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SUPPLEMENTAL METHODS: 1 

List of tested learning algorithms: We have tested the performance of different learning algorithms that 2 

represent major classification methods: 3 

(i) The rule-based method generate classification models using a collection of "if ... then ..." rules. It is 4 

also known as Separate-And-Conquer method. This method is generating a rule that covers a subset of 5 

the training examples and then removing all examples covered by the rule from the training set. This 6 

process is repeated iteratively until there are no examples left to cover. The algorithms are usually 7 

computationally inexpensive, are capable of incorporating categorical and continuous variables and the 8 

developed models are usually easy to interpret. RIPPER, a deterministic rule-based classifier algorithm, 9 

was evaluated in the current study. RIPPER states for “Repeated Incremental Pruning to Produce Error 10 

Reduction” and is named JRIP (i.e. Java implementation of RIPPER) in WEKA. JRip builds a ruleset by 11 

repeatedly adding rules to an empty ruleset until all positive examples are covered  (1). After the building 12 

process, a ruleset is optimized to reduce its size and improve its fit to the training data. It helps to prevent 13 

overfitting. 14 

(ii) Decision tree algorithm is a very popular and practical approach for pattern classification. Decision 15 

tree is constructed generally in a greedy, top down recursive manner. Three algorithms that belong to this 16 

approach were tested: 17 

a.  J48 is the Weka implementation of C4.5 algorithm, the most popular tree classifier (2). At each 18 

node of the tree, C4.5 chooses the attribute of the data that most effectively splits attribute set into 19 

subsets enriched in one class or the other. The splitting criterion is the normalized information gain. The 20 

attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm 21 

then recurs on the smaller sub-lists. No changes to the default parameters were made. 22 

b.  Random Forest (3) is a well-known meta-learner that generates many individual trees. Each tree 23 

depends on the values of a random vector independently sampled and with the same distribution for all 24 

trees in the forest. For forests, the generalization error converges to a limit as the number of trees in the 25 

forest becomes larger. The main advantages are related to its robustness to noise, and fast computation 26 
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over large datasets. Number of trees was set to 100 for all datasets and number of features was set to 3 27 

(calculated as a square root of the whole number of attributes). 28 

c.  A Least Absolute Deviation (LADTree) is one of the decision tree machine learning algorithm. The 29 

LADTree algorithm applies logistic boosting algorithm in order to induce an alternating decision tree. It 30 

uses least absolute deviation (LAD) to find the error criterion to obtain regression trees (4). Default 31 

parameters were used in all experiments. 32 

(iii) We tested two function-based algorithms: Support Vector Machine (called SMO in WEKA and 33 

denoted SVM in this study) and Logistic Regression. SVM learner used a linear kernel that showed a 34 

better performance in comparison to RBF kernel. Complexity parameter (C) for SVM and ringe (R) 35 

parameter for Logistic regression were optimized for each cancer set separately using WEKA meta-36 

classifier CVParameterSelection. SVM is a classifier that converts data objects into a multi-dimensional 37 

vector and defines a separating hyperplane among the objects belonging to different classes. 38 

(iv) Naïve Bayes Classifier (NBC) is known as a simple probabilistic classifier and assumes the 39 

independence of features given a class. NBC was tested with and without Kernel Density Estimation 40 

(KDE) and with and without supervised discretization (SD) to process numeric attributes. KDE might 41 

improve the performance if the normality assumption of numeric value distribution is grossly incorrect. 42 

Handling numeric attributes using SD might also influence the final output from the classifier. Validation 43 

showed that NBC with SD set to ‘true’ and KDE set to ‘false’ shows the most accurate results. 44 

(v) In distance-based methods (also called instance-based methods or lazy learning) a distance function 45 

is used to determine which member of the training set is closest to an unknown test instance. We tested 46 

IB1 (Basic nearest-neighbor instance-based learner) and IBk (k-nearest-neighbors classifier), but due to 47 

slowness and very poor performance these classifiers were excluded from further validation. 48 

  49 

FFPE sample sequencing and processing: 1491 ER+ early breast cancer FFPE samples from the 50 

Tamoxifen versus exemestane adjuvant mulitcentre (TEAM) clinical trial were sequenced using a breast 51 

cancer specific gene panel sized ~0.55 Mbps using AmpliSeq technology.  Raw reads were aligned 52 
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against hg19 using novoalign (version 2.07.14) and only reads that aligned uniquely (mapping qualities > 53 

30)  were kept for downstream analysis. Aligned reads were then subjected to local realignment and base 54 

quality recalibration prior to calling variant calls with GATK's UnifiedGenotyper (version 1.3.16) with 55 

downsampling disabled.  Low confidence variants were removed with the following filters: (a) read depth 56 

