Supporting Information for:

Synthetic Glycoimmunochemistry. Effect of Phenolic Glycolipids From

Mycobacterium kansasii on Proinflammatory Cytokine Release

Hassan R. H. Elsaidi and Todd L. Lowary

Table of Contents

Contents	Page
Scheme S1: Retrosynthetic analysis of analogs 8 and 9	S6
Scheme S2: Retrosynthetic analysis of analogs 18–24	S6
Scheme S3: Retrosynthetic analysis of glycolipid 34	S7
Scheme S4: Synthesis of building blocks S1 and S2	S7
Scheme S5: Synthesis of building blocks S3, S4 and 25	S8
Scheme S6: Synthesis of trisaccharide 8	S9
Scheme S7: Synthesis of trisaccharide 9	S9
Scheme S8: Synthesis of trisaccharide 10 and 11	S10
Scheme S9: Synthesis of building block 28	S10
Scheme S10: Synthesis of building block S5	S11
Scheme S11: Synthesis of building block S6	S11
Scheme S12: Synthesis of tetrasaccharides 18–21	S12
Scheme S13: Synthesis of tetrasaccharides 22–24	S12
Scheme S14: Synthesis of building block 35	S13
<i>Scheme S15</i> : Synthesis of building blocks S7 and S8	S13
Scheme S16: Synthesis of building block S9	S13
Scheme S17: Synthesis of glycolipid 34	S14
Experimental	S15

Immunological Evaluation	S73
Immunoinhibition assay of compounds 1–17 (Pam3CSK4 [TLR2 agonist] as stimulant), Figures S1–S12	S73
Immunoinhibition assay of compounds 1–17 (Ultra pure LPS [TLR4 agonist] as stimulant), Figures S13–24	S77
Glycolipid 34 – Pam3CSK4 as stimulant, Figures S25–S28	S81
Glycolipid 34 – Ultrapure LPS as stimulant, Figures S29–S33	S83
NMR Spectra of New Compounds	S90

List of Abbreviations

Abbreviation	Meaning
[α]	specific rotation
μΜ	micromolar
Ac	acetyl
АсОН	acetic acid
All	allyl
AllBr	allyl bromide
appt	apparent triplet (NMR spectra)
Ac ₂ O	acetic anhydride
aq.	aqueous
Bn	benzyl
BnBr	benzyl bromide
br	broad
Bu	butyl
Bz	benzoyl
BzCl	benzoyl chloride
<i>n</i> -Bu ₄ NI	tetra-n-butylammonium iodide

calcd	calculated
COSY	correlation spectroscopy
°C	degree Celsius
CSA	(±)-camphor-10-sulfonic acid
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	N,N'-dicyclohexylcarbodiimide
d	doublet (NMR spectra)
dd	doublet of doublet (NMR spectra)
DMAP	4-dimethylaminopyridine
DMF	<i>N</i> , <i>N</i> [°] -dimethylformamide
DMSO	dimethylsulfoxide
DMP	2,3-dimethoxypropane
equiv.	equivalent
Et	ethyl
Et ₃ N	triethylamine
h	hour(s)
НОАс	acetic acid
Hz	hertz
J	coupling constant
LA	levulinic acid
m	multiplet (NMR spectra)
М	molar
Me	methyl
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	millilitre(s)

mM	millimole(s)
Milli-Q	(deionized) distilled water
NIS	N-iodosuccinimide
NTM	non-tuberculosis mycobacteria
NMR	nuclear magnetic resonance
Ph	phenyl
РМА	phorbol 12-myristate 13-acetate
ppm	parts per million (NMR spectra)
<i>p</i> -TsOH	<i>p</i> -toluenesulfonic acid
Ру	pyridine
РМРОН	<i>p</i> -methoxyphenol
рНВА	<i>p</i> -hydroxybenzoic acid
<i>p</i> -MBCl	<i>p</i> -methoxybenzyl chloride
PGL(s)	phenolic glycolipid(s)
q	quartet (NMR spectra)
R _f	retention factor
PIMs	phosphatidyl-myo-inositol mannosides
PDIMs	phthiocerol dimycocerosates
РМР	<i>p</i> -methoxyphenyl
rt	room temperature
S	singlet (NMR spectra)
satd.	saturated
ТВ	tuberculosis
TMSOTf	trimethylsilyltrifluoromethanesulfonate
Tol	tolyl
t	triplet (in NMR)
TBAF	tetra-n-butylammonium fluoride

TEA	triethylamine
(CH ₃) ₃ SiH	trimethylsilane
TFA	trifluoroacetic acid
OTf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
Ts	tosyl, <i>p</i> -toluenesulfonyl
TsCl	tosyl chloride, p-toluenesulfonyl chloride
TBDPS	tert-butyldiphenylsilyl
TBDPSC1	tert-butyldiphenylsilyl chloride
TolSH	<i>p</i> -toluenethiol
TEOA	triethyl orthoacetate

Scheme S1. Retrosynthetic analysis of analogs 8 and 9.

Scheme S2. Retrosynthetic analysis of analogs 18-24.

Scheme S3. Retrosynthetic analysis of glycolipid 34

Scheme S4. Synthesis of building blocks S1 and S2. Reagents and conditions: A) a) $BF_3 \cdot Et_2O$, PMPOH, CH_2Cl_2 , overnight, 88%; b) NaOCH₃, CH_3OH/CH_2Cl_2 , 2 h, 96%; c) DMP, Acetone, *p*-TSA, 40 min, 91%; d) BnBr, NaH, DMF, 4 h, 95%; e) *p*-TSA, CH₃OH, 3 h, 82%; f) *n*-Bu₂SnO, toluene, 120 °C, 1 h; *p*-MBCl, *n*-Bu₄NI, 62 °C, 7 h; g) CH₃I, NaH, DMF, 1 h; h) 5% TFA, CH_2Cl_2 , 0 °C, 30 min, 81 % over three steps. B) a) CH₃I, NaH, DMF, 1 h, 96%; b) 1. *p*-TSA, CH₃OH/CH₂Cl₂, 1 h; c) *n*-Bu₂SnO, toluene, 120 °C, 1 h; *p*-MBCl, *n*-Bu₄NI, 62 °C, 7 h, 78% over two steps; d) CH₃I, NaH, DMF, 1 h; e) 5% TFA, CH₂Cl₂, 30 min, 81% over two steps.

Scheme S5. Synthesis of building blocks S3, S4 and 25. Reagents and conditions: A) a) $BF_3 \cdot Et_2O$, TolSH, CH_2Cl_2 , 7 h; b) NaOCH₃, CH_3OH/CH_2Cl_2 , 78% over two steps; c) DMP, acetone, *p*-TSA, 30 min, 96%; d) BnBr, NaH, DMF, 1 h; e) *p*-TSA, CH₃OH/CH₂Cl₂, 3 h, 81%, over two steps; f) *n*-Bu₂SnO, toluene, 120 °C, 1 h; *p*-MBCl, *n*-Bu₄NI, 62 °C 6 h, 86%; g) Ac₂O, pyridine, 3 h, 95%. B) a) Ac₂O, pyridine, 7 h; b) BF₃.Et₂O, TolSH, CH₂Cl₂, overnight, 91% over two steps; c) NaOCH₃, CH₃OH/CH₂Cl₂, 2 h; d) DMP, *p*-TSA, acetone, 45 min, 90% over two steps; e) CH₃I, NaH, DMF, 1 h, 94 %; f) *p*-TSA, CH₃OH/CH₂Cl₂, 4 h, 80%; g) *n*-Bu₂SnO, toluene, 120 °C, 1h; *p*-MBCl, *n*-Bu₄NI, 63 °C, 5h, 83%; h) AllBr, NaH, DMF, 2 h, 86%.

Scheme S6. Synthesis of trisaccharide **8**. Reagents and conditions: a) NIS, AgOTf, -20 °C, 30 min, 81%; b) NaOCH₃, CH₃OH/CH₂Cl₂, 1 h; c) CH₃I, NaH, DMF, 1 h; d) 5% TFA, CH₂Cl₂, 0 °C, 30 min, 87% over three steps; e) NIS, AgOTf, CH₂Cl₂, -40 °C, 30 min, 80%; f) *p*-TSA, CH₃OH/CH₂Cl₂, 2 h; g) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 87% over two steps.

Scheme S7. Synthesis of trisaccharide **9**. Reagents and conditions: a) NIS, AgOTf, -20 °C, 30 min, 85%; b) NaOCH₃, CH₃OH/CH₂Cl₂, 1 h; c) CH₃I, NaH, DMF, 1 h; d) 5% TFA, CH₂Cl₂, 0 °C, 30 min, 80% over three steps; e) NIS, AgOTf, CH₂Cl₂, -40 °C, 30 min, 83%; f) *p*-TSA, CH₃OH/CH₂Cl₂, 3 h; g) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 79% over two steps.

Scheme S8. Synthesis of trisaccharide **10** and **11**. Reagents and conditions: a) NIS, AgOTf, -40 °C, 30 min; b) (Ph₃P)₄Pd, HOAc, overnight, 71% over twp steps; c) Ac₂O, pyridine, 2 h; d) Pd/C, H₂, CH₃OH/CH₂Cl₂ overnight, 81% over two steps; e) 1. (C₂H₇CO)₂O, pyridine, 2 h; f) Pd/C, H₂, CH₃OH/ CH₂Cl₂, overnight, 76% over two steps.

Scheme S9. Synthesis of building block **28**. Reagents and conditions: a) TsCl, pyridine, DMAP, overnight; b) 2,2-Dimethoxypropane, acetone, 2 h, 78% over two steps; c) NaBH₄, DMSO, 80 °C, 8h; d) CH₃I, NaH, DMF, 1 h, 69 % over two steps; e) *p*-TSA, CH₂Cl₂/CH₃OH, 3h; f) Bu₂SnO, toluene, 130 °C, 1h; BnBr, *n*-Bu₄NBr, 63 °C, overnight; g) Ac₂O, pyridine, 1 h, 79% over three steps, h) Ac₂O, H₂SO₄, 0 °C, 2h; i) TolSH, BF₃·Et₂O, CH₂Cl₂, -20 °C, 5h; j) NaOCH₃, CH₂Cl₂/CH₃OH, 2 h; k) BzCl, pyridine, 2h, 53% over four steps.

