File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

File name: Supplementary Movie 1 Description: EGFP-YscQ localization time course with exposure of 100 ms / frame (frame rate 1/180 ms)

File name: Supplementary Movie 2 Description: EGFP-YscQ localization time course with exposure of 40 ms / frame (frame rate 1/120 ms)

File name: Supplementary Movie 3 Description: EGFP-YscQ localization time course with exposure of 15 ms / frame (frame rate 1/95 ms)

File name: Supplementary Movie 4 Description: EGFP-YscL localization time course with exposure of 100 ms / frame (frame rate 1/180 ms)

File name: Supplementary Movie 5 Description: EGFP-YscL localization time course with exposure of 40 ms / frame (frame rate 1/120 ms)

File name: Supplementary Movie 6 Description: EGFP-YscL localization time course with exposure of 15 ms / frame (frame rate 1/95 ms)

File name: Peer Review File Description:

Supplementary Fig. 1: Secretion assay and immunoblot showing the functionality and stability of the used EGFP fusion proteins

a: Secretion profile (Coomassie staining of TCA-precipitated proteins in the culture supernatant after three hours of incubation at 37°C) of the indicated strains (wild-type, WT, and $\Delta yscN$ strains as positive and negative controls, and strains expressing EGFP fusion proteins as indicated from their native promoter on the pYV virulence plasmid) under secreting conditions (absence of Ca²⁺, black) and non-secreting conditions (presence of Ca²⁺, green).

b: Immunoblot anti-GFP of total cellular proteins in the indicated strains, as above. To assess the stability of the fusion proteins, untreated total cellular proteins were analysed using anti-GFP antibodies. For the fusions to YscK, YscQ, YscQ_c, and YscL, only minor (<5% intensity) degradation bands with molecular weights about 15-20 kDa below can be detected, similar to earlier results¹. For EGFP-YscN, this degradation band is stronger. Importantly, no band corresponding to free EGFP (25-30 kDa) could be detected for any strain.

Supplementary Fig. 2: The overall localization of the soluble T3SS components does not change upon induction of secretion.

All soluble T3SS components localize in membrane foci under secreting conditions. Deconvoluted micrographs of bacteria expressing N-terminal EGFP fusions of the respective proteins under secreting conditions (see **Fig. 1b** for non-secreting conditions). The representative micrographs shown allow the comparison of fluorescence intensity. Each strain was imaged in three to four independent experiments yielding reproducible results. Scale bar, 2 μ m.

Supplementary Fig. 3: The soluble T3SS components colocalize with each other in double labelled bacteria.

Micrographs of EGFP and mCherry fluorescence in strains coexpressing two labelled soluble T3SS components under non-secreting conditions (see **Fig. 1c** for overlays). Each strain was imaged in three independent experiments yielding reproducible results. Scale bar, $2 \mu m$.

Supplementary Fig. 4: Stability and functionality of fluorescent fusions to the membrane-bound T3SS components YscD and YscV

Secretion profile (Coomassie staining of TCA-precipitated proteins in the culture supernatant after three hours of incubation at 37°C; left side) and immunoblot using an anti-GFP antibody (right side) of strains expressing EGFP-YscD or YscV-EGFP, as indicated. All samples were run and analysed on the same gel; vertical lines indicate omission of intermediate lanes.

Secretion of effectors is slightly decreased in the strain expressing EGFP-YscD, and strongly reduced in YscV-EGFP. Numbers and lines indicate protein size in kDa. The expected size of the fusion proteins is 75.2 kDa (EGFP-YscD) and 106.6 kDa (YscV-EGFP). The majority of fusion proteins runs at the expected level. A weak degradation band is visible for EGFP-YscD, likely representing degradation within YscD. Importantly, no band is visible in the range of GFP (25-30 kDa), indicating that the observed fluorescence is not due to cleavage of fluorophores.