>= 50; (b) maximum number of variants per 10 bp window = 3; (c) strand bias > -10; and (d) variant 57 

quality >= 50.  58 

  59 

 60 

  61 
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SUPPLEMENTAL RESULTS: 63 

Justification of the variant pre-labeling stage: The variants that are catalogued by dbSNP/common_all 64 

but not by COSMIC are significantly depleted from somatic mutations. The percent of somatic variants in 65 

this subset is consistent ranging from 0.01 to 0.02% (Additional file 1: suppl. Table 3). That’s a reason we 66 

named this subset as a “gold standard negative set”.  Rather than going through the classifier, each 67 

variant of this type was a priori labeled as a germline. For example, in COAD only roughly one mutation 68 

per sample (245 somatic mutations across 215 samples) that are catalogued by dbSNP/common_all but 69 

not by COSMIC will classified as germline polymorphisms. These misclassified somatic variants are 70 

slightly increasing the final false negative rate, but this assumption significantly improves the overall 71 

performance of the classifier, first because 1,374,557 variants are classified correctly; secondly, because 72 

removing this huge pile of the germlines from the testing set balances positive and negative instances 73 

and again improving the final performance of the classifier. 74 

A majority of the variants catalogued by COSMIC were identified only in one sample (CNT=1). But in a 75 

very few special cases, CNT might go up to several hundreds or higher (like for the variant 76 

chr3,178952085A>G in PIK3CA gene CNT=1,635 or for chr7,140453136A>T variant in BRAF 77 

CNT=19,966). They are well known cancer-associated and, in many cases, also cancer-causing variants. 78 

Vast majority of those in the investigated datasets are somatic and only in the very rare cases could be 79 

germline: out of ~9,000,000 germline polymorphisms from ~1,000 samples analyzed in this study only 7 80 

have CNT >=100 (Additional file 1: suppl. Table 4). In counterweight to “gold standard negative set” these 81 

variants were called “gold standard positive set”.  All variants with CNT>=100 were labeled as somatic 82 

and bypassed the classifier (Figure 1). This filtering step helped us to accomplish a number of tasks: (1) 83 

we are sure that the classifier is not missing the most valuable for further analysis variants; (2) classifier is 84 

not confused by extreme outliers in CNT feature; (3) final true positive rate (recall) might be improved. 85 

Variants are monolabeled across all tumor samples: We made an assumption that variants that are 86 

sharing the same genomic position and allelic set is either somatic or germline across all tumour samples 87 

within a particular cancer data set. To justify this assumption we calculated the number of unique variants 88 
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that have been labeled as both somatic and germline in different samples using conventional paired 89 

sequencing, or, as we call them, “mixed variants”. Additional file 1: Suppl. Table 5 shows that all datasets 90 

have a comparable rate of mixed labeled variants ranging 0.005-0.70% of all unique variants in the set. 91 

Interesting that PAAD set contain only five variants with mixed labels. 92 

Number of mixed labels doesn’t correlate either with number of samples in the dataset nor with a ratio of 93 

somatic nor with somatic mutational load and might represent an internal property of the set. 94 

A significant portion of all mixed labeled variants are called only in two samples (in one – somatic, and in 95 

another – germline) [Additional file 1: suppl. table 5]. As the sample frequency rate for these mutations is 96 

low, the effect of the simplifying assumption won’t have large impact of the final classification output. 97 

Another telling observation is that a significant portion of all variants with mixed labels were called by the 98 

TCGA projects in at least 50 samples and in all but one sample this variant was labeled as germline. This 99 

might indicate a misclassification error by the paired mutation caller (Additional file 1: suppl. Table 5). 100 

‘Mixed label’ variants were excluded from training and testing sets. 101 

 102 

 103 

  104 
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SUPPLEMENTARY TABLE 116 

Suppl. Table 1. Performance measures from 10-fold cross-validation using seven classification 117 

algorithms performed on randomly generated 1000 training sets each containing 700 somatic mutations 118 

and 700 germline polymorphisms from six different cancer types. 119 

Suppl. Table 2: Performance measures calculated based on held-out independent sample set across six 120 

cancer datasets. NBC and LADTree algorithms were chosen in the 10-fold cross-validation and used 121 

here. Classifiers were trained based on the gradually increasing number of samples (Samples In Training 122 

