
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In their study, Xue et al. analyzed germline variants in 10 isolated populations in comparison with 

variants in the general population from the 1000 Genomes and UK10K projects. Well executed and 

described in great detail, albeit mostly in the supplementary material, this large study can serve as a 

highly useful resource that will no doubt be applied in many future studies.  

 

At the same time, the results presented are incremental, which poses a major weakness of providing 

too few biological insights. The authors introduce two new measures—DVxy and SVxy—to quantify the 

diminishing purifying selection in isolates, as well as an additional measure for isolatedness (i.e., Isx), 

which they suggest can “guide population choice in future complex trait association studies.” Although 

a potentially important finding, the authors failed to demonstrate how these measures can guide 

population selection. In response, can the authors provide an example of how using Isx can 

dramatically improve association studies that use isolated populations instead of the general 

population?  

 

Minor comments  

1. It is unclear to me which samples were included in the total count of 9,375 from the current study 

and the 1000G and UK10K projects.  

2. Although I might have overlooked such an explanation, it appears as though the term Ne is not 

defined in the text.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

This is an interesting study of whole genome sequencing of multiple isolated European populations 

along with matched general population controls. The idea was to perform low-coverage sequencing (4-

10X) of ~3000 individuals representing a variety of populations, reconstruct their demographic history, 

and quantify the extent of population-specificity of variants in each isolated population. The authors 

develop several new statistics to describe the isolatedness and population specificity of variants to 

discuss the potential relaxation of selective constraint on population isolates. Importantly, the data are 

made available through EGA. I very much like seeing the demographic inference of these populations, 

and think the data are summarized well to have broad impact. Of course there are usually several 

ways that the study could be improved, and I’ve tried to identify them below.  

 

First, I don’t think the title of the manuscript reflects the results of the paper. The only aspect of 

“functional” variants in this paper appears to be the use of CADD scores. This is of course a functional 

prediction, not a true aspect of “function”. Further, it is not clear why CADD score >20 is used as a 

threshold. Lastly, it is not clear that there are any tests of “enrichment” statistically backing up the 

title’s claim.  

 

Second, I would argue that the authors should be more precise with their use of terminology when 

discussing relaxation of purifying selection. One measure of natural selection is the fitness effect of a 

given mutation (s). This is not something that is observable, and is actually quite hard to infer. The 

“strength” of selection is often thought of in terms of the product of the fitness effect and the effective 

population size (Ne*s). For a population isolate, the extreme bottleneck and subsequent inbreeding 

can result in a sustained reduction in Ne, which of course reduces the product of Ne*s, but such a 

bottleneck or any other demographic effect is unlikely to impact s. The authors find that, consistent 



with Do et al [29], there is no evidence for reduction of genetic load across individuals. It therefore 

seems incorrect to conclude (as per the abstract) that the authors “demonstrate the relaxation of 

purifying selection”. In fact, what the authors are seeing is that some deleterious variants increase in 

frequency due to drift, but the small population size results in a reduction in the introduction of new 

deleterious alleles (thereby having no effect on genetic load). This is a result that is also similar to 

Simons et al. [PMC3953611].  

 

Major comments:  

 

On page 4, the authors argue that IF1-IF4 exhibit a “greater level of isolation and lower level of gene 

flow with their general population”. However, IF1-IF4 have the smallest sample size (by a factor of >6 

on average). I am worried that comparisons like this and other places that differences in sample size 

could be playing a major role in population differences. The general populations that the authors 

sample are far larger than any of the isolates, and so it is unclear to what extent the results are driven 

by sample size. For some of the analyses, I think it would be very helpful to have a supplemental 

figure showing what happens to figures 1d, 2b, 3c, and 3d if all populations were down sampled to 36 

individuals (the size of IF4, your smallest sample size in Table 1).  

