File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Publication	Eco-type	Dominant vegetation	Soil type	Soil pH	SOC (%)	Fe(II)	Result
						(ing g son)	
Freeman et al. ¹	Peatland	Sphagnum and Juncus species	Peat	4.68-5.02	na	na	Phenol oxidative activity increased with O ₂ (WTD or drought)
Freeman et al. ²	Riparian gully mire	Sphagnum	Peat	4.5	na	na	
Fenner and Freeman ³	Ombrotrophic peatland	Sphagnum	Peat	4-4.8	~50*	na	
Romanowicz et al. ⁴	Oligotrophic bog	Sphagnum, Polytrichum species, sedges and ericaceous shrubs	Peat	4	na	na	
Hall and Silver ⁵	Humid tropical forest	Trees (Dacryodes excelsa, Prestoea montana, Cyrilla racemiflora)	Ultisols, Oxisols, Inceptisols	4.3-5.3	na	0.05–7.39	Phenol oxidative or hydrolytic enzyme activity decreased with O ₂ (WTD or drought)
Hall et al. ⁶				4.3-5.3	2.8-16.7	0.11-4.11	
Liu et al. ⁷	Rice paddy field	Rice (Oryza sativa L.)	Silt-clay Ultisol	5.9	1.1	0.2–1.7	
Toberman et al. ⁸	Boreal mire peatland	Sedge, <i>Sphagnum</i> and <i>Juncus</i> species	Peat	4.0-4.7	na	na	
Toberman et al. ⁹	Upland heathland	Shrub (<i>Calluna vulgaris L</i> .)	Peaty Podsol	3.9	~45*	na	
Toberman et al. ¹⁰	Boreal mire peat	Sedge, trees, moss	Peat	4.0-5.5	na	na	
This study	Alpine wetland	Sedge (Carex)	Organic layers of silty clay Mat-Cryic Cambisol	6-8	7.5–18.5	0.68–7.20	

Supplementary Table 1: Summary of published results on extracellular enzyme activities in response to water-table decline (WTD) or drought.

* Estimated as 50% of organic matter content. SOC: soil organic carbon; Fe(II): ferrous iron.

Supplementary Figure 1: Contents of different forms of extractable iron (Fe) in the wetland soils (< 53 μ m). (a) Dithionite-extractable Fe (Fe_d); (b) oxalate-extractable Fe (Fe_o); (c) pyrophosphate-extractable Fe (Fe_p); (d) ratio of Fe_p:Fe_d indicating degree of Fe complexation with organic matter. Error bars represent standard error of mean (s.e.m.; n = 4). Upper- and lower-case letters denote difference among soil depths in the control and water-table decline treatment, respectively (p < 0.05). Fe_d was not measured for 0–4 cm due to the limited sample size.

Supplementary Figure 2: Organic carbon (OC)-normalized lignin phenol concentrations in *Sphagnum* and sedge (*Carex* sp.) tissues collected from wetlands in southern China and the Haibei Station.

Supplementary Figure 3: Scheme of sample treatments and analyses. WER: water-extracted residue; WEOM: water-extractable organic matter; WEOC: water-extractable organic carbon; CBD: citrate-bicarbonate-dithionite method; Fe(II): ferrous iron; Fe(III): ferric iron; Fe_p : pyrophosphate-extractable iron; Fe_o : oxalate-extractable iron; Fe_d : dithionite-extractable iron.

Supplementary Figure 4: Weight percentage of each grain size fraction in the control and water-table decline treated soils. Error bars represent standard error of mean (s.e.m.; n = 4).

Supplementary Figure 5: Changes of cumulative phenol oxidative products in the surface wetland soil with increasing incubation time for the assay of phenol oxidative activities (mean \pm s.e.m.; n = 3). Note that phenol oxidative products increased linearly with time within 20 h.

Supplementary Figure 6: Lignin phenol yields of untreated and dithionite-treated water extracts from oak leaves in the preliminary experiment.

Supplementary Figure 7: Relative abundance of lignin phenols in different phases after the citrate-bicarbonate-dithionite (CBD) treatment compared with that in the original control soil at 30–40 cm. Error bars represent standard error of mean (s.e.m.; n = 4). Lignin in the liquid solution was concentrated using C₁₈ solid phase extraction cartridges as described in the preliminary experiment. Note that cinnamyl phenols were relatively more abundant in the solution than vanillyl and syringyl phenols, indicating a high solubility and potential to loss during the CBD treatment.

Supplementary Figure 8: Relative abundance of lignin phenols in the liquid solution after the citrate-bicarbonate-dithionite (CBD) treatment compared with that in the original soil at 4–10 and 10–20 cm in both control and water-table decline treatments. Errors represent standard error of mean (s.e.m.; n = 4).

Supplementary References

- Freeman, C., Liska, G., Ostle, N. J., Lock, M. A., Reynolds, B. & Hudson, J. Microbial activity and enzymic decomposition processes following peatland water table drawdown. *Plant Soil* 180, 121–127 (1996).
- 2. Freeman, C., Ostle, N. J., Fenner, N. & Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. *Soil Biol. Biochem.* **36**, 1663–1667 (2004).
- Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. *Nat. Geosci.* 4, 895–900 (2011).
- Romanowicz, K. J., Kane, E. S., Potvin, L. R., Daniels, A. L., Kolka, R. K. & Lilleskov, E. A. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis. *Plant Soil* 397, 371–386 (2015).
- Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. *Glob. Change Biol.* 19, 2804–2813 (2013).
- Hall, S. J., Treffkorn, J. & Silver, W. L. Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. *Ecology* 95, 2964–2973 (2014).
- Liu, S. *et al.* Flooding effects on soil phenol oxidase activity and phenol release during rice straw decomposition. *J. Plant Nutr. Soil Sci.* 177, 541–547 (2014).
- Toberman, H., Freeman, C., Artz, R. R. E., Evans, C. D. & Fenner, N. Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. *Soil Use Manage.* 24, 357–365 (2008).
- Toberman, H., Freeman, C., Artz, R. R. E., Evans, C. D. & Fenner, N. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland *Calluna* heathland. *Soil Biol. Biochem.* 40, 1519–1532 (2008).
- 10. Toberman, H. *et al.* Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. *Eur. J. Soil Sci.* **61**, 950–957 (2010).