

1.058 
(1.028-
1.081) 

1.354 
(1.261-
1.439) 

IF2 76.71 
(76.5-
76.92) 

15.65 
(15.48-
15.76) 

6.66 
(6.60-
6.72) 

1.01 
(0.96-1.04) 

0.994 
(0.991-
1.000) 

1.006 
(0.987-
1.014) 

1.027 
(1.004-
1.049) 

1.211 
(1.154-
1.295) 

IF3 76.77 
(76.49-
77.08) 

15.53 
(15.35-
15.65) 

6.74 
(6.61-
6.82) 

0.99 
(0.95-1.04) 

0.993 
(0.990-
0.998) 

1.004 
(0.993-
1.014) 

1.045 
(1.019-
1.066) 

1.166 
(1.089-1.27) 

IF4 76.78 
(76.65-
77.26) 

15.68 
(15.36-
15.77) 

6.56 
(6.45-
6.67) 

0.95 
(0.92-0.98) 

0.994 
(0.990-
1.001) 

1.011 
(0.989-
1.022) 

1.022 
(0.994-
1.048) 

1.180 
(1.120-
1.267) 

IVB 77.18 
(76.97-
77.42) 

15.42 
(15.27-
15.52) 

6.49 
(6.40-
6.58) 

0.92 
(0.87-0.98) 

1.000 
(0.997-
1.005) 

0.976 
(0.959-
0.986) 

1.045 
(1.016-
1.077) 

1.095 
(1.018-
1.191) 

ITG_IF1 77.33 
(77.13-
77.44) 

15.57 
(15.48-
15.71) 

6.34 
(6.30-
6.42) 

0.74 
(0.72-0.77) 

1.011 
(1.005-
1.015) 

0.989 
(0.978-
1.002) 

0.974 
(0.954-
0.996) 

0.825 
(0.772-
0.866) 

ITG_IF2 77.19 
(77.07-
77.28) 

15.53 
(15.5-15.58) 

6.46 
(6.38-
6.55) 

0.82 
(0.78-0.84) 

1.006 
(1.000-
1.009) 

0.994 
(0.986-
1.014) 

0.945 
(0.925-
0.973) 

0.739 
(0.695-
0.793) 

ITG_IF3 77.2 
(76.97-
77.31) 

15.48 
(15.44-
15.58) 

6.48 
(6.41-
6.56) 

0.86 
(0.83-0.89) 

1.007 
(1.002-
1.010) 

0.996 
(0.987-
1.007) 

0.957 
(0.938-
0.981) 

0.858 
(0.787-
0.918) 

ITG_IF4 77.07 
(76.86-
77.36) 

15.58 
(15.42-
15.68) 

6.51 
(6.39-
6.61) 

0.82 
(0.79-0.85) 

1.006 
(0.999-
1.011) 

0.989 
(0.979-
1.011) 

0.978 
(0.955-
1.006) 

0.848 
(0.789-
0.893) 

ITG_IVB 77.3 
(77.08-
77.4) 

15.77 
(15.64-
15.87) 

6.15 
(6.11-
6.30) 

0.81 
(0.79-0.84) 

1.000 
(0.995-
1.003) 

1.025 
(1.014-
1.043) 

0.957 
(0.929-
0.984) 

0.914 
(0.840-
0.982) 

UKO 76.79 
(76.54-
77.07) 

15.75 
(15.57-
15.89) 

6.49 
(6.41-
6.65) 

0.94 
(0.87-1.01) 

0.993 
(0.989-
0.997) 

1.019 
(1.006-
1.034) 

1.016 
(0.991-
1.035) 

1.205 
(1.089-
1.294) 

UKG 77.38 
(77.14-
77.63) 

15.45 
(15.22-
15.59) 

6.38 
(6.30-
6.55) 

0.78 
(0.74-0.82) 

1.007 
(1.003-
1.011) 

0.981 
(0.967-
0.994) 

0.984 
(0.966-
1.009) 

0.830 
(0.773-
0.918) 
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Supplementary Table 15. GSV and SVxy statistics in each pair of populations. 