Supplementary Fig. 5: Determination of the stoichiometry of the cytosolic complex

a, **b**: Overview and close-up view of three-dimensional fluorescence distribution and detection of fluorescent foci. Three-dimensional views of fluorescence distribution in strain ADTM4520 expressing EGFP-YscL, and centres of detected spots (green points). Height of z stack: 1.8 μ m: scale bars: 4 μ m (overview), 0.7 μ m (close-up)

c: Representation of the region used to determine the average fluorescence background in an unlabelled strain (right) in comparison to the corresponding DIC image of the centre frame (left). Scale bars, 5 µm.

d: Normalized fluorescence intensity of detected foci in strains expressing N-terminal EGFP fusions of the respective proteins (with the exception of YscV-EGFP) under non-secreting conditions. Data as shown in **Fig. 1e**, average fluorescence intensities set to 1 for each strains. m..., more than 2.5x average intensity.

WT Halo- Halo- ∆yscN WT Halo- Halo-YscL YscN YscL YscN

Supplementary Fig. 6: Secretion assay showing the functionality of the used Halo-tagged proteins

Secretion profile (Coomassie staining of TCA-precipitated proteins in the culture supernatant after three hours of incubation at 37° C) of the indicated strains under secreting conditions (absence of Ca²⁺, black) and non-secreting conditions (presence of Ca²⁺, green). All samples were analysed on the same gel, the white line indicates the omission of an intermediate lane.

Supplementary Fig. 7: Expression of Halo-YscQ and YscQ_c is not affected by deletion of YscN

Immunoblots using a polyclonal antibody directed against YscQ. Left side, total cellular protein from $2*10^8$ bacteria; right side, purification eluate from $2*10^9$ bacteria of the indicated strains. Standard protein sizes in kDa indicated on the left side, expected band sizes for Halo-YscQ (69.5 kDa), YscQ (34.4 kDa), and YscQ_c (10,0 kDa) indicated in the centre.

	single frames						average	overlay			
-YscQ	t=100 ms ∆t=180 ms	Op.	GP:	02	00	202	Cia.	302	00	α_{0}	C
		Cop.	200	00	002	Cop	00	Con-	Cop.		ρ=0.98
	t=40 ms ∆t=120 ms	6	2	6	¢.	6ª	e la	ê	8	6	1
EGFP		600	E.	6	é.	6	2	6ª	3		ρ=0.96
	t=15 ms ∆t=95 ms	1,22	172	100.74	$v_{\mu 2}^{\mu}$	Cr:	$\mathbb{Z}_{n=0}^{n}$	1384	$\mathfrak{Y}_{\mathcal{N}}$	2024	G
		20	202	2004	0.02	100	22	2014	23.7%		ρ=0.93
						~					
EGFP-YscL	t=100 ms ∆t=180 ms	11									
		1110		100	100	120	200		100		ρ=0.97
	t=40 ms ∆t=120 ms	100	1	1. W.	1	101	1.1	1.20		.3	14
		100	100	1.10		10.00	1.10	2.3			ρ=0.96
	t=15 ms ∆t=95 ms	and the	100 m	$\mathcal{V}_{\mathcal{T}}}}}}}}}}$	10.00	$\mathbb{R}^{n,n}_{1}\mathbb{R}^{n}_{2}$	142.50	10.120	10.00	13	13
		100		Structure.		10.00	10 84 A	100 C	$\mathbb{S}^{d,l,l}_{A}$	1	ρ=0.89

Supplementary Fig. 8: Highly time-resolved florescence microscopy indicates movement of complexes through the cytosol

Left: consecutive deconvoluted frames of time course microscopy visualizing EGFP-YscQ (top half) or EGFP-YscL (bottom half) under non-secreting conditions. Exposure time and frame rate (= exposure time + data transfer time) as indicated. Centre: Average of micrographs on the left. Right: overlay of three frames (red, green, blue channel) with $\Delta t = 540-570$ ms. White indicates overlapping fluorescence, whereas colours indicate dynamic fluorescence. ρ , Pearson correlation coefficient, average between the three images displayed in the overlay. Scale bar, 1 µm.

Supplementary Fig. 9: Cytosolic interactions between YscL and YscQ can be detected in live bacteria.

a: Cytosolic auto-correlation curves for given proteins (red and green circles), and cross-correlation (blue circles) for a strain expressing EGFP-YscQ and mCherry-YscL in a $\Delta yscD$ background (top) and the respective negative control (EGFP-YscQ, free mCherry, $\Delta yscD$).

b: Representative intensity traces for EGFP-YscQ and mCherry-YscL.