Set). Number of positive instances collected from the indicated number of randomly selected samples is 123 

shown in Column B. Provided as an excel file (additional file 3). 124 

Suppl. Table 3. Comparison of the somatic mutation ratio in the whole dataset vs in the subset of 125 

variants that were catalogued by dbSNP/common_all but not by COSMIC. The latest contains vanishingly 126 

small number of somatic mutations. 127 

Suppl. Table 4. Number of germline variants with high CNT in different cancer sets.  128 

Suppl. Table 5. Number of variants with “mixed” labels in different cancer sets as well as their 129 

characteristics. *Only non-silent SNVs in coding regions. 130 

Suppl. Table 6. Distribution of the collapsed (unique) somatic mutations and germline polymorphisms in 131 

different categories for functional impacts based on Mutation Assessor (MA) annotations across six 132 

cancer datasets. Only variants with known MA annotations were taken into account. Germlines are prone 133 

to be more neutral, whereas somatic mutations have more high and medium impacts on the protein 134 

functionality. Mutation Assessor serves as an independent feature in ISOWN. The p-value was estimated 135 

based on 2-sample test for equality of proportions. 136 

Suppl. Table 7. Distribution of the collapsed (unique) somatic mutations and germline polymorphisms in 137 

three categories of PolyPhen-2 across six cancer datasets. Only variants with known annotations were 138 

taken into account. Germlines are significantly enriched in ‘benign’ type, and somatic in both ‘probably’ 139 

and ‘possibly damaging’. PolyPhen-2 also serves as an independent feature in ISOWN. 140 

 141 

 142 

143 
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SUPPL. TABLE 1 144 

Results from 10-fold cross-validation using seven classification algorithms that was performed on 145 

randomly generated 1000 training sets each containing 700 somatic mutations and 700 germline 146 

polymorphisms from six different cancer types.  147 

Cancer	   Classifier	   F1-‐measure	   Recall	   FPR	   Precision	   AUC	  
UCEC	   JRip	   97.94%	   98.05%	   2.17%	   97.84%	   98.69%	  

COAD	   JRip	   96.34%	   96.71%	   4.06%	   95.98%	   97.58%	  
KIRC	   JRip	   97.47%	   97.40%	   2.45%	   97.55%	   98.23%	  

BRCA	   JRip	   96.69%	   97.24%	   3.90%	   96.15%	   97.00%	  

ESO	   JRip	   94.04%	   95.60%	   7.73%	   92.54%	   95.29%	  
PAAD	   JRip	   96.04%	   96.51%	   4.47%	   95.58%	   97.05%	  

UCEC	   Random	  Forest	   98.20%	   98.16%	   1.77%	   98.23%	   99.84%	  
COAD	   Random	  Forest	   96.46%	   96.94%	   4.06%	   95.99%	   99.32%	  

KIRC	   Random	  Forest	   97.50%	   97.26%	   2.25%	   97.74%	   99.66%	  
BRCA	   Random	  Forest	   96.45%	   96.22%	   3.30%	   96.69%	   99.06%	  

ESO	   Random	  Forest	   93.07%	   94.08%	   8.08%	   92.09%	   97.25%	  

PAAD	   Random	  Forest	   96.16%	   96.79%	   4.52%	   95.54%	   99.11%	  
UCEC	   J48	   97.80%	   98.06%	   2.47%	   97.55%	   98.47%	  

COAD	   J48	   96.16%	   96.55%	   4.25%	   95.79%	   97.49%	  
KIRC	   J48	   97.42%	   97.25%	   2.39%	   97.60%	   98.25%	  

BRCA	   J48	   96.57%	   97.34%	   4.25%	   95.83%	   96.77%	  

ESO	   J48	   93.77%	   95.29%	   7.96%	   92.32%	   95.56%	  
PAAD	   J48	   95.90%	   96.57%	   4.83%	   95.24%	   96.28%	  

UCEC	   Logistic	  Regression	   97.48%	   97.40%	   2.45%	   97.55%	   99.42%	  
COAD	   Logistic	  Regression	   95.17%	   95.27%	   4.93%	   95.08%	   98.65%	  

KIRC	   Logistic	  Regression	   95.94%	   95.63%	   3.72%	   96.25%	   99.02%	  
BRCA	   Logistic	  Regression	   95.62%	   95.25%	   3.99%	   95.98%	   98.47%	  

ESO	   Logistic	  Regression	   92.11%	   93.05%	   9.00%	   91.19%	   95.85%	  

PAAD	   Logistic	  Regression	   95.36%	   95.84%	   5.16%	   94.89%	   98.46%	  
UCEC	   LADTree	   98.29%	   98.23%	   1.64%	   98.36%	   99.84%	  