 
 
 
 
 

 

 
The isolates showed a higher proportion of essential genes with SV >1 relative to non-essential 
ones, compared with their general populations. The distribution of Gsv scores in the isolates is 
significantly different from the scores in the general populations (Mann-Whitney U test, p value 
= 0.0039) with relatively higher values of Gsv in the isolates. The SVxy statistics are 
significantly greater than 1 for FIG and four Italian isolates, IF1, IF2, IF3 and IF4, but not for 
GRM, IVB and UGO, which could be due to the separate calling method for the GRG and 
sample ascertainment for all three. Overall, both Gsv and SVxy statistics suggest a relaxation of 
purifying selection in the isolates. 
 
  

Population pairs Isx

Total 
number of 
genes

Total 
number of 
essentail 
genes

Total 
number of 

non‐
essentail 
genes

percentage of the 
essential genes 
with SV>1 in 
isolates

percentage of the 
non‐essential 

genes with SV>1 in 
isolates

percentage of the 
essential genes with 
SV>1 in general 
population

percentage of the 
non‐essential 

genes with SV>1 
in general 
population Gsv_isolates

Gsv_general 
population Mean_SVxy SD_SVxy

FIK_FIG 1.41 2957 271 2609 0.76 0.75 0.66 0.72 1.01 0.92 1.134 0.061

GRM_GRG 1.28 3131 308 2823 0.75 0.71 0.69 0.71 1.06 0.97 1.016 0.063
IF1_ITG 1.73 2473 231 2242 0.79 0.77 0.68 0.72 1.03 0.94 1.403 0.103
IF2_ITG 1.71 2757 264 2493 0.78 0.76 0.68 0.72 1.03 0.94 1.321 0.085

IF3_ITG 1.74 2624 251 2373 0.82 0.78 0.64 0.71 1.05 0.90 1.464 0.114
IF4_ITG 1.75 2550 253 2297 0.72 0.77 0.69 0.71 0.94 0.97 1.327 0.085

IVB_ITG 1.11 3953 387 3566 0.72 0.72 0.68 0.71 1.00 0.96 1.108 0.062
UKO_UKG 1.18 3540 357 3183 0.72 0.73 0.67 0.72 0.99 0.93 1.012 0.049
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Supplementary Table 16. Summary of numbers of highly differentiated sites in the isolates. 

  
DeltaDAF 
≥0.5 

DeltaDAF 
≥0.4 

DeltaDAF 
≥0.3 

PCadapt 
outlier with 
deltaDAF 
≥0.5 

Pcadapt 
outlier with 
deltaDAF 
≥0.4 

Pcadapt 
outlier with 
deltaDAF 
≥0.3 

FIG-FIK 0 0 1 0 0 0 
GRG-GRM 0 0 0 0 0 0 
ITG-IF1 6 28 52 0 23 119 
ITG-IF2 1 17 52 0 16 204 
ITG-IF3 4 36 54 0 26 249 
ITG-IF4 6 49 54 0 57 516 
ITG-IVB 3 8 22 0 0 0 
UKG-UKO 35 45 52 0 4 6 

 
We identified in total 47, 170 and 249 unique HighD sites in the eight isolates with deltaDAF 
greater than or equal to 0.5, 0.4 and 0.3, respectively. We did not find any sites in the FIK with 
deltaDAF greater than 0.5 and only one site with deltaDAF greater than 0.3, which reflects the 
recent divergence from FIG. The UKO showed the highest number of HighD sites with 
deltaDAF ≥ 0.5. However, of the sites with deltaDAF ≥ 0.5, 42 of 47 lie in segmental duplication 
regions, or other repeat regions, which are likely artifacts. However, one of the other five is the 
well-known lactose tolerance SNP (rs4988183) in IF1 compared with ITG. IF1’s ancestral 
population is from north Europe, so this is likely to represent a site selected between north and 
south European populations, rather than IF1-specific selection. We failed to find compelling 
biological evidence for positive selection at the other four sites. 
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Supplementary Table 17. Overlap between highly differentiated sites from both HighD analyses 
and PCAdapt. The highlighted variants are the ones shared among IF2, IF3 and IF4. 