Scheme S10. Synthesis of building block **S5**. Reagents and conditions: a) TBDPSCl, Et₃N, pyridine, 60 °C, 3 h; b) DMP, *p*-TSA, acetone, 3 h, 88%, over two steps; c) TBAF, THF, 2 h; d) BnBr, NaH, DMF, 2 h; e) *p*-TSA, CH₃OH, overnight, 74% over three steps; f) *n*-Bu₂SnO, toluene, 120 °C, 1 h; BnBr, *n*-Bu₄NI, 62 °C, overnight; g) Ac₂O, pyridine, 1 h, 84% over two steps; h) Ac₂O, H₂SO₄, 0 °C, 1 h; i) TolSH, BF₃.Et₂O, CH₂Cl₂, 0 °C, overnight; j) NaOCH₃, CH₃OH/CH₂Cl₂, 2 h; k) BzCl, pyridine, 0 °C to r.t., 3 h, 59 % over four steps.

Scheme S11. Synthesis of building block **S6**. Reagents and conditions: a) CH₃I, NaH, DMF, 1 h; b) TBAF, THF, 2 h; c) BnBr, NaH, DMF, 3 h, 78% over three steps; d) *p*-TSA, CH₃OH/CH₂Cl₂, 4 h; e) *n*-Bu₂SnO, toluene, 120 °C, 1 h; BnBr, *n*-Bu₄NI, 62 °C, 7 h; f) Ac₂O, pyridine, 1 h, 73%, over three steps; g) Ac₂O, H₂SO₄, 0 °C, 1 h; h) TolSH, BF₃.Et₂O, CH₂Cl₂, 0 °C, overnight; i) NaOCH₃, CH₃OH/CH₂Cl₂, 2 h; j) BzCl, pyridine, 0 °C to r.t., 2 h, 61 % over four steps.

Scheme S12. Synthesis of tetrasaccharides **18–21**. Reagents and conditions: a) NIS, AgOTf, CH₂Cl₂, –20 °C, 3 min, 68%; b) NaOCH₃, CH₃OH /CH₂Cl₂, 3 h; c) (Ph₃P)₄Pd, HOAc, overnight; d) Pd/C, H₂, CH₃OH/CH₂Cl₂, three days, 69% over three steps, e) NaOCH₃, CH₃OH/CH₂Cl₂, 3 h; f) Pd/C, CH₃OH/CH₂Cl₂, overnight, 73% over two steps; g) NaOCH₃, CH₃OH/CH₂Cl₂, 3 h; h) CH₃I, NaH, DMF, 1 h; i) (Ph₃P)₄Pd, HOAc, overnight; j) Pd/C, H₂, two days, 60 % over four steps; k) NaOCH₃, CH₃OH/CH₂Cl₂, 3 h; l) CH₃OH/CH₂Cl₂, 3 h; l) CH₃I, NaH, DMF, 1 h; m) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 71% over three steps.

Scheme S13. Synthesis of tetrasaccharides **22–24**. Reagents and conditions: a) NIS, AgOTf, CH₂Cl₂, –20 °C, 3 min, 63%; b) NaOCH₃, CH₃OH/CH₂Cl₂, 4 h; c) (Ph₃P)₄Pd, HOAc, overnight; d) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 81% over three steps; e) NaOCH₃, CH₃OH/CH₂Cl₂, 4 h; h) CH₃I, NaH, DMF, 1 h; g) (Ph₃P)₄Pd, HOAc, overnight; h) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 71% over four steps; i) NaOCH₃, CH₃OH/CH₂Cl₂, 4 h; j) CH₃I, NaH, DMF, 1 h; k) Pd/C, H₂, CH₃OH/CH₂Cl₂, overnight, 74% over three steps.

Scheme S14. Synthesis of building block **35**. Reagents and conditions: a) Mg, THF, r.t. to 50 °C for 3 h, 75%; b) Me₃SiH, BF₃·Et₂O, CH₂Cl₂, 1h, 94%; c) BCl₃, *n*-Bu₄NI, CH₂Cl₂, -78 °C to rt, 1 h, 96%.

Scheme S15. Synthesis of building blocks **S7** and **S8**. Reagents and conditions: (A) a) CH₃I, NaH, DMF, 1h; b) *p*-TSA, CH₃OH/CH₂Cl₂, 3h, 84% over two steps; c) TEOA, CH₂Cl₂, CSA, 2 h; d) 70% AcOH, 30 min; e) LA, DCC, DMAP, 3 h, 82% over three steps. (B) a) TEOA, CH₂Cl₂, CSA, 2 h; b) 70% AcOH, 30 min; c) LA, DCC, DMAP, CH₂Cl₂, 3 h, 79% over three steps.

Scheme S16. Synthesis of building block S9. Reagents and conditions: a) CH₃I, NaH, DMF, 1 h, 89%.

S47

Scheme S17. Synthesis of glycolipid **34**. Reagents and conditions: a) NIS, AgOTf, CH₂Cl₂, -20 °C, 30 min; b) NH₂NH₂·HAc, CH₂Cl₂, 5 h, 66 % over two steps; c) NIS, AgOTf, CH₂Cl₂, -20 °C, 30 min, 79%; d) NH₂NH₂·HAc, CH₂Cl₂, 5 h; e) NIS, AgOTf, CH₂Cl₂, -20 °C, 30 min; f) 5% TFA, CH₂Cl₂, 0 °C, 45 min, 39 % over three steps; g) NIS, AgOTf, CH₂Cl₂, -20 °C, 30 min; h) NaOCH₃, CH₂Cl₂/CH₃OH₃, 4 h; i) CH₃I, NaH, DMF, 1 h; j) Pd/C, H₂, CH₂Cl₂/CH₃OH, overnight, 54% over four steps.

Experimental

General Methods

Solvents used in reactions were purified by successive passage through columns of alumina and copper under an argon atmosphere before use. All reagents used in reactions were purchased from commercial sources and were used without further purification unless noted otherwise. All reactions were carried out under a positive pressure of argon atmosphere and monitored by TLC on Silica Gel G-25 UV₂₅₄ (0.25 mm) unless stated otherwise. Spots were detected under UV light and/or by charring with a solution of anisaldehyde in ethanol, acetic acid, and H₂SO₄. Column chromatography was performed on Silica Gel 60 (40–60 µm). The ratio between silica gel and residue ranged from 100:1 to 20:1 (w/w). Organic solutions were concentrated under vacuum at < 50 °C. ¹H NMR and ¹³C NMR spectra were recorded at 400 or 500 MHz. ¹H NMR chemical shifts are referenced to TMS (0.0, CDCl₃) or CD₃OD (4.78, CD₃OD). ¹³C NMR chemical shifts are referenced to CDCl₃ (77.23, CDCl₃). ¹H NMR data are reported as though they are first order and the peak assignments were made on the basis of 2D-NMR ($^{1}H^{-1}H$ COSY and HMOC) experiments. The monosaccharide residues in the disaccharide and trisaccharides are labelled by no prime, prime, double, and tri-prime as shown in Figure 1 and these labels are maintained in the assignment of NMR spectra of all compounds. Optical rotations were measured at 21 ± 2 °C at the sodium D line (589 nm) and are in units of deg•mL(dm•g)⁻¹. ESI-MS spectra were carried out on samples suspended in DCM or CH₃OH and added NaCl.

Numbering system for labelling data.

p-Methoxyphenyl 2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-rhamnopyranoside (8)

To a solution of **S27** (16.5 mg, 0.02 mmol) in 1:1 CH₃OH–CH₃Cl₂ (10 mL), *p*-TSA (3 mg) was added and the solution was stirred for 3 h at rt. The reaction mixture was neutralized with Et₃N (50 µL), concentrated and the resulting residue was purified by chromatography (1:2 hexane–EtOAc) to give a syrup. The syrup was dissolved in 1:1 CH₃OH–CH₃Cl₂ (15 mL), Pd–C (3 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere at rt. The reaction mixture was then filtered, concentrated and the resulting residue was purified by chromatography (15:1 CH₂Cl₂–CH₃OH) to give **8** (10.5 mg, 87 %) as a colorless thick syrup: R_f 0.45 (15:1 CH₂Cl₂–CH₃OH); [α]_D +67.8 (*c* 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.02–6.99 (m, 2H, Ar-2,6), 6.85–6.82 (m, 2H, Ar-3,5), 5.44 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 5.20 (d, 1H, $J_{1',2'}$ = 1.8 Hz, H-1'), 5.14 (d, 1H, $J_{1',2''}$ = 3.4 Hz, H-1''), 4.25–4.21 (m, 1H, H-5''), 4.07–4.03 (m, 2H, H-3, H-3'), 3.89 (dq, 1H, $J_{4',5'}$ = 9.4 Hz, $J_{5',6'}$ = 6.3 Hz, H-5'), 3.84–3.83 (m, 1H, H-5), 3.80–3.74 (m, 3H, H-4, H-4', H-4''), 3.78 (s, 3H, OCH₃), 3.72–3.68 (m, 1H, H-3''), 3.66 (dd, 1H, $J_{1,2}$ = 1.7 Hz, $J_{2,3}$ = 3.3 Hz, H-2), 3.64–3.61 (m, 1H, H-2') 3.54 (s, 3H, OCH₃), 3.52–3.51 (m, 1H, H-2''), 3.50 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 2.52

(br s, 1H, OH), 2.31 (br s, 2H, OH x 2), 1.35 (d, 3H, $J_{5',6''} = 6.4$ Hz, H-6''), 1.31 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6), 1.29 (d, 3H, $J_{5',6'} = 6.3$ Hz, H-6'); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 155.0 (Ar), 150.5 (Ar), 117.5 (Ar x 2), 114.7 (Ar x 2), 99.8, 99.2, 95.5, 83.0, 80.2, 80.1(4), 80.1, 79.5, 71.9, 71.7, 71.5, 69.9, 69.0, 68.9, 66.5, 59.3 (OCH₃), 58.7 (OCH₃), 58.6 (OCH₃), 55.7 (OCH₃), 18.0, 17.8, 16.4. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₈H₄₄NaO₁₄: 627.2623. Found 627.2621.

p-Methoxyphenyl 2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (9)