COAD	   LADTree	   96.59%	   96.84%	   3.68%	   96.34%	   99.40%	  
KIRC	   LADTree	   97.71%	   97.61%	   2.19%	   97.81%	   99.69%	  

BRCA	   LADTree	   96.81%	   97.03%	   3.42%	   96.60%	   99.10%	  

ESO	   LADTree	   94.53%	   95.45%	   6.51%	   93.62%	   97.88%	  
PAAD	   LADTree	   96.38%	   96.92%	   4.19%	   95.86%	   99.05%	  

UCEC	   Naive	  Bayes	   98.29%	   97.93%	   1.34%	   98.65%	   99.81%	  
COAD	   Naive	  Bayes	   96.11%	   95.06%	   2.75%	   97.19%	   99.39%	  

KIRC	   Naive	  Bayes	   96.58%	   95.02%	   1.74%	   98.20%	   99.56%	  
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BRCA	   Naive	  Bayes	   96.40%	   95.84%	   3.00%	   96.96%	   99.01%	  

ESO	   Naive	  Bayes	   89.47%	   90.45%	   11.75%	   88.51%	   95.69%	  
PAAD	   Naive	  Bayes	   95.13%	   94.32%	   3.97%	   95.97%	   98.93%	  

UCEC	   SVM	   97.41%	   97.26%	   2.43%	   97.57%	   97.42%	  

COAD	   SVM	   94.06%	   94.24%	   6.12%	   93.90%	   94.06%	  
KIRC	   SVM	   95.51%	   94.96%	   3.88%	   96.07%	   95.54%	  

BRCA	   SVM	   94.69%	   92.81%	   3.23%	   96.64%	   94.79%	  
ESO	   SVM	   89.33%	   90.17%	   11.71%	   88.51%	   89.23%	  

PAAD	   SVM	   95.68%	   96.41%	   5.12%	   94.96%	   95.64%	  
 148 

 149 

 150 

 151 

 152 

 153 

 154 

SUPPL. TABLE 2 155 

Available in .xlsx format (Additional file 3) 156 

 157 

  158 
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SUPPL. TABLE 3 160 

Comparison of the somatic mutation ratio in the whole dataset vs in the subset of variants that were 161 
catalogued by dbSNP/common_all but not by COSMIC. The latest contains vanishingly small number of 162 
somatic mutations. In contrast, significant portion of somatic mutations catalogued. 163 
 164 

Dataset 

[Source] 

Total number of variants in the set, 

germline / somatic 

[% of somatic] 

Number of variants catalogued by 

dbSNP/common but not COSMIC, 

germline/somatic 

[% of somatic] 

UCEC [TCGA] 504,241 / 38,012 

[7.0%] 

368,834 / 80  

[0.02%] 

COAD [TCGA] 1,932,510 / 60,624 

[3.04%] 

1,374,557 / 245 

[0.017%] 

KIRC [TCGA] 2,416,155 / 10,489 

[0.43%] 

1,744,218 / 371 

[0.02%] 

ESO [dbGAP] 790,051 / 26,098 

[3.19%] 

550,897 / 66 

[0.012%] 

PAAD [TCGA] 1,263,918 / 5,593 

[0.44%] 

879,313 / 87 

[0.01%] 

BRCA [TCGA] 1,037,432 / 5,556 

[0.53%] 

751,453 / 77 

[0.01%] 

 165 

 166 

 167 



Additional File 1 - Supplemental material 
ISOWN: accurate somatic mutation identification in the absence of normal tissue controls 

 

11 

 168 

SUPPL. TABLE 4 169 

Number of germline variants with high CNT in different cancer sets.  170 

 171 

Dataset Number of 

germlines with 

CNT >= 150 

Number of 

germlines with 

CNT >= 100 

Number of 

germlines with 

CNT >= 50 

Number of 

germlines with 

CNT >= 30 

UCEC [TCGA] 0 0 0 41 

COAD [TCGA] 1 1 1 61 

KIRC [TCGA] 1 1 1 146 

ESO [dbGAP] 2 2 3 46 

PAAD [TCGA] 1 1 1 73 

BRCA [TCGA] 3 3 4 78 

 172 

 173 

  174 
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 175 

SUPPL. TABLE 5 176 

Number of variants with “mixed” labels in different cancer sets as well as their characteristics. *Only non-177 
silent SNVs in coding regions. 178 

Dataset Total number of 

the unique 

variants in the 

dataset* 

Total number of the 

unique variants with 

mixed labels  

[% of total] 