 

 
 
PCAdapt-fast version was applied to each pair of populations separately (one isolate and its 
corresponding general population) using the whole-sample dataset for variants with MAF >0.05. 
Subsequently the p-values were transformed into q-values using the R package qvalue 
(http://github.com/jdstorey/qvalue) to filter the SNPs with false discovery rate (FDR) <0.1. All 
the variants were further filtered by requiring the derived allele frequency in isolates to be > 0.30. 
In total, 1077 sites met these criteria, with IF4 having the most; we did not find any sites in FIK, 
IVB and GRM (Supplementary Data). 39 of these sites overlapped with the HighD sites. We did 
not find any missense, LoF or other coding functional changes in the overlap, but three SNPs had 

POP‐pair SNP CHR Location Ancestral_allele Derived_allele General_DAF Isolate_DAF Delta_DAF HGNC symbol Consequence CADD score
IF1‐ITG rs112863601 2 208802168 C T 0.311 0.717 0.405 PLEKHM3 intron_variant 2.454

IF1‐ITG rs9828592 3 33044339 T C 0.491 0.875 0.384 GLB1 intron_variant 2.785

IF1‐ITG rs1398759 3 124888905 G C 0.434 0.817 0.383 SLC12A8 intron_variant 1.764

IF1‐ITG rs1789693 11 74887165 A T 0.250 0.708 0.458 SLCO2B1 intron_variant 7.651

IF1‐ITG rs28520541 12 121997478 A G 0.208 0.575 0.368 KDM2B intron_variant 6.89
IF1‐ITG rs2389240 13 96132701 A C 0.250 0.625 0.375 CLDN10‐AS1 non_coding_transcript_variant 3.996

IF1‐ITG rs3843738 17 43739194 A G 0.316 0.683 0.367 RP11‐105N13.4 non_coding_transcript_variant 8.144

IF1‐ITG rs55893840 17 71000371 A G 0.255 0.717 0.462 SLC39A11 intron_variant 0.382

IF2‐ITG rs7415711 1 86457896 G C 0.415 0.833 0.418 COL24A1 intron_variant 0.195

IF2‐ITG rs13391086 2 29615864 C T 0.028 0.400 0.372 ALK intron_variant 1.049

IF2‐ITG rs11924625 3 33070158 A T 0.326 0.700 0.375 GLB1 intron_variant 0.024

IF2‐ITG rs7660497 4 58973339 C T 0.203 0.589 0.386 SRIP1 downstream_gene_variant 4.403

IF2‐ITG rs3113813 4 137859741 G C 0.156 0.478 0.322 RP11‐138I17.1 non_coding_transcript_variant 0.44

IF2‐ITG rs190605097 9 39002471 G T 0.401 0.878 0.477 ‐ intergenic_variant 0.218

IF2‐ITG rs12789966 11 99041999 A G 0.288 0.711 0.423 CNTN5 intron_variant 1.274

IF2‐ITG rs10130552 14 71085815 C T 0.170 0.611 0.441 CTD‐2540L5.6 non_coding_transcript_variant 3.316

IF2‐ITG rs34956586 17 4430958 T C 0.283 0.722 0.439 SPNS2 intron_variant 4.955

IF2‐ITG rs55893840 17 71000371 A G 0.255 0.633 0.379 SLC39A11 intron_variant 0.382

IF3‐ITG rs13391086 2 29615864 C T 0.028 0.436 0.408 ALK intron_variant 1.049

IF3‐ITG rs1493927 3 19340911 C T 0.316 0.745 0.429 KCNH8 intron_variant 1.357

IF3‐ITG rs6549575 3 67061960 G A 0.349 0.766 0.417 KBTBD8 downstream_gene_variant 3.003

IF3‐ITG rs4947937 7 50907588 C A 0.344 0.840 0.496 AC004920.3 non_coding_transcript_variant 2.682

IF3‐ITG rs35587464 8 121924092 C T 0.274 0.670 0.397 RP11‐369K17.1 upstream_gene_variant 3.961

IF3‐ITG rs7304148 12 10870231 T C 0.226 0.617 0.391 YBX3 intron_variant 10.07

IF3‐ITG rs1525947 12 119456896 C T 0.184 0.670 0.486 SRRM4 intron_variant 3.787

IF3‐ITG rs10130552 14 71085815 C T 0.170 0.617 0.447 CTD‐2540L5.6 non_coding_transcript_variant 3.316

IF3‐ITG rs1119141 16 84437223 T C 0.406 0.798 0.392 ATP2C2 intron_variant 1.02

IF3‐ITG rs55893840 17 71000371 A G 0.255 0.596 0.341 SLC39A11 intron_variant 0.382