Supplementary Fig. 10: Fluorescence correlation spectroscopy quality control and additional measurements

a, **b**: Snapshots from FoCuS-point software², showing autocorrelation data and fits for a representative FCS measurement (**a**) and a measurement, which was excluded due to bad fit quality caused by significant photobleaching (**b**).

c: Control experiment measuring the average transit time of EGFP-YscQ under non-secreting conditions, using different laser powers as indicated. Decreasing values for higher laser powers would be indicative of significant photobleaching³; this was not observed for our data. Error bars represent standard deviation from the mean of at least 10 curves.

d, **e**: The deletion of YscD does not influence the diffusion of EGFP-YscL or EGFP-YscQ. Transit times were measured in parallel for bacteria expressing EGFP-YscL (**d**) or EGFP-YscQ (**e**) expressed from their native genetic location, and otherwise WT (dark bars) or $\Delta yscD$ (light bars) (n=13-29, error bars represent standard deviation). The difference between WT strain and the respective $\Delta yscD$ strains is not statistically significant (n.s.) in a two-tailed homoscedastic t-test.

Supplementary Fig. 11: Correlation between secretion efficiency and mobility of the soluble T3SS components.

Correlation between secretion efficiency of a wild-type strain (x-axis, normalized to maximal efficiency), and transit times of EGFP-YscL (dark orange) and EGFP-YscQ (dark red) in the respective $\Delta yscD$ strains under the same conditions. Error bars represent standard errors of the mean value of the secretion efficiency (x axis, normalized to the maximal rate, n = 3), and the transit time (y axis, n = 64-158).

Supplementary Fig. 12: Uncropped versions of displayed gels and immunoblots

- a: Uncropped version of the gel displayed in Fig. 3d.
- b: Uncropped version of the immunoblot displayed in Supplementary Fig. 4b.

Red boxes indicate the approximate area displayed in the respective figures.

Supplementary Table 1

Homologous proteins and their function in various families of T3SS and the flagellum

General Sct names⁴ and species-specific protein names are given for well-studied members of the respective T3SS families. -, no clear homologue present.

Functional name	Sct name	Yersinia	Shigella	Salmonella	Escherichia	Flagellar
				SPI-1	coli	homologue
Secretin	SctC	YscC	MxiD	InvG	EscC	-
Outer MS-ring protein	SctD	YscD	MxiG	PrgH	EscD	-
Inner MS-ring protein	SctJ	YscJ	MxiJ	PrgK	EscJ	FliF
Minor export apparatus protein	SctR	YscR	Spa24 (SpaP)	SpaP	EscR	FliP
Minor export apparatus protein	SctS	YscS	Spa9 (SpaQ)	SpaQ	EscS	FliQ
Minor export apparatus protein	SctT	YscT	Spa29 (SpaR)	SpaR	EscT	FliR
Export apparatus switch protein	SctU	YscU	Spa40 (SpaS)	SpaS	EscU	FlhB
Major export apparatus protein	SctV	YscV	MxiA	InvA	EscV	FlhA
Accessory cytosolic protein	SctK	YscK	MxiK	OrgA	-	-
C-ring protein	SctQ	YscQ	Spa33 (SpaO)	SpaO	EscQ	FliM + FliN
Regulator (stator)	SctL	YscL	MxiN	OrgB	EscL (Orf5)	FliH
ATPase	SctN	YscN	Spa47 (SpaL)	InvC	EscN	Flil
Stalk	SctO	YscO	Spa13 (SpaM)	Invl	Orf15	FliJ
Needle filament protein	SctF	YscF	MxiH	Prgl	EscF	-
Inner rod protein	Sctl	Yscl	Mxil	PrgJ	Escl (rOrf8)	-
Needle length regulator	SctP	YscP	Spa32 (SpaN)	InvJ	EscP (Orf16)	FliK
Hydrophilic translocator, needle tip protein		LcrV	IpaD	SipD	-	-
Hydrophobic translocator, pore protein		YopB	IpaB	SipB	EspD	-
Hydrophobic translocator, pore protein		YopD	IpaC	SipC	EspB	-
Pilotin		YscW	MxiM	InvH	-	-
Gatekeeper	SctW	YopN	MxiC	InvE	SepL	-

Supplementary Table 2 List of strains and plasmids used in this study

Relevant genotype of *Y. enterocolitica* strains. All strains are based on the multi-effector knock-out auxotrophic strain IML421*asd*, which is an E40-based strain.