 

Around lines 166, the authors say “several lines of evidence suggest relaxed purifying selection in the 

isolates due to their reduced Ne, although as expected we do not detect substantially increased 

genetic load per genome…”. It seems that these are directly contradictory statements. I don’t see how 

you can have relaxed purifying selection without increased load. Instead, it seems like you have 

equivalent levels of purifying selection, but increased drift due to lower Ne. It would be great to see 

how the authors differentiate relaxed purifying selection from a lower Ne that causes increased drift 

(so most deleterious variants are lost, but some increase in frequency) and a decreased introduction 

of novel deleterious variants. The statistics proposed do not seem distinguish these two, and seem 

consistent with my alternative explanation. I would argue that your results are highly interesting and 

valuable either way, but one just needs to be careful with terminology to be consistent with recent 

literature unless you have strong evidence refuting recent literature (and I do not see that being the 

case here).  

 

The authors suggest that they do not find convincing evidence for positive selection in any isolate 

using two statistics. While this is consistent with some arguments in the literature (e.g. Hernandez et 

al [PMC3669691]), it would also be helpful to try a couple other statistics, particularly the SDS metric 

from Field et al [PMID: 27738015] recently presented (likely published after submission of this paper, 

though the preprint and method have been available for a while).  

 

Minor comments:  

 

I am not a fan of approximate numbers in an abstract, and think people would appreciate seeing 

“Here, we perform a comprehensive investigation using low-depth whole genome sequencing of 1433 

individuals from eight European isolates and 1663 individuals from two matched general populations.” 

You then integrate data from a couple other population isolates and 1000 Genomes Project data, and 

I’m not sure how best to indicate that here.  

 

In the first paragraph, the authors say “In isolated populations (isolates), some deleterious rare 

variants have increased in frequency while some neutral rare variation is lost…”. The first part is likely 

to be a minority of cases, but I don’t see this quantified. I think it could be an important contribution 

of this paper to estimate the number of deleterious variants that increase in frequency. You have hints 

of the effect in Fig 3.  

 



In a similar instance, in Table 1, you have novel common SNPs in isolate broken into two groups ** = 

cases where the none of the general populations have MAF>5%, and * = cases where the nearest 

general population has MAF < 5%. This seems like it might be misleading, since most of these SNPs, 

particularly the latter could have MAF ~4.9%. It would be much more interesting to identify the 

number of variants that are >=5% in the isolate, but rare (MAF<1%) in all or the nearest general 

population. The authors refer to the numbers from this table in the text and highlight the as “useful 

markers for whole-genome ssociation studies in these populations and could potentially lead to novel 

association signals”. I would strongly encourage the authors tone down this statement, because 

variants that have MAF>1% are likely well powered in GWAS in the general population given current 

sample sizes. It would be especially important if the authors found that a higher proportion of 

predicted deleterious variants (e.g. by CADD) are common in the isolates (and rare in general 

populations) compared to neutral variants.  

 

The authors do PCA on rare variants, which highlight recent population structure better than common 

variants, and should cite O’Connor et al [PMC4327153].  

 

Supplementary Figure 2 (PC 8 vs 7) is great, you don’t often see human population structure that 

looks like the cartoon of a human.  

 

I don’t find figure S11 to be particularly helpful. It would be much more helpful to look at the 3 choose 

2 pairwise plots. It is very hard to tell what the curvature looks like in your 3D figure.  

 

The authors argue that “Isx is the best overall predictor of the other pairwise measures”. They cite Fig 

2c, which shows a correlation plot. By eye, it seems like F is actually shifted toward higher correlation 

than the Isx, but it is hard to tell from a heat map (the constraints of a heatmap). The authors also 

refer to supplementary figures 12-17, but figures S12-16 seem completely unrelated, and S17 does 

not compare slow/goodness of fit with other statistics (just Isx). The authors should show that Isx 

does a better job predicting the other statistics in order to make this claim, because from the data 

presented I am not convinced.  