To a solution of S29 (10 mg, 0.013 mmol) in 1:1 CH₃OH-CH₃Cl₂ (10 mL), p-TSA (2 mg) was added. The reaction mixture was stirred for 3 h at rt before the addition of Et₃N (50 µL) and concentration. The resulting residue was purified by chromatography (1:2 hexane-EtOAc) to give a colorless oil (8 mg). The oil was dissolved in 1:1 CH₃OH–CH₃Cl₂ (20 mL), Pd–C (2 mg, 20% w/w) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere at rt. The reaction mixture was filtered, concentrated and the resulting crude product was purified by chromatography (15:1 CH₂Cl₂-CH₃OH) to give 9 (7.5 mg, 90%) as a thick syrup: $R_f 0.55$ (15:1 CH₂Cl₂-CH₃OH); $[\alpha]_D$ -19.8 (c 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.02–6.99 (m, 2H, Ar-2,6), 6.85–6.82 (m, 2H, Ar-3,5), 5.44 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.20 (d, 1H, $J_{1',2'} =$ 1.7 Hz, H-1'), 5.14 (d, 1H, $J_{1'',2''}$ = 3.4 Hz, H-1''), 4.24 (dq, 1H, $J_{4'',5''}$ = 2.7 Hz, $J_{5'',6''}$ = 6.5 Hz, H-5''), 4.10 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 4.05 (dd, 1H, $J_{2',3'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, J_{4',5'} = 3.0 Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 3.87 (dq, 1H, J_{4',5'} = 3.0 Hz, $J_{3',4'} = 9.5$ 9.5 Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.84–3.83 (m, 1H, H-3"), 3.77–3.74 (m, 1H, H-5), 3.78 (s, 3H, OCH₃), 3.71– 3.68 (m, 2H, H-2", H-4"), 3.67 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.0$ Hz, H-2'), 3.60 (app t, 1H, $J_{3',4'} = J_{4',5'} = 9.5$ Hz, H-4'), 3.55 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.51–3.49 (m, 1H, H-2), 3.46 (s, 3H, OCH_3), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 2.80 (br s, 1H, OH), 2.43 (br s, 1H, OH), 1.68 (br s, 1H, OH), 1.35 (d, 3H, $J_{5'6'} = 6.5$ Hz, H-6"), 1.31 (d, 3H, $J_{56} = 6.2$ Hz, H-6), 1.29 (d, 3H, $J_{5'6'} = 6.2$ Hz, H-6'); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 155.0 (Ar), 150.5 (Ar), 117.5 (Ar x 2), 114.7 (Ar x 2), 99.8, 99.2, 95.5,

83.0, 80.2(0), 80.1(7), 80.1, 79.5, 71.9, 71.7, 71.5, 69.9, 68.9, 68.8, 66.5, 61.1 (OCH₃), 59.3 (OCH₃), 58.7 (OCH₃), 58.6 (OCH₃), 55.7 (OCH₃), 18.0, 17.8, 16.4. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₉H₄₆NaO₁₄: 641.2780. Found 641.2775.

p-Methoxyphenyl 4-*O*-acetyl-2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -Lrhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (10)

To a solution of **S30** (20 mg, 0.024 mmol) in pyridine (2 mL), Ac₂O (1 mL) was added and the reaction mixture was stirred for 2 h at rt. Water (5 mL) was then added and the solution was diluted with CH₂Cl₂ (10 mL), washed with water (2 x 8 mL), 1M HCl soln (2 x 8 mL) and brine. The organic layer was dried (NaSO₄), concentrated and the resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. This syrup was dissolved in the 1:1 CH₂Cl₂-CH₃OH (20 mL), Pd-C (4 mg) was added and the reaction mixture was stirred under a hydrogen atmosphere overnight. The reaction mixture was then filtered, concentrated and the resulting syrup was purified by chromatography (10:0.25 CH₂Cl₂-CH₃OH) to give 10 (12.9 mg, 81%) as a thick syrup: $R_f 0.45$ (10:0.25 CH₂Cl₂-CH₃OH); $[\alpha]_D$ -32.5 (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 6.99–6.97 (m, 2H, Ar-2,6), 6.82–6.81 (m, 2H, Ar-3,5), 5.39 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 5.23–5.22 (m, 1H, H-4"), 5.17 (d, 1H, $J_{1'2'}$ = 1.8 Hz, H-1'), 5.14 (d, 1H, $J_{1''2''}$ = 3.4 Hz, H-1"), 4.30 (dq, 1H, $J_{4'',5''} = 2.1$ Hz, $J_{5'',6''} = 6.4$ Hz, H-5''), 4.23 (dd, 1H, $J_{2',3'} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3',4'} = 9.8$ Hz, H-3'), 4.09 (dd, 1H, J_{3,3} = 3.4 Hz, $J_{3',4'} = 9.8$ H 3.2 Hz, $J_{3,4} = 9.7$ Hz, H-3), 3.86 (dq, 1H, $J_{4',5'} = 9.8$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.76 (s, 3H, OCH₃), 3.71–3.68 (m, 2H, H-3", H-5), 3.65–3.63 (m, 2H, H-2, H-2'), 3.55 (s, 3H, OCH₃), 3.54 (s, 3H, OCH₃), 3.51 (s, 3H, OCH_3), 3.49–3.47 (m, 2H, H-2", H-4'), 3.45 (s, 3H, OCH_3), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.7$ Hz, H-4), 2.18 (s, 3H, CH₃CO), 1.36 (d, 3H, $J_{5',6'}$ = 6.2 Hz, H-6'), 1.28 (d, 3H, $J_{5,6}$ = 6.2 Hz, H-6), 1.12 (d, 3H, $J_{5'',6''}$ = 6.4 Hz, H-6"); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 171.3 (*C*=O), 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.0, 99.2, 95.6, 83.0, 82.3, 80.5, 80.3, 79.4, 79.0, 73.4, 71.5, 68.9, 68.7, 68.6, 65.5, 61.0 (OCH₃), 59.4 (OCH₃), 59.0 (OCH₃), 58.5 (OCH₃), 55.7 (OCH₃), 20.8 (CH₃CO), 17.8(8), 17.8(4), 16.3. HRMS (ESI) Calcd. for (M + Na)⁺ C₃₁H₄₈NaO₁₅: 683.2885. Found 683.2880.

p-Methoxyphenyl 2-*O*-methyl-4-*O*-propionyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -Lrhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L- rhamnopyranoside (11)

To a solution of **S30** (10 mg, 0.012 mmol) in pyridine (2 mL), propanoic anhydride (1 mL) was added and the reaction mixture was stirred for 2 h at rt. After 2 h, water (5 mL) was added and the solution was diluted with CH₂Cl₂ (10 mL), washed with water (2 x 8 mL), 1M HCl soln (2 x 8 mL) and brine (8 mL). The organic layer was separated, concentrated and the resulting crude product was purified by chromatography (2:1 hexane–EtOAc) to give a syrup. This syrup was dissolved in the 1:1 CH₂Cl₂–CH₃OH (20 mL), Pd–C (2 mg) was added and the reaction mixture was stirred overnight under hydrogen. The reaction mixture was then filtered, concentrated and the resulting residue was purified by chromatography (10:0.25 CH₂Cl₂-CH₃OH) to give 11 (7.4 mg, 88%) as a thick syrup: $R_f 0.60$ (20:1, CH₂Cl₂–CH₃OH); $[\alpha]_D$ –21.3 (*c* 0.5, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3, \delta_H)$ 7.00–6.97 (m, 2H, Ar-2,6), 6.83–6.80 (m, 2H, Ar-3,5), 5.39 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 5.23 (m, 1H, H-4"), 5.17 (d, 1H, $J_{1',2'} = 1.7$ Hz, H-1'), 5.14 (d, 1H, $J_{1'',2''} = 3.3$ Hz, H-1"), 4.31 (dq, 1H, $J_{4'',5''} = 2.1$ Hz, $J_{5'',6''} = 6.5$ Hz, H-5''), 4.23 (dd, 1H, $J_{2',3'} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, H-3'), 4.10 (dd, 1H, J_{3,3} = 3.5 Hz, $J_{3',4'} = 9.7$ Hz, $J_{3',4'} = 9.7$ 3.3 Hz, $J_{3,4} = 9.6$ Hz, H-3), 3.86 (dq, 1H, $J_{4',5'} = 9.7$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.78–3.76 (m, 1H, H-5), 3.75 (s, 3H, OCH₃), 3.71–3.68 (m, 2H, H-2', H-3"), 3.65–3.63 (m, 2H, H-2, H-4'), 3.55 (s, 3H, OCH₃), 3.54 (s, 3H, OCH_3), 3,52 (s, 3H, OCH_3), 3.48 (dd, 1H, $J_{1'',2''} = 3.3$ Hz, $J_{2'',3''} = 9.8$ Hz, H-2''), 3.46 (s, 3H, OCH_3), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 2.47 (q, 2H, J = 7.6 Hz, CH_2CH_3), 1.35 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.26 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6), 1.19 (t, 3H, J = 7.6 Hz, CH_3CH_2), 1.12 (d, 3H, $J_{5'',6''} = 6.5$ Hz, H-6''); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 174.8 (C=O), 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.0, 99.2, 95.6, 83.0, 82.3, 80.5, 80.3, 79.4, 79.0, 73.2, 71.5, 69.0, 68.7, 68.7, 65.6, 61.0 (OCH₃), 59.3 (OCH₃), 59.0 (OC*H*₃), 58.5 (OC*H*₃), 55.7 (OC*H*₃), 27.5 (CH₂CH₃), 17.8(9), 17.8(4), 16.3, 9.3 (CH₃CH₂). HRMS (ESI) Calcd. for (M + Na)⁺ C₃₂H₅₀NaO₁₅: 697.3042. Found 697.3037.

p-Methoxyphenyl α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (18)