Strain name	Relevant strain characteristics of the pYV virulence plasmid	References
IML421asd	pYV40 yop $O_{\Delta 2-427}$ yop E_{21} yop $H_{\Delta 1-352}$ yop M_{23} yop P_{23} yop T_{135} Δ asd	5
AD4085	IML421 egfp-yscQ	5
AD4165	IML421 yscV-egfp	this study
AD4306	IML421 egfp-yscD	1
AD4392	IML421 egfp-yscQ, ∆yscN	this study
AD4393	IML421 egfp-yscQ, mCherry-yscD	this study
AD4396	IML421 <i>egfp-yscQ_{M218A}</i>	this study
AD4411	IML421 egfp-yscQ //yscD	this study
AD4419	IML412 <i>AyscQ</i>	1
AD4461	IML421 halo-yscQ	this study
AD4463	IML421 halo-yscQ <i>A</i> yscN	this study
AD4474	IML421 egfp-yscK	this study
AD4476	IML421 egfp-yscK //yscD	this study
AD4478	IML421 egfp-yscK //yscQ	this study
AD4483	IML421 egfp-yscL //yscD	this study
AD4484	IML421 egfp-yscL //yscN	this study
AD4485	IML421 egfp-yscL //yscQ	this study
AD4486	IML421 egfp-yscN //yscD	this study
AD4487	IML421 egfp-yscN AyscL	this study
AD4488	IML421 egfp-yscQ mCherry-yscL	this study
AD4489	IML421 egfp-yscQ mCherry-yscL <i>A</i> yscD	this study
AD4494	IML421 egfp-yscN mCherry-yscL	this study
AD4561	IML421 egfp-yscK mCherry-yscL	this study
ADMH4534	IML421 halo-yscQ //yscD	this study
ADTM4514	IML421 egfp-yscN	this study
ADTM4520	IML421 egfp-yscL	this study
ADTM4525	IML421 halo-yscL	this study

Expression and suicide vectors

Plasmid	Relevant characteristics	References
pAD475	pBAD:: <i>egfp</i> (<i>egfp</i> cloned in pBAD BgIII/EcoRI sites)	this study
pAD476	pBAD::mCherry (mCherry cloned in pBAD BgIII/EcoRI sites)	this study
pAD208	pKNG101 <i>yscV-egfp</i> (<i>egfp</i> and flexible linker cloned in-frame at the C-terminus of <i>yscV</i>)	this study
pAD447	pKNG101 <i>halo-yscQ</i> (<i>halo</i> and flexible linker cloned in-frame at the N-terminus of <i>yscQ</i>)	this study
pAD474	pKNG101 <i>egfp-yscK</i> (<i>egfp</i> and flexible linker cloned in-frame at the N-terminus of <i>yscK</i>)	this study
pADTM502	pKNG101 <i>egfp-yscN</i> (<i>egfp</i> and flexible linker cloned in-frame at the N-terminus of <i>yscN</i>)	this study
pADTM511	pKNG101 <i>egfp-yscL</i> (<i>egfp</i> and flexible linker cloned in-frame at the N-terminus of <i>yscL</i>)	this study
pADTM513	pKNG101 <i>halo-yscL</i> (<i>halo</i> and flexible linker cloned in-frame at the N-terminus of <i>yscL</i>)	this study
pBAD:: <i>his</i> /B	pBR322-derived expression vector	Invitrogen
pKNG101	ori _{R6K} sacBR ⁺ oriT _{RK2} strAB ⁺ (suicide vector)	6

Supplementary Table 3

Determination of expression ratio of soluble T3SS components under different conditions

The maximal intensity of 60 spots from three deconvoluted fields of view per strain in secreting and non-secreting conditions was corrected for the average background fluorescence in 30 unlabelled bacteria under the same conditions. To normalize for differences in exposure conditions and detection sensitivity, the ratio of the raw maximal fluorescence intensity under secreting and non-secreting conditions was normalized using a ratio of 2.45 for $YscQ^{71}$. St.dev., standard deviation between fields of view.