 

 

 

 

 

 

 

 

 

 

 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

Authors adequately addressed my concerns. I also think they adequately addressed the comments by 

the other reviewer.  
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Response to reviewers 
 
Reviewers' comments are shown like this. 
 
 Author responses are inset below each comment. 
 
 
Reviewer #1 (Remarks to the Author): 
 
In their study, Xue et al. analyzed germline variants in 10 isolated populations in 
comparison with variants in the general population from the 1000 Genomes and UK10K 
projects. Well executed and described in great detail, albeit mostly in the 
supplementary material, this large study can serve as a highly useful resource that will 
no doubt be applied in many future studies. 
 

We appreciate these positive comments. 
 
At the same time, the results presented are incremental, which poses a major weakness 
of providing too few biological insights. The authors introduce two new measures—
DVxy and SVxy—to quantify the diminishing purifying selection in isolates, as well as an 
additional measure for isolatedness (i.e., Isx), which they suggest can “guide population 
choice in future complex trait association studies.” Although a potentially important 
finding, the authors failed to demonstrate how these measures can guide population 
selection. In response, can the authors provide an example of how using Isx can 
dramatically improve association studies that use isolated populations instead of the 
general population?  
 

We agree that this would be a great thing to do, but in order to do this we would 
need whole-genome sequencing data from thousands samples from multiple 
isolates and their closest general populations, with the same phenotypic data. 
There are no such data available at the moment and generating them would be 
beyond the scope of the current study. However, we have investigated to what 
extent that it is possible to address this question using available GWAS data: either 
SNP genotype or whole genome sequence data, or combined. We compiled a list 
of published GWAS studies on isolated populations (Table below), but found that 
there is not any suitable dataset among these studies that we could use to address 
this question. They have different sample sizes (which will lead to different power), 
different phenotypes, different measures for even the same phenotype, and 
different data types (different SNP chip, different coverage of whole genome 
sequencing data etc.). However, most of the GWAS hits identified in the isolates 
are very rare in the general population, and some of them were only found in the 
isolates.  
 
We have emphasized the need for such studies in the future by changing our 
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concluding sentence from “We conclude that the Isx value is therefore potentially 
a reliable indicator of the potential power of association study in the different 
isolates.” to “We conclude that the Isx value is therefore potentially a reliable 
indicator of the potential power of association study in the different isolates which 
could be further tested when we have suitable datasets.” 
 
 

 
Isolates 
(ref) 

Data Sample 
size 

Phenotypes Results MAF 
(isolates/general) 

Lancaster 
Amish 
(ref 4) 

Affymetrix 
500K Array 

809 
 

fasting and 
postprandial 
triglycerides 

rs76353203 
 

2.4%/0.0% 

Icelanders 
(ref5) 

WGS 
+imputed 
Illumina SNP 
chip  

4,537 
(cases) 
54,444 
(Controls)
 

prostate 
cancer 

rs188140481 3.2%/1.0% 

MANOLIS 
(ref 6) 

Illumina 
HumanExome 

1,256 HDL levels rs76353203 1.9%/0.0% 

Finnish 
(ref7) 

Illumina 
HumanExome 

8,229 insulin 
processing 
and secretion 

rs61741902 
rs35233100 
rs150781447 
rs3824420 
rs35658696 
rs36046591 
rs2650000 
rs505922 
rs60980157 

1.4%/1.0%/1.0% 
3.7%/5.0%/5.8% 
2.0%/1.0%/0.4% 
2.9%/0.3%/0.0% 
5.3%/4.0%/3.2% 
5.3%/4.0%/3.0% 
45.5%/36.0%/35.0% 
47.1%/37.0%/34.6% 
30.0%/24.0%/24.4% 

Finnish 
(ref9) 

83 LoF SNPs 36,262 60 
quantitative 
traits 

Chr14:55890937 
Chr8:17726470 
Chr16:84495318 
Chr13:100518634 
Chr11:59863030 

1.1%/0.0% 
3.7%/0.0% 
2.3%/0.5% 
3.5%/2.2% 
1.9%/0.1% 

Greenland 
(ref10) 