IF3‐ITG rs67719508 20 33487278 T C 0.212 0.660 0.447 ACSS2 intron_variant 1.417

IF3‐ITG rs1153336 21 41157658 C G 0.203 0.638 0.436 IGSF5 intron_variant 1.322

IF3‐ITG rs2839327 21 47982652 A G 0.175 0.553 0.379 DIP2A intron_variant 0.634

IF4‐ITG rs13391086 2 29615864 C T 0.028 0.431 0.402 ALK intron_variant 1.049
IF4‐ITG rs6734194 2 153466691 G T 0.387 0.847 0.460 FMNL2 intron_variant 3.689

IF4‐ITG rs3020453 3 39325523 T C 0.113 0.597 0.484 CX3CR1 upstream_gene_variant 2.529

IF4‐ITG rs3113813 4 137859741 G C 0.156 0.597 0.442 RP11‐138I17.1 non_coding_transcript_variant 0.44

IF4‐ITG rs434602 6 6165468 T C 0.307 0.736 0.430 F13A1 intron_variant 2.308

IF4‐ITG rs4475409 7 83621932 T C 0.245 0.667 0.421 SEMA3A intron_variant 0.982

IF4‐ITG rs2469386 8 3515312 C A 0.231 0.708 0.477 CSMD1 intron_variant 0.515

IF4‐ITG rs7092649 10 60005202 G A 0.198 0.639 0.441 IPMK intron_variant 1.301

IF4‐ITG rs11222788 11 131649367 C G 0.137 0.597 0.460 NTM intron_variant 2.81

IF4‐ITG rs199984077 13 110078785 T C 0.142 0.639 0.497 ‐ intergenic_variant 1.337

IF4‐ITG rs10130552 14 71085815 C T 0.170 0.667 0.497 CTD‐2540L5.6 non_coding_transcript_variant 3.316

IF4‐ITG rs8037845 15 93805290 C G 0.156 0.569 0.414 RP11‐326A13.1 downstream_gene_variant 0.105

IF4‐ITG rs191732434 16 3131937 A C 0.288 0.792 0.504 RP11‐473M20.9 non_coding_transcript_variant 0.132

IF4‐ITG rs4843293 16 88028003 G A 0.363 0.750 0.387 BANP intron_variant 1.159

IF4‐ITG rs34956586 17 4430958 T C 0.283 0.611 0.328 SPNS2 intron_variant 4.955

IF4‐ITG rs55893840 17 71000371 A G 0.255 0.625 0.370 SLC39A11 intron_variant 0.382

IF4‐ITG rs67719508 20 33487278 T C 0.212 0.583 0.371 ACSS2 intron_variant 1.417

IF4‐ITG rs140038 22 36964359 C T 0.340 0.778 0.438 CACNG2 intron_variant 6.845
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CADD scores greater than 5, indicating that they are potentially functionally important. The 
most interesting finding from these analyses was that six of these variants are shared between 
different isolates from Italy: IF2, IF3 and IF4. We interpret these as sites that were potentially 
positively selected in the ITG for the ancestral allele after the population split from the isolates. 
However, the underlying selection force is unclear. Four SNPs lie in the protein-coding genes 
ALK, SPNS2, SLC39A11 and ACSS2, and may merit future follow-up. ALK is a gene involved in 
obesity22 and glucose homeostasis23 traits; SPNS2 is also implicated in obesity24. SLC39A11 was 
linked to pathways associated with relative hand skill25, and finally ACSS2 was linked to protein 
C levels26. 
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Supplementary Notes 
 

Variant calling and counts 

SNP site selection 
 
SNP sites were included based on the following cumulative strategy (i.e. a + b + c): a) all sites in 
the isolates: FIK, GRM, IF1, IF2, IF3, IF4, IVB and UKO and the general population FIG. b) all 
sites in the 1000 Genomes Phase 3 populations, thus also including the Toscani from Italy (ITG, 
labelled as TSI in 1000 Genomes publications). c) all sites with a non-reference allele count, AC 
≥5 in the UKG. 
 
Additionally, we required a non-reference allele count, AC ≥1, within the input set of individuals, 
a technicality due to some call sets having been made together with external data, thus avoiding 
sites which are not polymorphic in the samples used. Only the autosomes were considered. 

