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Supplementary Table 1: Summary of published results on extracellular enzyme activities in response to water-table decline (WTD) or drought. 

Publication Eco-type Dominant vegetation Soil type Soil pH SOC (%) 
Fe(II) 

(mg g-1 soil) 
Result 

Freeman et al.1 Peatland Sphagnum and Juncus species Peat 4.68−5.02 na na 
Phenol 

oxidative 
activity 

increased 
with O2 

(WTD or 
drought) 

Freeman et al.2 Riparian gully mire Sphagnum  Peat 4.5 na na 

Fenner and 
Freeman3 

Ombrotrophic 
peatland 

Sphagnum  Peat 4−4.8 ~50* na 

Romanowicz et 
al.4 

Oligotrophic bog Sphagnum, Polytrichum species, 
sedges and ericaceous shrubs 

Peat 4 na na 

Hall and Silver5 Humid tropical forest Trees (Dacryodes excelsa, 
Prestoea montana, Cyrilla 
racemiflora)  

Ultisols, Oxisols, 
Inceptisols  

4.3−5.3 na 0.05–7.39  

Phenol 
oxidative or 
hydrolytic 

enzyme 
activity 

decreased 
with O2 

(WTD or 
drought) 

Hall et al.6 4.3−5.3 2.8−16.7 0.11–4.11 

Liu et al.7 Rice paddy field Rice (Oryza sativa L.) Silt-clay Ultisol 5.9 1.1 0.2–1.7 
Toberman et al.8 Boreal mire peatland Sedge, Sphagnum and Juncus 

species 
Peat 4.0−4.7 na na 

Toberman et al.9 Upland heathland Shrub (Calluna vulgaris L.)  Peaty Podsol 3.9 ~45* na 

Toberman et 
al.10 Boreal mire peat Sedge, trees, moss Peat 4.0−5.5 na na 

This study Alpine wetland Sedge (Carex)  Organic layers of 
silty clay Mat-Cryic 
Cambisol 

6−8 7.5−18.5 0.68–7.20 

* Estimated as 50% of organic matter content. SOC: soil organic carbon; Fe(II): ferrous iron. 
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Supplementary Figure 1: Contents of different forms of extractable iron (Fe) in the 

wetland soils (< 53 μm). (a) Dithionite-extractable Fe (Fed); (b) oxalate-extractable Fe 

(Feo); (c) pyrophosphate-extractable Fe (Fep); (d) ratio of Fep:Fed indicating degree of 

Fe complexation with organic matter. Error bars represent standard error of mean 

(s.e.m.; n = 4). Upper- and lower-case letters denote difference among soil depths in 

the control and water-table decline treatment, respectively (p < 0.05). Fed was not 

measured for 0−4 cm due to the limited sample size.   
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Supplementary Figure 2: Organic carbon (OC)-normalized lignin phenol 

concentrations in Sphagnum and sedge (Carex sp.) tissues collected from wetlands in 

southern China and the Haibei Station. 
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Supplementary Figure 3: Scheme of sample treatments and analyses. WER: 

water-extracted residue; WEOM: water-extractable organic matter; WEOC: 

water-extractable organic carbon; CBD: citrate-bicarbonate-dithionite method; Fe(II): 

ferrous iron; Fe(III): ferric iron; Fep: pyrophosphate-extractable iron; Feo: 

oxalate-extractable iron; Fed: dithionite-extractable iron.  
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Supplementary Figure 4: Weight percentage of each grain size fraction in the control 

and water-table decline treated soils. Error bars represent standard error of mean 

(s.e.m.; n = 4). 
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Supplementary Figure 5: Changes of cumulative phenol oxidative products in the 

surface wetland soil with increasing incubation time for the assay of phenol oxidative 

activities (mean ± s.e.m.; n = 3). Note that phenol oxidative products increased 

linearly with time within 20 h. 
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Supplementary Figure 6: Lignin phenol yields of untreated and dithionite-treated 

water extracts from oak leaves in the preliminary experiment. 
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Supplementary Figure 7: Relative abundance of lignin phenols in different phases 

after the citrate-bicarbonate-dithionite (CBD) treatment compared with that in the 

original control soil at 30–40 cm. Error bars represent standard error of mean (s.e.m.; 

n = 4). Lignin in the liquid solution was concentrated using C18 solid phase extraction 

cartridges as described in the preliminary experiment. Note that cinnamyl phenols 

were relatively more abundant in the solution than vanillyl and syringyl phenols, 

indicating a high solubility and potential to loss during the CBD treatment. 
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Supplementary Figure 8: Relative abundance of lignin phenols in the liquid solution 

after the citrate-bicarbonate-dithionite (CBD) treatment compared with that in the 

original soil at 4–10 and 10–20 cm in both control and water-table decline treatments. 

Errors represent standard error of mean (s.e.m.; n = 4). 
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