Illumina 
Cardio-
Metabochip + 
exomseq 

2,575 T2Drelated 
quantitative 
traits 

rs61736969 
 

17.0%/0.0% 
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Sardinian 
(ref11) 

4x WGS 2,120 circulating 
lipid levels 
and five 
inflammatory 
biomarkers 

rs11549407 
Chr11:116661101 
rs73198138 
rs183233091 
Chr12:125406340 
rs34599082 
rs200491743 

4.8%/0.0% 
2.5%/0.0% 
0.4%/2.3% 
1.0%/2.3% 
0.7%/0.0% 
3.7%/1.0% 
0.5%/0.0% 

Icelanders 
(ref12) 

WGS 
+imputed 
Illumina SNP 
chip  

11,114 
(case) 
267,140 
(controls) 

Type 2 
diabetes 

rs76895963 
rs75615236 
rs35658696 
rs78408340 
Chr13: 27396636 

1.47%/2.4% 
7.10%/7.2% 
4.98%/4.0% 
0.65%/0.0% 
0.20%/0.0% 

 
Minor comments 
1. It is unclear to me which samples were included in the total count of 9,375 from the 
current study and the 1000G and UK10K projects. 
 

We have made this clearer in the text and updated the Supplementary Table. The 
total count of 9375 samples includes 3059 from the current study, 2353 from the 
1000 Genomes Project Phase 3 release, and 3781 from UK10K. We have added 
these numbers into the main text. 

 
2. Although I might have overlooked such an explanation, it appears as though the term 
Ne is not defined in the text. 
 

We added this in the text: it is effective population size (Ne). 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
This is an interesting study of whole genome sequencing of multiple isolated European 
populations along with matched general population controls. The idea was to perform 
low-coverage sequencing (4-10X) of ~3000 individuals representing a variety of 
populations, reconstruct their demographic history, and quantify the extent of 
population-specificity of variants in each isolated population. The authors develop 
several new statistics to describe the isolatedness and population specificity of variants 
to discuss the potential relaxation of selective constraint on population isolates. 
Importantly, the data are made available through EGA. I very much like seeing the 
demographic inference of these populations, and think the data are summarized well to 
have broad impact.  
 

We appreciate these positive comments. 
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Of course there are usually several ways that the study could be improved, and I’ve tried 
to identify them below. 
First, I don’t think the title of the manuscript reflects the results of the paper. The only 
aspect of “functional” variants in this paper appears to be the use of CADD scores. This 
is of course a functional prediction, not a true aspect of “function”. Further, it is not 
clear why CADD score >20 is used as a threshold. Lastly, it is not clear that there are any 
tests of “enrichment” statistically backing up the title’s claim.  
 

We agree that the CADD score is not an empirical measure of function, but instead 
a prediction of function – albeit perhaps the best current option for evaluating the 
functional importance of variants genomewide, as there is no experimental way to 
determine the function of variants on a genomewide scale at the moment. 
Although CADD provides only predictions, it is difficult to doubt that some CADD 
classes, such as missense and loss-of-function variants in protein coding genes, 
generally have more functional impact than variants in unannotated non-coding 
regions.   
 
We fully agree that using a cutoff is always somehow arbitrary, but here we need 
to both focus on the variants most likely to be functional and roughly balance the 
number of variants in each bin, to provide compatible statistical power across bins. 
A score of 20 provides the best compromise. We have added an exploration of 
other cutoff values, 15 and 25, as well as different bins and find very similar results. 
We have added three figures to demonstrate this (Supplementary Figure 18) 
 