Genotype likelihood calculation 
 
Genotype likelihoods were calculated with samtools/bcftools (0.2.0-rc9) on the dataset above, 
plus the 21 other worldwide populations in the 1000 Genomes Phase 3 data19: 
 
samtools mpileup -IE -C50 -d100000 -t DP,DP4 -l wgs.isolates.union.AC1.vcf.gz 
bcftools call -mAC alleles -f GQ,GP -T wgs.isolates.union.AC1.alleles.gz 
 
We dropped three samples from IVB (EGAN00001098982, XX129575 and XX021810) and two 
samples from UKO (EGAN00001098982 and EGAN00001010505) due to their high ratio of 
heterozygous to homozygous calls compared to all other samples. This can be a sign of 
contamination or different ancestry. 

Genotype calling 
 
Genotypes were called and phased using Beagle v4 (r1274)27. The input genotype likelihood 
VCFs were split into regions containing a minimum of 3000 sites with 500 buffer sites on either 
side of the region. 
 
java $jvm_args -jar b4.r1274.jar 

phase-its=5 
nthreads=12 
gl=$region.in.vcf.gz 
out=$region.out 

 
The overlapping output region VCFs were then ligated to per-chromosome VCF files using 
‘bcftools concat –l’. 

Annotation 
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Only the INFO/DP and FORMAT/GT from the original vcf files were kept, while the INFO/AC, 
INFO/AN, INFO/AF, INFO/NS were added with bcftools to annotate the complete dataset. 
INFO/AA (ancestral allele) was added with fill-aa using files from the 1000 Genome Phase 3 
ancestral allele file. 
 
INFO/GERP was added using bcftools annotate. 
The ID column was filled with rsIDs from dbSNP141 using bcftools annotate. 
Variant Effect predictor (VEP) annotation from Ensembl 76 was added with:  
 
variant_effect_predictor.pl  
    --assembly GRCh37 
    --everything 
    --allele_number 
    --plugin Condel,/path/to/config/Condel/config/,b 
    --plugin Blosum62 
    --plugin LoF, human_ancestor_fa:/path/to/human_ancestor.fa.rz  
    --format vcf 
    --vcf  
    --cache  
    --dir /path/to/vep_cache 
    --no_progress 
    --quiet 
    --offline 
    --force_overwrite 
    --no_stats 
 
including the LOFTEE plugin (https://github.com/konradjk/loftee) for identifying LoF (loss-of-
function) variation. 

Files and availability 
 
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.vcf.gz: phased genotype calls in VCF 
format 
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.bcf: phased genotype calls in BCF 
format 
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.sites.vcf.gz: sites-only VCF files 
- {CHROM}.ISOLATES.mpileup.beagle.anno.20140815.vcf.gz.stats: stats file generated by 
`bcftools stats` 
- {CHROM}.ISOLATES-summary.pdf: default summary slides from `bcftools stats` 
- README.20140815: this file 
- ISOLATES.panel: lists all 9,375 samples and their cohort 
- ISOLATES.cohorts: lists the cohorts 
- 1000G_related_individuals.txt: lists related individuals in the Phase3 release. 
- UK10K_exclusion_from_association.txt: lists samples excluded from certain downstream 
UK10K analyses due to relatedness, non-European-ness, etc. 
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All of these files are publicly available from the EGA (accession number: EGAD00001002014) 
under managed access following completion of a data access agreement.  

Variant calling for GRG 

100 samples from the HELIC TEENAGE (TEENs of Attica: Genes and Environment) cohort 
composed of young adults from Athens, Greece, were sequenced at 30X depth using the Illumina 
HiSeq X Ten platform. Variants were called on a per-sample basis using samtools 0.1.18 against 
the union of all 29,210,157 sites that were called as non-monomorphic in the whole dataset in the 
section 1.2. The calling omitted indels and sites where read depth exceeded 3,000 times the 
average read depth (100,000 reads). Individual VCFs were then merged using bcftools. Across 
called variants, mean read depth was 32.4X. 

Validation 

To assess the performance of the genotype calling from the low coverage data, we compared the 
genotypes against genotype chip data available for a subset of the cohorts. Chip data was 
available for 1,772 samples in the 1000 Genomes Phase3 cohort, 489 samples in the SISu and 
Kuusamo cohorts (FIG and FIK) and 2,402 samples in the UK10K cohort (UKG). Discordance 
rates for each cohort on chromosome 20 are shown in Supplementary Table 2.
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