To a solution of **S40** (15 mg, 0.012 mmol) in 1:1 CH₃OH–CH₂Cl₂ (10 mL), 1M NaOCH₃ (0.5 mL) was added. The reaction mixture was stirred for 3 h at rt before it was neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolved in AcOH (5 mL), $(Ph_3P)_4Pd$ (4 mg, 10% w/w) was added and the reaction mixture was stirred overnight at rt and then it was filtered. The filtrate was dilited with water (10 mL) and CH₂Cl₂ (20 mL), being being washed with water (2 x 10 mL), and brine (10 mL). The organic layer was dried (NaSO₄), concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give a colorless oil. To the solution of the oil in 1:1 CH₃OH–CH₂Cl₂ (15 mL), Pd–C (3 mg) was added and the reaction mixture was stirred overnight under hydrogen. The reaction mixture was then filtered, concentrated and the resulting residue was purified by chromatography (20:1 CH₂Cl₂-CH₃OH) to give **18** (7.6 mg, 81%) as an amorphous solid: $R_f 0.4$ (10:0.75 CH₂Cl₂-CH₃OH); [α]_D-45.3 (c 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.01-6.98 (m, 2H, Ar-2,6), 6.68-6.82 (m, 2H, Ar-3,5), 5.42 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.20 (d, 1H, $J_{1'',2''} = 3.2$ Hz, H-1''), 5.13 (d, 1H, $J_{1',2'} = 1.7$ Hz, H-1'), 5.04 (d, 1H, $J_{1'',2''} = 1.6$ Hz, H-1'''), 4.12–4.04 (m, 2H, H-3', H-5), 4.00 (dd, 1H, $J_{2,3} = 3.2$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 3.90–3.88 (m, 2H, H-3", H-5'), 3.86–3.81 (m, 4H, H-5", H-5"', H-6"' x 2), 3.78 (dd, 1H, $J_{1",2"'} = 1.6$ Hz, J_{2",3"} = 3.1 Hz, H-2"), 3.74 (s, 3H, OCH₃), 3.72–3.72 (m, 1H, H-2), 3.68–3.62 (m, 4H, H-2', H-2", H-2", H-2", H-2"), 3.74 (s, 3H, OCH₃), 3.72–3.72 (m, 1H, H-2), 3.68–3.62 (m, 4H, H-2', H-2"), H-2", H-3", H-4'), 3.58–3.56 (m, 2H, H-4", H-4"'), 3.54 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.47 (s, 3H, OCH₃), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.29 (d, 3H, $J_{5'',6''} = 6.5$ Hz, H-6''), 1.22 (d, 3H, $J_{5',6'}$ = 6.2 Hz, H-6'), 1.20 (d, 3H, $J_{5.6}$ = 6.2 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 101.8, 100.1, 98.9, 95.56, 82.4(9), 82.4(8), 82.2, 80.7, 80.3, 79.2, 78.4, 78.3,

73.8, 71.3, 71.3, 71.0, 69.0, 68.7, 66.9, 66.5, 61.3, 61.1 (OCH₃), 59.2 (OCH₃), 59.0 (OCH₃), 58.3 (OCH₃), 55.6 (OCH₃), 18.0, 17.8, 16.4. HRMS (ESI) Calcd. for (M + Na)⁺ C₃₅H₅₆NaO₁₉: 803.3308. Found 803.3303.

p-Methoxyphenyl α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-methyl-4-*O*-propyl- α -L-fucopyranosyl-(1 \rightarrow 3)-2-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl- α -L-rhamnopyranoside (19)

To a solution of **S40** (15 mg, 0.012 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.15 mL) was added and the reaction mixture was stirred for 4 h at rt. It was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting crude product was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. To the solution of this syrup in 1:1 CH₃OH–CH₂Cl₂ (20 mL), Pd–C (4 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. The reaction mixture was then filtered, concentrated and the resulting residue was purified by chromatography (20:1 CH₂Cl₂-CH₃OH) to give 19 (8.6 mg, 87%) as an amorphous solid: $R_f 0.55$ (20:1 CH₂Cl₂-CH₃OH); $[\alpha]_D$ -33.2 (c 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.01–6.98 (m, 2H, Ar), 6.84–6.82 (m, 2H, Ar), 5.40 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 5.21 (br s, 1H, H-1'), 5.16 (br s, 1H, H-1''), 5.12 (d, 1H, $J_{1'',2''} = 3.1$ Hz, H-1''), 4.16–4.09 (m, 2H, H-5'', H-3'), 4.06 (dd, 1H, *J*_{2,3} = 3.3 Hz, *J*_{3,4} = 9.6 Hz, H-3), 3.99–3.80 (m, 5H, H-3", H-5', H-5"', H-6"' x 2), 3.79 (s, 3H, OCH₃), 3.75–3.68 (m, 5H, H-2, H-2", H-5, CH₂O x 2), 3.64–3.59 (m, 4H, H-2', H-2", H-3", H-4'), 3.56–3.54 (m, 1H, H-4^{'''}), 3.54 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.45 (s, 3H, OCH₃) 3.44-3.42 (m, 1H, H-4), 3.24-3.20 (m, 1H, H-4"), 1.66-1.59 (m, 2H, CH_2CH_3), 1.33 (d, 3H, $J_{5'',6''} = 6.5$ Hz, H-6"), 1.26 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.25 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6), 0.95 (t, 3H, J = 7.5 Hz, CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 101.6, 100.1, 98.9, 95.6, 82.4, 82.1, 80.7, 80.5, 80.3, 79.8, 79.6, 75.8 (CH₂O), 73.2, 71.4, 71.1, 70.9, 69.1, 68.7, 67.4, 66.5, 61.2, 61.0, 59.0 (OCH₃), 58.9 (OCH₃), 58.2 (OCH₃), 55.7 (OCH₃), 55.7 (OCH₃), 23.5 (CH₂CH₃), 18.0, 17.8, 16.6, 10.8 (CH₂CH₃). HRMS (ESI) Calcd. for $(M + Na)^+ C_{38}H_{62}NaO_{19}$: 845.3778. Found 845.3776.

p-Methoxyphenyl 2-*O*-methyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-

O-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (20)

To a solution of **S40** (20 mg, 0.016 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.15 mL) was added and the reaction mixture was stirred for 3 h at rt. It was then neutralized with Amberlite IR-120 H^+ resin, filtered and concentrated. The resulting residue was dissolved in DMF (2 mL), CH₃I (0.1 mL) and NaH (60% in mineral oil, 0.7 mg, 0.027 mmol) were added at 0 °C. The reaction mixture was stirred for 1 h at rt the addition of chilled water (5 mL) and CH₂Cl₂ (10 mL). The organic layer was washed with water (2 x 10 mL), and brine (10 mL) and then separated and concentrated. The resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give syrup. To the solution of the syrup in AcOH (5 mL), (Ph₃P)₄Pd (2 mg, 10% w/w) was added and the reaction mixture was stirred overnight at rt before it was filtered. The filtrate was diluted with water (10 mL) and CH₂Cl₂ (20 mL), and then the organic layer was washed with water (2 x 10 mL) and brine (10 mL) before it was dried (NaSO₄) and concentrated. The resulting crude product was purified by chromatography (2:1 hexane-EtOAc) to give a colorless oil. To the solution of the oil in 1:1 CH₃OH–CH₂Cl₂ (15 mL), Pd–C (2 mg) was added and the reaction mixture was stirred for two days under a hydrogen atmosphere. It was then filtered, concentrated and the resulting residue was purified by chromatography (20:1 CH₂Cl₂–CH₃OH) to give 20 (9 mg, 71%) as an amorphous solid: $R_f 0.50$ (10:0.75 CH₂Cl₂-CH₃OH); $[\alpha]_D$ -19.3 (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.02–6.98 (m, 2H, Ar-2.6), 6.85-6.82 (m, 2H, Ar-3,5), 5.40 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.21 (br s, 1H, H-1'), 5.15 (br s, 1H, H-1''), 5.10(d, 1H, $J_{1''2''} = 3.2$ Hz, H-1''), 4.17 (dq, 1H, $J_{4''5''} = 2.6$ Hz, $J_{5''6''} = 6.5$ H, H-5''), 4.12–4.08 (m, 2H, H-3, H-3'), 3.97-3.80 (m, 7H, H-2, H-3", H-5, H-5', H-5", H-6" x 2), 3.79 (s, 3H, OCH₃), 3.72-3.70 (m, 3H, H-2', H-2", H-2"'), 3.69–3.65 (m, 2H, H-3"', H-4"), 3.64–3.59 (m, 2H, H-4', H-4"'), 3.56 (s, 3H, OCH₃), 3.54 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.24 (app t, 1H, J_{3,4} = J_{4,5} = 9.5 Hz, H-4), 1.36 (d, 3H, $J_{5''6''} = 6.5$ Hz, H-6''), 1.29–1.26 (m, 6H, H-6, H-6'); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.7, 99.3, 97.8, 95.6, 83.1, 82.3, 80.6, 80.4, 80.2,

78.9, 78.5(3), 78.4(4), 72.5, 71.7, 71.6, 71.5, 69.2, 69.0, 68.7, 66.5, 62.6, 61.1 (OCH₃), 59.9 (OCH₃), 59.0 (OCH₃), 58.8 (OCH₃), 58.6 (OCH₃), 55.7 (OCH₃), 17.8(6), 17.8(5), 16.3. HRMS (ESI) Calcd. for $(M + Na)^+$ C₃₆H₅₈NaO₁₉: 817.3465. Found 817.3462.

p-Methoxyphenyl2-O-methyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-methyl-4-O-propyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2-O-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-methyl- α -L-

rhamnopyranoside (21)

To a solution of **S40** (15 mg, 0.012 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.15 mL) was added and the reaction mixture was stirred for 3 h at rt. It was then neutralized with Amberlite IR-120 H^+ resin, filtered and concentrated. The resulting residue was dissolved in DMF (1 mL), CH₃I (0.1 mL) and NaH (60% in mineral oil, 0.5 mg, 0.022 mmol) were added at 0 °C. The reaction mixture was stirred for 1 h at rt before the addition of chilled water (5 mL), and CH₂Cl₂ (10 mL). The organic layer was washed with water (2 x 10 mL) and brine (10 mL) and then separated, concentrated and the resulting crude product was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. To the solution of the syrup in 1:1 CH₃OH-CH₂Cl₂ (10 mL), Pd-C (4 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. The solution was then filtered, concentrated and the resulting residue was purified by chromatography (20:1 CH₂Cl₂-CH₃OH) to give **21** (7.6 mg, 76%) as a thick syrup: $R_f 0.45$ (20:1 CH₂Cl₂-CH₃OH); $[\alpha]_D$ –38.1 (*c* 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 6.99–6.96 (m, 2H, Ar-2.6), 6.83–6.80 (m, 2H, Ar-3,5), 5.39 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.28 (br s, 1H, H-1'), 5.16 (br s, 1H, H-1'''), 5.09 (d, 1H, $J_{1'',2''} = 3.3$ Hz, H-1''), 4.16–4.17 (m, 2H, H-3', H-5''), 4.08 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 3.89– 3.85 (m, 3H, H-3", H-6" x 2), 3.82–3.77 (m, 2H, H-5', H-5"), 3.76 (s, 3H, OCH₃), 3.74–3.67 (m, 5H, CH₂O x 2, H-2, H-2', H-5), 3.65–3.62 (m, 2H, H-2", H-2"'), 3.56–3.55 (m, 1H, H-3"'), 3.53 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.49–3.47 (m, 2H, H-4', H-4'''), 3.46 (s, 3H, OCH₃), 3.43–3.42 (m, 1H, H-4"), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.65–1.58 (m, 2H, CH₂CH₃), 1.35 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6),