	ratio secr.,	/non-secr.	normalized ratio		
		st.dev.		st.dev.	
EGFP-YscQ	0,1649	0,0257	2,450	0,381	
EGFP-YscK	0,1463	0,0240	2,173	0,356	
EGFP-YscL	0,1336	0,0336	1,985	0,498	
EGFP-YscN	0,1326	0,0185	1,970	0,275	

Supplementary Table 4

Exact number of data points

Exact number of data points, in case a range was given for n in the figure legend or main text

Dataset	Experiment	Strain / condition	Variables	
Fig. 1e + Table 1	automated detection of fluorescent foci		number of spots	number of bacteria
		wild-type	50	285
		EGFP-YscD	2244	262
		YscV-EGFP	1900	264
		EGFP-YscQ	3578	447
		EGFP-YscK	3640	537
		EGFP-YscL	3347	473
		EGFP-YscN	1968	274
Fig. 3a	FCS determination of		number of analysed traces	
	transit time		meeting quality criteria	
		EGFP	140	
		EGFP-YscK	73	
		EGFP-YscQ	199	
		EGFP-YscL	157	
		EGFP-YscN	86	
Fig. 3b	FCS determination of		number of analysed traces	
	transit time		meeting quality criteria	
		EGFP-YscK AYscQ	54	
		EGFP-YscQ Δ YscN	83	
		EGFP-YscQ _{M218A}	58	
		EGFP-YscL Δ YscN	65	
		EGFP-YscL ΔYsc Q	79	
		EGFP-YscN AYscL	86	
Fig. 3c	FCS determination of		number of analysed traces	

	diffusion coefficient		meeting quality criteria
		EGFP-YscK, secreting	123
		EGFP-YscK, non-secreting	73
		EGFP-YscQ, secreting	142
		EGFP-YscQ, non-secreting	156
		EGFP-YscL, secreting	157
		EGFP-YscL, non-secreting	158
		EGFP-YscN, secreting	80
		EGFP-YscN, non-secreting	85
Fig. 3d, S11	FCS determination of		number of analysed traces
	transit time		meeting quality criteria
		EGFP-YscQ, secreting (5 mM EDTA)	142
		EGFP-YscQ, no addition	65
		EGFP-YscQ, 1 mM CaCl ₂	64
		EGFP-YscQ, non-secreting (5 mM CaCl ₂)	156
		EGFP-YscL, secreting (5 mM EDTA)	157
		EGFP-YscL, no addition	67
		EGFP-YscL, 1 mM CaCl ₂	84
		EGFP-YscL, non-secreting (5 mM CaCl ₂)	158
Results, main text	FCS, comparison of		number of analysed traces
	conditions		meeting quality criteria
		EGFP, secreting	79
		EGFP, non-secreting	39
Fig. S10de	FCS determination of		number of analysed traces
	transit time		meeting quality criteria
		EGFP-YscL AYscD	29
		EGFP-YscL	16
		EGFP-YscQ \DeltaYscD	20
		EGFP-YscQ	13

Supplementary References:

- 1. Diepold, A., Kudryashev, M., Delalez, N. J., Berry, R. M. & Armitage, J. P. Composition, Formation, and Regulation of the Cytosolic C-ring, a Dynamic Component of the Type III Secretion Injectisome. *PLOS Biol.* **13**, e1002039 (2015).
- 2. Waithe, D., Clausen, M. P., Sezgin, E. & Eggeling, C. FoCuS-point: software for STED fluorescence correlation and time-gated single photon counting. *Bioinformatics* **32**, 958–60 (2016).
- 3. Clausen, M. P. *et al.* A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics. *Methods* **88**, 67–75 (2015).
- 4. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. *Microbiol. Mol. Biol. Rev.* **62**, 379–433 (1998).
- 5. Kudryashev, M. *et al.* In situ structural analysis of the Yersinia enterocolitica injectisome. *Elife* **2**, e00792 (2013).
- Kaniga, K., Delor, I. & Cornelis, G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. *Gene* 109, 137– 141 (1991).