Besides using CADD scores, we also tested the enrichment using missense variants 
(DVxy-missense) and missense plus loss of function variants (coding functional 
variants, DVxy-coding); we found that the both DVxy-missense and DVxy-coding 
are significantly greater than 1 in almost all of the isolated populations (except 
GRM, due to the different variant calling used in the GRG; Figure 3C and 
Supplementary Table 12), which suggested the enrichment of functional drifted 
variants. We have corrected DVxy statistics using intergenic variants for genetic 
drift, as can be seen from the formula we used for DVxy calculation: ݃݊݅݀݋ܿ_ݕݔܸܦ = ൙ܿ݅݊݁݃ݎ݁ݐ݊݅ ݕܸܦ%݁ݏ݊݁ݏݏ݅݉ ݕܸܦ% ܿ݅݊݁݃ݎ݁ݐ݊݅ ݔܸܦ%݁ݏ݊݁ݏݏ݅݉ ݔܸܦ%  

 
We used the jack-knife bootstrap approach to get 95th percentiles of all these 
estimates. If the values are greater than, and do not overlap with, 1, they are 
statistically significant. These estimates for functional variants (either CADD scores 
greater than 20, or missense, or missese plus LoF) are all significantly greater than 
1 in the isolates, but smaller than 1 in the general populations. We have made it 
clearer in the main text that such a test is used. 
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We see these findings as strong evidence for enrichment of functional variants at 
least for the subset we are particularly interested in here, the DVs with 2-5% 
frequency in isolates, yet 3 times higher than in its general population. To return 
to the reviewer’s initial point about the title, we thus think that the original title is 
justified, and note that the predictions do not need to be 100% accurate for it to 
be appropriate. However, we don’t see this as a key point and could change it to 
“Choosing the best populations for association studies – insights from large-scale 
whole-genome sequencing of multiple isolated European populations”, which is 
more neutral but longer and less catchy. We would welcome editorial input on 
this.   
 

 
Second, I would argue that the authors should be more precise with their use of 
terminology when discussing relaxation of purifying selection. One measure of natural 
selection is the fitness effect of a given mutation (s). This is not something that is 
observable, and is actually quite hard to infer. The “strength” of selection is often 
thought of in terms of the product of the fitness effect and the effective population size 
(Ne*s). For a population isolate, the extreme bottleneck and subsequent inbreeding can 
result in a sustained reduction in Ne, which of course reduces the product of Ne*s, but 
such a bottleneck or any other demographic effect is unlikely to impact s.  
 

We fully agree that drift is a confounding factor in a study of purifying selection, 
especially in isolated populations, so when we developed the DVxy and SVxy 
statistics, we took this into account and corrected for the genetic drift effect. 
When we calculated DVxy for missense variants, or missense plus loss of function 
variants, in each isolate or general population, we used intergenic variants to 
correct for the effect of genetic drift, which affects all variant equally. When we 
calculated DVxy for the whole genome using different CADD scores, in each isolate 
and general population, we saw differences of the DVxy value between each 
isolate and its general population increase significantly from low to high CADD 
scores. This itself is a correction: if there is no selection on the functionally 
important variant (more likely with higher CADD scores), we should not see any 
difference between isolate and general population. When we calculated SVxy, we 
used synonymous variants to correct for genetic drift in a similar way.  
 
We also agree that these corrections and the functional annotation are not 
perfect, but nevertheless, the overall trend is very striking. 
 

The authors find that, consistent with Do et al [29], there is no evidence for reduction of 
genetic load across individuals. It therefore seems incorrect to conclude (as per the 
abstract) that the authors “demonstrate the relaxation of purifying selection”. In fact, 
what the authors are seeing is that some deleterious variants increase in frequency due 
to drift, but the small population size results in a reduction in the introduction of new 
deleterious alleles (thereby having no effect on genetic load). This is a result that is also 
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similar to Simons et al. [PMC3953611].  
 
If we consider all variants in each population, and ask whether we see an 
increased genetic load per individual, we indeed do not see any such increase 
which is consistent with Do et al. [29] as the reviewer points out. However, when 
we only look at a particular subset of the variants (frequency 2-5% in the isolated 
population, yet three time higher than in its general population), called drifted 
variants (DVs) here, we see the enrichment of functional DVs in the isolates. This is 
due to the site frequency spectrum in the isolate and its general population being 
different. 