1.26 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.21 (d, 1H, $J_{5'',6''} = 6.5$ Hz, H-6''), 0.94 (t, 3H, J = 7.7 Hz, CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.3, 99.3, 97.8, 95.6, 82.9, 82.2, 80.6, 80.5, 80.3, 80.2, 79.3, 75.9 (CH₂O), 75.8, 72.6, 71.5, 71.4, 69.0, 68.8, 68.7, 67.6, 62.5, 61.1, 59.1 (OCH₃), 58.9 (OCH₃), 58.7 (OCH₃), 58.5 (OCH₃), 55.7 (OCH₃ x 2), 23.5 (CH₂CH₃), 17.9, 17.8, 16.5, 10.8 (CH₂CH₃). HRMS (ESI) Calcd. for (M + Na)⁺ C₃₉H₆₄NaO₁₉: 859.3934. Found 859.3925.

p-Methoxyphenyl 4-*O*-methyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (22)

To a solution of **S41** (20 mg, 0.02 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.15 mL) was added and the reaction mixture was stirred for 4 h at rt. The reaction mixture was then neutralized with Amberlite IR-120 H^+ resin, filtered and concentrated. The resulting crude product was purified by chromatography (1:1 hexane-EtOAc) to give a syrup. To the solution of this syrup in AcOH (3 mL), (Ph₃P)₄Pd (4 mg, 20 % w/w) was added and the reaction mixture was stirred overnight and then filtered. The filtrate was diluted with water (10 mL), and CH₂Cl₂ (20 mL) and then washed with water (2 x 10 mL) and brine (10 mL). The organic layer was separated, dried (NaSO₄), concentrated and the resulting oil was dissolved in 1:1 CH₃OH-CH₂Cl₂ (20 mL). To this solution, Pd-C (4 mg, 20% w/w) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere before it was filtered and concentrated. The resulting crude product was purified by chromatography (10:0.75, CH₂Cl₂-CH₃OH) to give 22 (11.3 mg, 71%) as a thick syrup: $R_f 0.50$ (10:0.75, CH₂Cl₂-CH₃OH); $[\alpha]_D$ -41.7 (c 0.7, CHCl₃); ¹H NMR (500 MHz, $CDCl_3, \delta_H$) 7.01–6.98 (m, 2H, Ar-2,6), 6.85–6.81 (m, 2H, Ar-3,5), 5.40 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 5.19–5.18 (m, 2H, H-1', H-1'''), 5.11 (d, 1H, $J_{1'',2''}$ = 3.3 Hz, H-1''), 4.20–4.16 (m, 1H, H-5''), 4.11–4.08 (m, 2H, H-3', H-3), 4.02–4.01 (m, 1H, H-3"), 3.95–3.85 (m, 4H, H-5, H-5', H-6" x 2), 3.81–3.79 (m, 3H, H-2, H-2", H-5"), 3.78 (s, 3H, OCH₃), 3.72–3.68 (m, 2H, H-2', H-2"), 3.67–3.62 (m, 3H, H-3"', H-4', H-4"), 3.59 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 3.52 (s, 6H, OCH₃ x 2), 3.47 (s, 3H, OCH₃), 3.46–3.43 (m, 1H, H-4^{'''}), 3.23 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.37 (d, 3H, $J_{5'',6''} = 6.4$ Hz, H-6''), 1.28–1.26 (m, 6H, H-6, H-6'); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 101.0, 100.1, 98.9, 95.6, 82.8, 82.2, 80.5, 80.3, 79.2, 78.8, 78.7, 78.4, 78.2, 71.3, 71.1, 69.0, 68.7, 68.6, 66.5, 66.3, 62.0, 61.1 (OCH₃), 60.8 (OCH₃), 59.5 (OCH₃), 59.0 (OCH₃), 58.2 (OCH₃), 55.7 (OCH₃), 18.0, 17.8, 16.3. HRMS (ESI) Calcd. for (M + Na)⁺ C₃₆H₅₈NaO₁₉: 817.3465. Found 817.3459.

p-Methoxyphenyl 2,4-di-*O*-methyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (23)

To a solution of S41 (15 mg, 0.012 mmol) in 1:1 CH₃OH-CH₂Cl₂ (15 mL) was added 1M NaOCH₃ (0.15 mL) and the reaction mixture was stirred for 4 h at rt. The reaction mixture was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting crude product was dissolved in DMF (4 mL), CH₃I (0.1 mL) and NaH (60% in mineral oil, 6 mg) were added at 0 °C. The reaction mixture was stirred for 1 h at rt before the addition of water (8 mL), and CH₂Cl₂ (10 mL). The organic layer was washed with water (2 x 10 mL) and brine (10 mL) before being concentrated. The resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. This syrup was dissolved in AcOH (3 mL), (Ph₃P)₄Pd (3 mg, 20% w/w) was added and the reaction mixture was stirred overnight. The reaction mixture was then filtered, and the filtrate was dilted with water (10 mL), and CH₂Cl₂ (20 mL). The organic layer was washed with water (2 x 10 mL) and brine (10 mL), and then separated, dried (NaSO₄), and concentrated to give an oil that was dissolved in 1:1 CH₃OH–CH₂Cl₂ (20 mL). To this solution, Pd–C (4 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. The reaction mixture was then filtered, concentrated and the resulting crude product was purified by chromatography (20:1 CH₂Cl₂-CH₃OH) to give **23** (7.2 mg, 74%) as a thick syrup: $R_f 0.39$ (20:1 CH₂Cl₂–CH₃OH); $[\alpha]_D$ –39.2 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 6.99–6.96 (m, 2H, Ar-2,6), 6.83–6.80 (m, 2H, Ar-3,5), 5.40 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 5.21 (br s, 1H, H-1'), 5.18 (br s, 1H, H-1''), 5.09 (d, 1H, $J_{1'',2''} = 3.3$ Hz, H-1''), 4.15–4.07 (dq, 1H, $J_{4'',5''} = 2.8$

Hz, $J_{5'',6''} = 6.4$ H, H-5''), 4.11 (dd, 1H, $J_{2',3'} = 3.0$ Hz, $J_{3',4'} = 9.5$ Hz, H-3'), 4.07 (dd, 1H, $J_{2,3} = 3.1$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 3.91–3.86 (m, 4H, H-3'', H-5', H-6''' x 2), 3.80–3.76 (m, 3H, H-2, H-5, H-5'''), 3.78 (s, 3H, OCH₃), 3.74–3.69 (m, 3H, H-2', H-2'', H-2'''), 3.66–3.62 (m, 3H, H-3''', H-4', H-4''), 3.58 (s, 3H, OCH₃), 3.56 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.30–3.23 (m, 2H, H-4, H-4'''), 2.70 (br s, 1H, OH), 2.51 (d, 1H, J = 8.5 Hz, OH), 1.72 (br s, 2H, OH x 2), 1.36 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6), 1.28 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.26 (d, 3H, $J_{5'',6''} = 6.4$ Hz, H-6''); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.7, 99.3, 97.7, 95.6, 83.2, 82.3, 80.6(2), 80.6(0), 80.3, 78.9, 78.5, 78.4, 78.3, 72.3, 71.7, 71.6, 71.4, 69.0, 68.7, 66.4, 62.4, 61.1 (OCH₃), 60.8 (OCH₃), 60.0 (OCH₃), 59.0 (OCH₃), 58.8 (OCH₃), 58.6 (OCH₃), 55.7 (OCH₃), 17.8(6), 17.8(4), 16.3. HRMS (ESI) Calcd. for (M + Na)⁺ C₃₇H₆₀NaO₁₉: 831.3621. Found 831.3613.

p-Methoxyphenyl2,4-di-O-methyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-methyl-4-O-isopropyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2-O-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-methyl- α -L-

rhamnopyranoside (24)

To a solution of **S41** (15 mg, 0.012 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.15 mL) was added and the reaction mixture was stirred for 4 h at rt. The reaction mixture was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting crude product was dissolved in DMF (4 mL), CH₃I (0.1 mL) and NaH (60% in mineral oil, 4 mg) were added at 0 °C. The reaction mixture was stirred for 1 h at rt before the addition of water (8 mL). The mixture was diluted with CH₂Cl₂ (15 mL), washed with water (2 x 10 mL) and brine (20 mL). The organic layer was separated, concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give a syrup. To the solution of this syrup in 1:1 CH₃OH–CH₂Cl₂ (20 mL), Pd–C (4 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. The reaction mixture was then filtered, concentrated and the resulting crude product was purified by chromatography (10:0.75, CH₂Cl₂–CH₃OH) to give **24** (7.3 mg, 71%) as a thick syrup: R_f 0.44 (10:0.75, CH₂Cl₂–CH₃OH); [α]_D –27.6 (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.01–6.98 (m, 2H, Ar-2,6), 6.85–6.81 (m, 2H, Ar-3,5), 5.40 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 5.20 (br s, 1H, H-1'), 5.18 (br s, 1H, H-1'''), 5.08 (d, 1H, $J_{1'',2''}$ = 3.2 Hz, H-1''), 4.21–4.06 (m, 3H, H-3, H-3', H-5''), 3.91–3.86 (m, 3H, H-3'', H-5'' x 2), 3.80–3.76 (m, 3H, H-2, H-5, H-5'''), 3.78 (s, 3H, OCH₃), 3.74–3.71 (m, 4H, H-2', H-2'', CH₂O), 3.70–3.62 (m, 3H, H-2''', H-3''', H-4'), 3.57 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.40–3.38 (m, 1H, H-4''), 3.30 (app t, 1H, $J_{3''',4'''} = J_{4''',5'''} = 9.8$ Hz, H-4'''), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.61 (q, 1H, J = 7.5 Hz, CH₂CH₂O), 1.35 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.26 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6), 1.20 (d, 3H, $J_{5'',6''} = 6.5$ Hz, H-6''), 0.94 (t, 1H, J = 7.5 Hz, CH₃CH₂); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 100.4, 99.4, 97.5, 95.6, 83.1, 82.2, 80.6(0), 80.5(6), 80.5, 80.4, 80.3, 79.3, 78.3, 75.8 (CH₂O), 72.7, 72.1, 71.6, 69.4, 69.0, 68.7, 67.7, 62.5, 61.1 (OCH₃), 60.9 (OCH₃), 59.3 (OCH₃), 58.5(8) (OCH₃), 55.7 (OCH₃), 23.52 (CH₂CH₃), 17.8(6), 17.8(4), 16.3, 10.8 (CH₃CH₂). HRMS (ESI) Calcd. for (M + Na) C₄₀H₆₆NaO₁₉: 873.4091. Found 873.4083.