Number of mixed 

variants with 

`1:50+` pattern 

Number of mixed 

variants with “1:1” 

pattern 

UCEC [TCGA]  74,258 126 [0.17%] 34 35 

COAD [TCGA] 160,818 1,127 [0.70%] 263 363 

KIRC [TCGA] 118,119 662 [0.56%] 355 67 

ESO [dbGAP] 81,369 339 [0.42%] 52 93 

PAAD [TCGA] 79,437 5 [0.006%] 2 0 

BRCA [TCGA] 58,061 195 [0.330%] 83 15 

 179 

 180 

  181 
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SUPPL. TABLE 6 182 

Distribution of the collapsed (unique) somatic mutations and germline polymorphisms in different 183 
categories for functional impacts based on Mutation Assessor (MA) annotations across six cancer 184 
datasets. Only variants with known MA annotations were taken into account. Germlines are prone to be 185 
more neutral, whereas somatic mutations have more high and medium impacts on the protein 186 
functionality. Mutation Assessor serves as an independent feature in ISOWN. The p-value was estimated 187 
based on 2-sample test for equality of proportions. 188 
 189 

Cancer Annotation from 

Mutation Assessor 

Germline, % Somatic, % p-value from 

prop test 

KIRC High 2.599 % 6.036 % <1.0E-15 

KIRC Medium 23.299 % 32.134 % <1.0E-15 

KIRC Low 34.182 % 34.198 % >0.05 

KIRC Neutral 39.921 % 27.632 % <1.0E-15 

COAD High 2.444 % 5.946 % <1.0E-15 

COAD Medium 22.394 % 34.239 % <1.0E-15 

COAD Low 33.462 % 34.222 % 0.018 

COAD Neutral 41.700 % 25.592 % <1.0E-15 

UCEC High 2.188 % 5.466 % <1.0E-15 

UCEC Medium 19.832 % 34.335 % <1.0E-15 

UCEC Low 32.633 % 35.833 % <1.0E-15 

UCEC Neutral 45.347 % 24.366 % <1.0E-15 

ESO High 2.934 % 7.145 % <1.0E-15 

ESO Medium 23.343 % 35.239 % <1.0E-15 

ESO Low 33.155 % 33.740 % >0.05 

ESO Neutral 40.568 % 23.876 % <1.0E-15 

BRCA High 2.594 % 6.303 % <1.0E-15 

BRCA Medium 21.404 % 33.944 % <1.0E-15 

BRCA Low 33.686 % 34.710 % 0.640 

BRCA Neutral 42.316 % 25.043 % <1.0E-15 
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PAAD High 2.491 % 5.293 % <1.0E-15 

PAAD Medium 22.073 % 34.478 % <1.0E-15 

PAAD Low 33.163 % 34.371 % 0.021 

PAAD Neutral 42.272 % 25.858 % <1.0E-15 

 190 

 191 

  192 
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SUPPL. TABLE 7 193 

Distribution of the collapsed (unique) somatic mutations and germline polymorphisms in three categories 194 
of PolyPhen-2 across six cancer datasets. Only variants with known annotations were taken into account. 195 
Germlines are significantly enriched in ‘benign’ type, and somatic in both ‘probably’ and ‘possibly 196 
damaging’. PolyPhen-2 also serves as an independent feature in ISOWN. 197 
 198 

Cancer Annotation from 

PolyPhen-2 

Germline, % Somatic, % p-value from 

prop.test 

KIRC Benign 55.672 % 38.797 % <1.0E-15 

KIRC Probably damaging 28.663 % 43.418 % <1.0E-15 

KIRC Possibly damaging 15.649 % 17.764 % 0.001 

COAD Benign 57.097 % 34.870 % <1.0E-15 

COAD Probably damaging 27.133 % 48.526 % <1.0E-15 

COAD Possibly damaging 15.743 % 16.589 % 0.0025 

UCEC Benign 63.540 % 37.531 % <1.0E-15 

UCEC Probably damaging 21.614 % 43.041 % <1.0E-15 

UCEC Possibly damaging 14.824 % 19.428 % <1.0E-15 

ESO Benign 55.844 % 32.519 % <1.0E-15 

ESO Probably damaging 28.601 % 50.315 % <1.0E-15 

ESO Possibly damaging 15.544 % 15.544 % 0.000078 

BRCA Benign 60.111 % 38.406 % <1.0E-15 

BRCA Probably damaging 23.934 % 43.665 % <1.0E-15 

BRCA Possibly damaging 15.941 % 17.928 % 0.01 

PAAD Benign 58.301 % 36.792 % <1.0E-15 

PAAD Probably damaging 26.414 % 46.780 % <1.0E-15 

PAAD Possibly damaging 15.259 % 16.415 % 0.01 

 199 