 
 
Major comments: 
 
On page 4, the authors argue that IF1-IF4 exhibit a “greater level of isolation and lower 
level of gene flow with their general population”. However, IF1-IF4 have the smallest 
sample size (by a factor of >6 on average). I am worried that comparisons like this and 
other places that differences in sample size could be playing a major role in population 
differences. The general populations that the authors sample are far larger than any of 
the isolates, and so it is unclear to what extent the results are driven by sample size. For 
some of the analyses, I think it would be very helpful to have a supplemental figure 
showing what happens to figures 1d, 2b, 3c, and 3d if all populations were down 
sampled to 36 individuals (the size of IF4, your smallest sample size in Table 1). 
 

This is potentially a serious concern, and the one that we took into account in our 
study design. Of the specific examples the reviewer highlights, Figure 1d and 3d 
are both based on sample sizes of 36 from each population, but Figures 2b and 3c 
were not. We have added Supplementary Figure 18a and Supplementary Figure 
20a for 2b and 3c. We have also redone the DVxy-wg with different CADD score 
bins using the minimum sample size (Supplementary Figure 18b). As the reviewer 
suggests, the overall results are pretty similar. 

 
Around lines 166, the authors say “several lines of evidence suggest relaxed purifying 
selection in the isolates due to their reduced Ne, although as expected we do not detect 
substantially increased genetic load per genome…”. It seems that these are directly 
contradictory statements. I don’t see how you can have relaxed purifying selection 
without increased load. Instead, it seems like you have equivalent levels of purifying 
selection, but increased drift due to lower Ne. It would be great to see how the authors 
differentiate relaxed purifying selection from a lower Ne that causes increased drift (so 
most deleterious variants are lost, but some increase in frequency) and a decreased 
introduction of novel deleterious variants. The statistics proposed do not seem 
distinguish these two, and seem consistent with my alternative explanation. I would 
argue that your results are highly interesting and valuable either way, but one just 
needs to be careful with terminology to be consistent with recent literature unless you 
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have strong evidence refuting recent literature (and I do not see that being the case 
here). 
 

This is a good point and we should make our analyses clearer. The genetic load 
was measured at the per-individual/genome level using all variants, and we did 
not find any increase, as expected. Genetic drift and relaxation of purifying 
selection in the isolated populations change the frequency spectrum of 
deleterious variants at the population level: some deleterious variants increased 
their frequency and others decreased or were lost, so did not significantly change 
the number of deleterious variants per individual.  
 
As the smallest sample size among our populations is 36, and in order to avoid the 
bias from different sample sizes, we subsampled 36 individuals from all of the 
populations studied here in several of the analyses. This limited our power to test 
for relaxation of purifying selection among all variants, so we concentrated on 
subsets which could give us the best power. One such subset is the DV class, which 
are at frequency 2-5% in the isolated population, yet three time higher than in its 
general population.  Here, we found significant enrichment for functional variants 
(missense, missense plus loss-of-function) in the isolates. The other statistic we 
used for testing relaxation of purifying selection is SVxy, where we only look at 
singleton variants in coding regions. Both statistics we have corrected for the drift 
effect either by intergenic variants, or synonymous singleton variants as described 
in the comments above. 

 
The authors suggest that they do not find convincing evidence for positive selection in 
any isolate using two statistics. While this is consistent with some arguments in the 
literature (e.g. Hernandez et al [PMC3669691]), it would also be helpful to try a couple 
other statistics, particularly the SDS metric from Field et al [PMID: 27738015] recently 
presented (likely published after submission of this paper, though the preprint and 
method have been available for a while). 
 