p-Tolyl 4-O-allyl-3-O-*p*-methoxybenzyl-2-O-methyl-1-thio-β-L-fucopyranoside (25)

To a solution of compound **S24** (1 g, 2.47 mmol) and AllBr (0.2 mL, 2.29 mmol) in DMF (10 mL) at 0 °C was added NaH (60% in mineral oil, 95 mg, 3.95 mmol). The reaction mixture was stirred for 2 h at rt before the addition of chilled water (30 mL). The solution was concentrated, diluted with CH₂Cl₂ (50 mL) and washed with water (2 × 50 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (5:1 hexane–EtOAc) to give **25** (0.94 g, 86%) as a colorless oil: R_f 0.61 (5:1 hexane–EtOAc); [α]_D –14.7 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ _H) 7.49–7.46 (m, 2H, Ar), 7.31–7.27 (m, 2H, Ar), 7.09–7.07 (m, 2H, Ar), 6.90–6.87 (m, 2H, Ar), 5.98–5.88 (m, 1H, CH₂=CH), 5.28–5.27 (m, 1H, *CH*₂=CH), 5.17–5.14 (m, 1H, *CH*₂=CH), 4.66, 4.62 (ABq, 2H, J = 11.5 Hz, ArCH₂), 4.43–4.37 (m, 2H, *CH*₂O, H-1), 4.13–4.08 (m, 1H, *CH*₂O), 3.81 (s, 3H, OCH₃), 3.60 (s, 3H, OCH₃),

3.52–3.45 (m, 3H, H-2, H-4, H-5), 3.41 (dd, 1H, $J_{2,3} = 9.7$ Hz, $J_{3,4} = 3.1$ Hz, H-3), 2.32 (s, 3H, ArC H_3), 1.28 (d, 3H, $J_{5,6} = 6.4$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 159.2 (=CH), 137.1 (Ar), 135.6 (CH₂=), 132.2 (Ar x 2), 130.5 (Ar), 129.4 (Ar x 2), 129.2 (Ar x 2), 116.2 (Ar x 2), 113.8 (Ar x 2), 87.9, 83.8, 79.0, 76.4 (ArCH₂), 74.5 (CH₂O), 73.9, 72.4, 61.1 (OCH₃), 55.3 (OCH₃), 21.1 (ArCH₃), 17.2 (C-6). HRMS (ESI) Calcd. for (M + Na)⁺ C₂₅H₃₂NaO₅S: 467.1863. Found 467.1855.

p-Methoxyphenyl 4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl- α -L-rhamnopyranoside (26)

To a solution of **S28** (0.5 g, 0.72 mmol) in 1:1 CH₃OH–CH₂Cl₂ (30 mL), 1M NaOCH₃ (0.5 mL) was added. The reaction mixture was stirred for 1 h at rt and then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolved in DMF (5 mL) and CH₃I (0.1 mL, 0.86 mmol) was added. To this solution, cooled to 0 °C, NaH (60% in mineral oil, 27.50 mg, 1.16 mmol) was added and then the reaction mixture was stirred for additional 1 h at rt. After 1 h, chilled water (10 mL) was added and the solution was diluted with CH₂Cl₂ (30 mL), washed with water (2 x 20 mL), 1M HCl soln (2 x 20 mL) and brine (20 mL). The organic layer was separated, dried (Na₂SO₄), filtered, concentrated and the resulting purified by chromatography (4:1 hexane-EtOAc) to give a syrup. This syrup was dissolved in CH₂Cl₂ (20 mL) and TFA (1 mL, 5% v/v) was added dropwise over 2 min at 0 °C. The reaction mixture was stirred for additional 30 min at 0 °C before the addition of Et₃N (3 mL) and concentration. The resulting crude product was purified by chromatography (2:1 hexane–EtOAc) to give 26 (0.32 g, 80%) as a colorless oil: $R_f 0.40$ (2:1 hexane-EtOAc); $[\alpha]_D$ -46.9 (c 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40-7.34 (m, 5H, Ar), 7.01-6.97 (m, 2H, Ar-2,6), 6.84–6.81 (m, 2H, Ar-3,5), 5.38 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 5.22 (d, 1H, $J_{1',2'}$ = 1.7 Hz, H-1'), 4.92, 4.70 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.13 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 4.02 (dd, 1H, $J_{2',3'} = 3.3$ Hz, $J_{3',4'} = 9.6$ Hz, H-3'), 3.87 (dq, 1H, $J_{4',5'} = 9.6$ Hz, $J_{5',6'} = 6.5$ Hz, H-5'), 3.77 (s, 3H, OCH₃), 3.70 (dq, 1H, $J_{4,5} = 9.5$ Hz, $J_{5,6} = 6.5$ Hz, H-5), 3.67 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, $J_{1',2'} = 1.7$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 1H, J_{1',2'} = 1.7 Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 3.62 (dd, 2H) = 3.8

1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.5$ Hz, H-2), 3.55 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.31 (app t, 1H, $J_{3',4'} = J_{4',5'} = 9.6$ Hz, H-4'), 3.25 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 1.35 (d, 1H, $J_{5',6'} = 6.5$ Hz, H-6'), 1.27 (d, 1H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 154.9 (Ar), 150.4 (Ar), 138.5 (Ar), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.8 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 98.3, 95.9, 82.6, 82.1, 81.2, 80.3, 78.3, 75.1 (ArCH₂), 71.5, 68.8, 67.8, 61.0 (OCH₃), 59.2 (OCH₃), 58.7 (OCH₃), 55.7 (OCH₃), 18.1, 17.8. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₉H₄₀NaO₁₀: 571.2514. Found 571.2509.

p-Methoxyphenyl 4-O-allyl-2-O-methyl-α-L-fucopyranosyl-(1→3)-4-O-benzyl-2-O-methyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-methyl-α-L-rhamnopyranoside (27)

Two solutions were prepared. Solution A was prepared by dissolving donor 25 (0.29 g, 0.65 mmol) in CH₂Cl₂ (15 mL); containing crushed 4 Å molecular sieves (50 mg). Solution B was prepared by dissolving acceptor 26 (300 mg, 0.55 mmol) in CH₂Cl₂ (15 mL); containing crushed 4 Å molecular sieves (100 mg). Both solutions were then stirred for 30 min at rt before solution B solution was cooled to -40 °C, NIS (144 mg, 0.64 mmol) and AgOTf (39 mg, 0.15 mmol) were added. Solution A was then added to solution B dropwise over 5 min while stirring. Then, the reaction mixture was stirred for additional 30 min at -40 °C before it was neutralized by the addition of Et₃N (1 mL). The solution was filtered, concentrated and the resulting residue was dissolved in CH₂Cl₂ (15 mL). To this solution, TFA (0.75 mL, 5% v/v) was added dropwise over 1 min at 0 °C and reaction mixture was then stirred for additional 30 min at 0 °C before it was neutralized by the addition of Et₃N (2 mL). The solution was concentrated and the resulting crude product was purified by chromatography (1:1 hexanes–EtOAc) to give 27 (312 mg, 76%) as a colorless oil: $R_f 0.54$ (1:1 hexanes-EtOAc); $[\alpha]_D$ +25.0 (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37-7.23 (m, 5H, Ar), 7.00–6.96 (m, 2H, Ar-2,6), 6.83–6.80 (m, 2H, Ar-3,5), 6.01–5.93 (m, 1H, $CH_2=CH$), 5.39 (d, 1H, $J_{1,2}=1.9$ Hz, H-1), 5.31–5.27 (m, 1H, CH₂=CH), 5.23 (d, 1H, $J_{1'',2''}$ = 3.4 Hz, H-1''), 5.20–5.18 (m, 1H, CH₂=CH), 5.16 (d, 1H, *J*_{1',2'} = 1.7 Hz, H-1') 5.13, 4.58 (ABq, 2H, *J* = 11.5 Hz, ArC*H*₂), 4.35–4.31 (m, 1H, C*H*₂O), 4.22–

4.17 (m, 2H, CH₂O, H-5"), 4.14–4.08 (m, 2H, H-4", H-3"), 4.06 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 4.02 (dd, 1H, $J_{2',3'} = 3.2$ Hz, $J_{3',4'} = 9.5$ Hz, H-3') 3.95 (dq, 1H, $J_{4,5} = 9.4$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 3.76 (s, 3H, OCH₃), 3.74–3.72 (m, 2H, H-2, H-2'), 3.68 (dq, 1H, $J_{4',5'} = 9.5$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.59–3.58 (m, 1H, H-2"), 3.54 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.49–3.46 (m, 1H, H-4'), 3.29 (s, 3H, OCH₃), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 2.34 (d, 1H, $J_{3'',OH=3''} = 2.5$ Hz, OH-3"), 1.30 (d, 3H, $J_{5',6'} = 6.5$ Hz, H-6"), 1.27 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.25 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 154.9 (Ar), 150.5 (Ar), 139.1 (Ar), 135.0 (=CH), 128.2 (Ar x 2), 127.4 (Ar x 2), 127.3 (Ar), 117.5 (Ar x 2), 117.4 (CH₂=CH), 114.6 (Ar x 2), 99.1, 98.6, 95.5, 81.9, 80.7, 80.2, 80.1, 79.5, 79.4, 78.8, 74.9, 74.8, 70.2, 68.7(0), 68.6(8), 66.4, 61.2, 58.8 (OCH₃), 58.1 (OCH₃), 57.7(1) (OCH₃), 55.6(5) (OCH₃ x 2), 18.3, 17.9, 16.9 HRMS (ESI) Calcd. for (M + Na)⁺ C₃₉H₅₆NaO₁₄: 771.3562. Found 771.3560.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-6-deoxy-4-*O*-methyl-1-thio-α-D-mannopyranoside (28)