We agree with the reviewer that the SDS method is a powerful way to detect 
very recent selection and soft positive selection on standing variants; however, it 
requires very large samples sizes, which we do not have for our isolates. But we 
still tried running this method on one of our isolates (UKO) and one general 
population (UKG, which is the UK10K data, the same as the SDS paper used). We 
successfully replicated the findings in the lactose tolerance SNPs in the UKG 
(UK10K), but failed to find any convincing signal in the UKO, although we do 
expect lactose tolerance to be selected in this population as well since Orcadians 
enjoy dairy products (e.g. http://www.orkneyfoodanddrink.com/orkney-
creamery). The derived allele frequency of this SNP is very similar in UKG and 
UKO (0.73 and 0.78, respectively). UKO is the isolate for which we have the 
largest sample size (397) and second lowest isolation index (genetic drift effects 
should be smaller), so SDS should have the best power among all of the isolates 
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we studied. This negative finding indicates that SDS is unlikely to have enough 
power to detect signals in the even smaller samples. But we added a section to 
the Supplementary Material with these results and some discussion (section 
5.2.3), and a sentence to the main text. 

 
 
Minor comments: 
 
I am not a fan of approximate numbers in an abstract, and think people would 
appreciate seeing “Here, we perform a comprehensive investigation using low-depth 
whole genome sequencing of 1433 individuals from eight European isolates and 1663 
individuals from two matched general populations.” You then integrate data from a 
couple other population isolates and 1000 Genomes Project data, and I’m not sure how 
best to indicate that here.  
 

We appreciate this suggestion and avoided using approximate numbers in our 
abstract, but the word limit restricts what we can do. So we changed the sentence 
to “Here, we perform a comprehensive investigation using 3059 newly-generated 
whole-genome low-depth sequences from eight European isolates and two 
matched general populations, together with published data from the 1000 
Genomes Project and UK10K.” 

 
In the first paragraph, the authors say “In isolated populations (isolates), some 
deleterious rare variants have increased in frequency while some neutral rare variation 
is lost…”. The first part is likely to be a minority of cases, but I don’t see this quantified. I 
think it could be an important contribution of this paper to estimate the number of 
deleterious variants that increase in frequency. You have hints of the effect in Fig 3. 
 

In its context, this is not a conclusion we are drawing, but rather a prediction. 
Isolated populations have experienced a bottleneck, which will increase genetic 
drift, and by chance some deleterious rare variants will have increased in 
frequency while some neutral rare variation is lost. However, we appreciate the 
interest in this topic and have generated some relevant numbers. We defined 
missense plus LoF variants as functional (most would be deleterious) for the 
coding region, and CADD scores greater than 15 for genomewide variants. We 
found that around ~150-~700 deleterious variants in coding region and ~500-
~2800 genome wide have drifted to higher frequency in the isolates (these 
variants have MAF >5.6% in isolates, but <1.4% in all of the four general 
populations). We added this table to the Supplemenatry Material (Supplementary 
Table 4), and added a sentence to the main text. 
 

Isolates Total Missense plus 
LoF 

CADD score  
15 

FIK 70579 410 (0.58%) 1479 (2.1%) 
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In a similar instance, in Table 1, you have novel common SNPs in isolate broken into two 
groups ** = cases where the none of the general populations have MAF>5%, and * = 
cases where the nearest general population has MAF < 5%. This seems like it might be 
misleading, since most of these SNPs, particularly the latter could have MAF ~4.9%. It 
would be much more interesting to identify the number of variants that are >=5% in the 
isolate, but rare (MAF<1%) in all or the nearest general population.  
 

This is a good suggestion. In order to avoid sample size bias, we did these analyses 
using the minimum sample size set, so we only have 36 individuals from each 
population. We have now redone the analyses by counting the variants which 
have alternative allele count of 4 or more in the general population (equivalent to 
MAF > 5.6%), but 1 or less in the general population (equivalent to MAF <1.4%) 
and updated Table 1 accordingly. The numbers are lower than before, but still 
quite substantial.  