To a solution of compound **S34** (0.5 g, 1.54 mmol) in Ac₂O (10 mL) was added H₂SO₄ (0.1 mL) after the solution was cooled to 0 °C. The reaction mixture was stirred for additional 2 h at 0 °C before the addition of satd. aq. NaHCO₃ soln (10 mL), water (10 mL) and dilution with CH₂Cl₂ (40 mL). The organic layer was separated, washed with satd. aq. NaHCO₃ soln (2 x 30 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in CH₂Cl₂ (25 mL) and *p*-thiocresol (0.25 g, 2 mmol) was added. To this solution, BF₃.Et₂O (0.25 mL, 2 mmol) was added at 0 °C and the reaction mixture was stirred overnight at rt. Then, satd. aq. NaHCO₃ soln (25 mL) was added and the mixture was diluted with CH₂Cl₂ (30 mL). The organic layer was separated, washed with water (2 x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in 1:1 CH₃OH–CH₂Cl₂ (20 mL), 1M NaOCH₃ (0.25 mL) was added and the reaction mixture was stirred for 2 h at rt. The solution was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was stirred for 2 h at rt. The reaction mixture was stirred for L at rt. The solution was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was stirred for 2 h at rt. The solution was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolve in pyridine (5 mL) and BzCl, benzoyl chloride (0.21 mL, 2 mmol) was added at 0 °C. The reaction mixture was stirred for the resulting residue was dissolve in pyridine (5 mL) and BzCl, benzoyl chloride (0.21 mL, 2 mmol) was added at 0 °C. The reaction mixture was stirred for

additional 2 h at rt before the addition of water (20 mL) and dilution with CH₂Cl₂ (40 mL). The organic layer washed with satd. aq. NaHCO₃ soln (2 x 30 mL), brine (30 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (7:1 hexane–EtOAc) to give **28** (0.39 g, 53%) as a colorless oil: R_f 0.70 (7:1 hexane–EtOAc); [α]_D +91.3 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.70–7.67 (m, 1H, Ar), 7.59–7.53 (m, 3H, Ar), 7.47–7.44 (m, 2H, Ar), 7.38–7.26 (m, 6H, Ar), 7.11 (d, 2H, *J* = 8.0 Hz, Ar), 5.80 (dd, 1H, $J_{1,2}$ = 1.8 Hz, $J_{2,3}$ = 3.2 Hz, H-2), 5.46 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 4.78, 4.61 (ABq, 2H, *J* = 11.5 Hz, ArCH₂), 4.21 (dq, 1H, $J_{4,5}$ = 9.5 Hz, $J_{5,6}$ = 6.2 Hz, H-5), 3.91 (dd, 1H, $J_{2,3}$ = 3.2 Hz, $J_{3,4}$ = 9.5 Hz, H-3), 3.61 (s, 3H, OCH₃), 3.33 (app t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.5 Hz, H-4), 2.32 (s, 3H, ArCH₃), 1.40 (d, 3H, $J_{5,6}$ = 6.2 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 165.7 (C=O), 137.9 (Ar x 2), 134.5 (Ar), 133.2 (Ar), 132.3 (Ar), 130.6 (Ar), 130.1 (Ar), 129.9(3) (Ar), 129.8(7) (Ar x 2), 128.8(8) (Ar), 128.8(7) (Ar), 128.39 (Ar x 2), 128.33 (Ar x 2), 127.92 (Ar), 127.67 (Ar), 86.5, 82.4, 78.1, 71.7 (ArCH₂), 71.1, 69.1, 61.2 (OCH₃), 21.1 (ArCH₃), 17.9 (C-6). HRMS (ESI) Calcd. for (M + Na)⁺ C₂₈H₃₀NaO₅S: 501.1712. Found 501.1710.

p-Methoxyphenyl 2-*O*-benzoyl-3-benzyl-6-deoxy-4-*O*-methyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -4-*O*-allyl-2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (29)

To a solution of donor **28** (131 mg, 0.27 mmol) and acceptor **27** (120 mg, 0.16 mmol) in CH₂Cl₂ (20 mL), crushed 4 Å molecular sieves (200 mg) were added. After the mixture was stirred at rt for 30 min, it was cooled to -20 °C, NIS (67.4 mg, 0.3 mmol) and AgOTf (15.4 mg, 0.06 mmol) were added and the reaction mixture was stirred for additional 30 min at -20 °C before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was purified by chromatography (2:1 hexane–EtOAc) to give **29** (122 mg, 69%) as an amorphous solid: R_f 0.38 (2:1 hexane–EtOAc); $[\alpha]_D$ +28.5 (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.09–8.07 (m, 2H, Ar), 7.58–7.55 (m, 1H, Ar), 7.47–7.44 (m, 2H, Ar), 7.30–7.09 (m, 10H, Ar), 7.01–6.95 (m, 2H, Ar), 6.85–6.80 (m, 2H, Ar), 5.94–5.86 (m, 1H, CH₂=CH), 5.67 (dd, 1H, $J_{1''',2'''} = 1.8$

Hz, $J_{2'',3''} = 3.1$ Hz, H-2'''), 5.39 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.28–5.27 (m, 1H, CH₂=CH), 5.25–5.24 (m, 1H, CH₂=CH), 5.17–5.14 (m, 3H, H-1', H-1", H-1"), 5.13, 4.52 (ABq, 2H, J = 11.3 Hz, ArCH₂), 4.78.459 (ABq, 2H, J = 11.5 Hz, ArCH₂), 4.34–4.30 (m, 1H, –CH₂O), 4.23–4.20 (m, 2H, H-3", H-5"), 4.10–4.06 (m, 2H, H-3', CH₂O), 4.00 (dd, 1H, $J_{2,3} = 3.2$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 3.94 (dq, 1H, $J_{4',5'} = 9.5$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.90 (dd, 1H, *J*_{2¹¹,3¹¹} = 3.1 Hz, *J*_{3¹¹,4¹¹} = 9.6 Hz, H-3¹¹¹), 3.84–3.78 (m, 1H, H-2), 3.76 (s, 3H, OCH₃), 3.75–3.68 (m, 4H, H-2', H-2", H-5, H-5""), 3.59 (s, 3H, OCH₃), 3.54 (s, 3H, OCH₃), 3.59 (s, 3H, OCH₃), 3.54 (s, 3H, OCH₃), 3.53–3.46 (m, 2H, H-4', H-4''), 3.50 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.31 (s, 3H, OCH₃), 3.26 (app t, 1H, $J_{3'',4''} = J_{4'',5''} = 9.6$ Hz, H-4'''), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 1.38 (d, 3H, $J_{5'',6''} = 6.3$ Hz, H-6"), 1.33 (d, 3H, $J_{5",6"} = 6.5$ Hz, H-6"), 1.27 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.24 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 165.6 (C=O), 154.9 (Ar), 150.5 (Ar), 139.1 (Ar), 138.1 (Ar), 135.1 (=*C*H), 133.1 (Ar), 130.1 (Ar x 2), 129.9 (Ar x 2), 128.4 (Ar x 2), 128.3 (Ar x 2), 128.1 (Ar x 2), 127.9 (Ar x 2), 127.6 (Ar), 127.5 (Ar), 127.1 (Ar), 117.5 (Ar x 2), 117.3 (CH₂=), 114.6 (Ar x 2), 99.7, 99.1, 98.5, 95.6, 82.4, 82.0, 81.5, 80.7, 80.2, 80.0, 79.5, 79.4, 79.0, 75.5, 75.1, 74.4, 71.3, 69.3, 68.7, 68.6(5), 68.5, 66.9, 61.3, 61.2 (OCH₃), 58.9 (OCH₃), 58.6 (OCH₃), 57.8 (OCH₃), 55.7 (OCH₃), 55.6 (OCH₃), 18.2, 18.2, 17.9, 16.8. HRMS (ESI) Calcd. for $(M + Na)^+ C_{60}H_{78}NaO_{19}$: 1125.5030. Found 1125.5020.

p-Methoxyphenyl 3-benzyl-6-deoxy-2,4-di-*O*-methyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4-*O*-allyl-2-*O*-methyl- α -L-fucopyranosyl-(1 \rightarrow 3)-4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl- α -L-rhamnopyranoside (30)

To a solution of **29** (100 mg, 0.09 mmol) in 1:1 CH₃OH–CH₂Cl₂ (20 mL), 1M NaOCH₃ (0.2 mL) was added and the reaction mixture was stirred for 5 h at rt. The reaction mixture was then neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolved in DMF (3 mL), and then CH₃I (0.1 mL) and NaH (60% in mineral oil, 10 mg) were added. The reaction mixture was stirred for 1 h at rt before chilled water (8 mL) was added. The solution was diluted with CH₂Cl₂ (15 mL), washed

with water (2 x 10 mL) and finally brine (10 mL). The organic layer was separated, concentrated and the resulting residue was purified by chromatography (3:1 hexane-EtOAc) to give 30 (83 mg, 91%) as a colorless oil: $R_f 0.45$ (3:1 hexane-EtOAc); $[\alpha]_D - 28.1$ (c 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40-7.22 (m, 10H, Ar), 7.00–6.96 (m, 2H, Ar), 6.83–6.81 (m, 2H, Ar), 5.92–5.84 (m, 1H, =CH), 5.39 (d, 1H, J₁₂) = 1.8 Hz, H-1), 5.26–5.22 (m, 1H, CH₂=CH), 5.17–5.14 (m, 5H, H-1', H-1", H-1", CH₂=CH, ArCH₂), 4.72, 4.68 (ABq, 2H, J = 12.5 Hz, ArCH₂), 4.56 (d, 1H, J = 11.5 Hz, ArCH₂), 4.31–4.27 (m, 1H, CH₂O), 4.21– 4.14 (m, 2H, H-3", H-5"), 4.07–4.02 (m, 2H, H-3', CH₂O), 3.99 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 3.94 (dq, 1H, $J_{4',5'} = 9.5$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.76 (s, 3H, OCH₃), 3.75–3.72 (m, 2H, H-3''', H-2), 3.70– 3.67 (m, 2H, H-2', H-2"), 3.66-3.60 (m, 2H, H-5, H-5""), 3.58 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.48–3.46 (m, 3H, H-2", H-4', H-4"), 3.47 (s, 3H, OCH₃), 3.40 (s, 3H, OCH₃), 3.22–3.18 (m, 2H, H-4, H-4'''), 3.17 (s, 3H, OCH₃), 1.33–1.31 (m, 6H, H-6, H-6'), 1.26 (d, 3H, *J*_{5''',6'''} = 6.2 Hz, H-6'''), 1.21 (d, 3H, $J_{5''6''} = 6.7$ Hz, H-6''); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.5 (Ar), 139.3 (Ar), 138.5 (Ar), 135.1 (=CH), 128.3 (Ar x 2), 128.1 (Ar x 2), 127.9 (Ar x 2), 127.6 (Ar), 127.3 (Ar x 2), 127.2 (Ar), 117.5 (Ar x 2), 117.3 (CH₂=), 114.6 (Ar x 2), 99.6, 98.5, 98.4, 95.5, 82.2, 82.0, 80.7, 80.2, 80.1, 79.6, 79.2, 79.0, 78.9, 78.4, 75.9, 75.0, 74.3, 72.2, 68.7(0), 68.6(5), 66.9, 61.2, 61.1, 58.8 (OCH₃), 58.7 (OCH₃), 58.1 (OCH₃), 57.6 (OCH₃), 57.6 (OCH₃), 55.7 (OCH₃), 55.6 (OCH₃), 18.2, 17.9, 17.8, 16.8. HRMS (ESI) Calcd. for $(M + Na)^+ C_{54}H_{76}NaO_{18}$: 1035.4924. Found 1035.4920.