 
The authors refer to the numbers from this table in the text and highlight the as “useful 
markers for whole-genome association studies in these populations and could 
potentially lead to novel association signals”. I would strongly encourage the authors 
tone down this statement, because variants that have MAF>1% are likely well powered 
in GWAS in the general population given current sample sizes.  
 

We agree with this point, so we toned down this statement and changed it to 
“useful markers for whole-genome association studies in these populations and 
some of them (if absent from the general population) could potentially lead to 
novel association signals.” 

 
It would be especially important if the authors found that a higher proportion of 
predicted deleterious variants (e.g. by CADD) are common in the isolates (and rare in 
general populations) compared to neutral variants. 
 

We have done this, but in a slightly different way. We looked at variants at 2-5% in 
the isolates, yet at least 3 times higher than in its general population (Figure 3b). 
We seen the enrichment in the variants with higher CADD scores (more likely 
functional important or deleterious), but we did not see the difference for the 
ones with low CADD scores (more likely neutral). We appreciate that we have only 

GRM 49884 266 (0.53%) 988 (2.0%) 
IF1 119157 689 (0.58%) 2676 (2.2%) 
IF2 94496 518 (0.55%) 2080 (2.2%) 
IF3 107281 616 (0.57%) 2417 (2.3%) 
IF4 122254 688 (0.56%) 2792 (2.3%) 
IVB 30284 154 (0.51%) 530 (1.8%) 
UKO 36512 210 (0.58%) 634 (1.7%) 
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done this with subset of the variants; however, the variants we use are the ones 
that give us the best power to address the question, given the sample sizes we 
have.  

 
 
The authors do PCA on rare variants, which highlight recent population structure better 
than common variants, and should cite O’Connor et al [PMC4327153]. 
 

Thanks for pointing this out; we have added this reference. 
 
Supplementary Figure 2 (PC 8 vs 7) is great, you don’t often see human population 
structure that looks like the cartoon of a human. 
 

Thanks for such a nice comment. 
 
I don’t find figure S11 to be particularly helpful. It would be much more helpful to look 
at the 3 choose 2 pairwise plots. It is very hard to tell what the curvature looks like in 
your 3D figure. 
 

We have generated a new figure for this, with three panels each showing a 
pairwise plot. It is much clearer and we appreciate this suggestion. 

 
The authors argue that “Isx is the best overall predictor of the other pairwise measures”. 
They cite Fig 2c, which shows a correlation plot. By eye, it seems like F is actually shifted 
toward higher correlation than the Isx, but it is hard to tell from a heat map (the 
constraints of a heatmap).  
 

We have added the correlation coefficient values into the heat map and to 
Supplementary Table 11 to make the information clearer. 

 
The authors also refer to supplementary figures 12-17, but figures S12-16 seem 
completely unrelated, and S17 does not compare slow/goodness of fit with other 
statistics (just Isx).  
 

Thank you for pointing this out: the references are indeed wrong. We have 
corrected these and also added Supplementary Table 11 to show the pairwise 
correlation coefficients.  

 
The authors should show that Isx does a better job predicting the other statistics in 
order to make this claim, because from the data presented I am not convinced. 
 

We agree with the reviewer that Isx does not really stand out strikingly in our 
current study, showing similar prediction power to the inbreeding coefficient (F) 
and runs of homozygousity (ROH) overall. Nevertheless, Isx was calculated from 
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three population demographic parameters, which cover different aspects of the 
relevant population features. It should thus be more robust to population 
confounding factors. In contrast, both of F and ROH are only based on a single 
measurement, and thus more prone to confounding factors such as recent 
inbreeding, or consanguinity. The populations and samples in the current study 
don’t have such confounding factors, so Isx does not stand out as much as in 
might. We have therefore toned down this claim and suggest that it should be 
further tested in future studies.  
 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
Authors adequately addressed my concerns. I also think they adequately addressed the 
comments by the other reviewer. 
 

We thank to the reviewer for these positive comments 
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