p-Nonadecylphenyl 6-deoxy-2,4-di-*O*-methyl-α-D-mannopyranosyl-(1→3)-2,4-di-*O*-methyl-α-L-fucopyranosyl-(1→3)-2-*O*-methyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-*O*-methyl-α-L-

rhamnopyranoside (34)

To a solution of **S48** (20 mg, 0.02 mmol) and **28** (13.4 mg, 0.03 mmol) in CH_2Cl_2 (10 mL) was added crushed 4 Å molecular sieves (50 mg). After stirring for 30 min at rt, the reaction mixture cooled to -20 °C, and then NIS (4.5 mg, 0.02 mmol) and AgOTf (1.6 mg, 0.006 mmol) were added. The reaction was stirred

for additional 30 min before the addition of Et₃N (0.25 mL) concentration. The resulting crude residue was dissolved in 1:1 CH₃OH–CH₂Cl₂ (10 mL), and then 1M NaOCH₃ (0.1 mL) was added and the reaction mixture was stirred for 4 h at rt before being neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolved in DMF (2 mL), CH₃I (0.2 mL) and NaH (60% in mineral oil, 5 mg) were added and the reaction mixture was stirred for 1 h at rt before the addition of chilled water (5 mL) and CH₂Cl₂ (10 mL). The organic layer was washed with water (2 x 8 mL) and brine (8 mL), and then separated, dried (NaSO₄), filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. To the solution of the syrup in CH₂Cl₂ (10 mL), Pd-C (4 mg) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere before it was filtered and concentrated. The resulting residue was purified by chromatography (20:1 CH₂Cl₂-CH₃OH) to give 34 (12 mg, 59%) as a thick syrup: $R_f 0.55$ (20:1 CH₂Cl₂-CH₃OH); $[\alpha]_D$ -48.8 (c 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.11–7.09 (m, 2H, Ar-2,6), 7.00–6.97 (m, 2H, Ar-3,5), 5.47 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 5.24 (d, 1H, $J_{1',2'} = 1.7$ Hz, H-1'), 5.20 (d, 1H, $J_{1'',2''} = 3.8$ Hz, H-1''), 5.15 (d, 1H, $J_{1'',2''} = 1.7$ Hz, H-1'''), 4.17–4.14 (m, 2H, H-2", H-3'), 4.04–3.97 (m, 2H, H-3, H-5"), 3.87–3.81 (m, 2H, H-3", H-5), 3.73–3.69 (m, 3H, H-2', H-5', H-5"), 3.66–3.62 (m, 2H, H-2, H-2"), 3.60 (s, 3H, OCH₃), 3.59 (s, 3H, OCH₃), 3.58–3.57 (m, 1H, H-3""), 3.56 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 3.53–3.51 (m, 1H, H-4'), 3.50 (s, 3H, OCH₃), 3.47 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 3.29–3.28 (m, 1H, H-4^{'''}), 3.26 (app t, 1H, $J_{3'',4''} = J_{4'',5''} = 9.6$ Hz, H-4^{''}), 3.00 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.56 (t, 1H, $J_{1,2} = 7.8$ Hz, CH_2 -1_{agly}), 2.42 (br s, 1H, OH), 1.80 (br s, 1H, OH), 1.62–1.56 (m, 2H, CH₂-2_{agly}), 1.40 (d, 3H, $J_{5.6} = 6.5$ Hz, H-6), 1.34 (d, 3H, $J_{5''.6''} = 6.5$ Hz, H-6'''), 1.31–1.27 (m, 35H, H-6", $CH_2 \ge 16$), 1.24 (d, 3H, $J_{5',6'} = 6.5$ Hz, H-6'), 0.89 (t, 3H, $J_{18,19} = 7.0$ Hz, CH_3 -19_{aglv}); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 154.5 (Ar), 136.8 (Ar), 129.3 (Ar x 2), 116.1 (Ar x 2), 101.4, 97.7, 97.6, 95.4, 84.0, 82.7, 82.2, 81.3, 80.7, 80.5, 78.8, 77.5, 75.7, 72.6, 71.6, 71.3, 69.1, 68.8, 67.1, 66.8, 62.0 (OCH₃), 61.0 (OCH₃), 61.1 (OCH₃), 59.3 (OCH₃), 58.6 (OCH₃), 57.3 (OCH₃), 57.1 (OCH₃), 35.1 (CH₂), 32.0 (CH₂), 31.7 (CH₂), 29.7 (CH₂ x 10), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 18.1,

17.8(7), 17.8(4), 16.2, 14.1 (C-19_{agly}). HRMS (ESI) Calcd for $(M + Na)^+ C_{56}H_{98}O_{17}Na$: 1065.6696. Found 1065.6691.

4-Nonadecylphenol (35)

To a solution of **S43** (0.5 g, 1.33 mmol) and *n*-Bu₄NI (1.23 g, 3.33 mmol) in CH₂Cl₂ (20 mL) at -78 °C, BCl₃ (3.3 mL of 1M soln in heptanol, 3.33 mmol) was added dropwise over 5 min and then the reaction mixture was stirred for 30 min. After warming to rt, water (30 mL) was added and the solution was diluted with CH₂Cl₂ (50 mL), and then washed with water (2 x 30 mL) and brine (30 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (7:1 hexane–EtOAc) to afford **35** (460 mg, 96%) as an amorphous solid: *R_f* 0.46 (7:1 hexane–EtOAc); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.06–7.02 (m, 2H, Ar-2,6), 6.76–6.73 (m, 2H, Ar-3,5), 2.53 (t, 2H, *J*_{1',2'} = 7.6 Hz, *CH*₂-1'), 1.61–1.55 (m, 2H, *CH*₂-2'), 1.32–1.26 (m, 32 H, *CH*₂ x 16), 0.89 (t, 3H, *J*_{18',19'} = 7.4 Hz, *CH*₃-19'); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 153.5 (Ar), 135.4 (Ar), 129.6 (Ar x 2), 115.2 (Ar x 2), 35.2 (CH₂), 32.3 (CH₂), 31.9 (CH₂), 29.9 (CH₂ x 11), 29.8 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 14.3 (CH₃-19'). HRMS (ESI) Calcd for (M)⁺ C₂₅H₄Q: 360.3392. Found 360.3390.

p-Methoxyphenyl 4-*O*-benzyl-2-*O*-methyl-α-L-rhamnopyranoside (S1)

Diol **S14** (1 g, 2.77 mmol) was dissolved in toluene (40 mL) and *n*-Bu₂SnO (0.7 g, 2.77 mmol) was added. The reaction mixture was stirred at 120 °C for 1 h and then it was cooled to 62 °C before PMBCl (0.5 g, 3.05 mmol) and *n*-Bu₄NI (1.02 g, 2.77 mmol) were added. The reaction mixture was stirred at 62 °C for additional 7 h and then concentrated. The resulting crude product was purified by chromatography (1:1 hexane–EtOAc) to give colorless syrup. This syrup (1.05 g) was dissolved in DMF (10 mL) and CH₃I (0.2 mL, 3.32 mmol) was added. The reaction mixture was cooled to 0 °C before NaH (60% in mineral oil, 106 mg, 4.43 mmol) was added and then the solution was stirred for additional 1 h at rt. Chilled water (20 mL) was added and the solution was diluted with CH₂Cl₂ (50 mL). The organic layer was separated, washed with water (2 x 40 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in CH₂Cl₂ (30 mL) and TFA (1.5 mL) was added dropwise over 2 min at 0 °C. The reaction mixture was stirred for additional 30 min at 0 °C before Et₃N (3 mL) was added. The mixture was concentrated and the resulting residue was purified by chromatography (1:1 hexane–EtOAc) to give **S1** (0.84 g, 81%) as an amorphous solid: R_f 0.55 (1:1 hexane–EtOAc); [α]_D –29.5 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.39–7.27 (m, 5H, Ar), 7.01–6.98 (m, 2H, Ar-2,6), 6.85–6.81 (m, 2H, Ar-3,5), 5.46 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 4.93, 4.70 (ABq, 2H, J = 11.3 Hz, ArCH₂), 4.15–4.13 (m, 1H, H-3), 3.81 (dq, 1H, $J_{4,5}$ = 9.5 Hz, $J_{5,6}$ = 6.2 Hz, H-5), 3.78 (s, 3H, OCH₃), 3.68 (dd, 1H, $J_{1,2}$ = 1.7 Hz, $J_{2,3}$ = 3.5 Hz, H-2), 3.55 (s, 3H, OCH₃), 3.34 (app t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.5 Hz, H-4), 2.44 (br s, 1H, OH-3), 1.29 (d, 3H, $J_{5,6}$ = 6.4 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.4 (Ar), 138.4 (Ar), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.8 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 95.2, 82.1, 80.6, 75.1 (ArCH₂), 71.5, 67.8, 59.1 (OCH₃), 55.7 (OCH₃), 18.0 (C-6). HRMS (ESI) Calcd. for (M + Na)⁺ C₂₁H₂₆NaO₆: 397.1622. Found 397.1629.

p-Methoxyphenyl 2,4-di-*O*-methyl-α-L-rhamnopyranoside (S2)

To a solution of **S16** (1.3 g, 3.22 mmol) and CH₃I (0.25 mL, 3.86 mmol) in DMF (10 mL), NaH (60% in mineral oil, 0.13 g, 5.15 mmol) was added at 0 °C. The reaction mixture was stirred for 4 h at rt before chilled water (30 mL) was added. The solution was concentrated, diluted with CH₂Cl₂ (100 mL) and washed with water (2 × 100 mL). The organic layer was separated, dried (Na₂SO₄), filtered, concentrated. The resulting residue was dissolved in CH₂Cl₂ (30 mL) and TFA (1.5 mL, 5% v/v) was added at 0 °C. The solution was stirred for additional 30 min and then Et₃N (3 mL) was added. After concentration of the solution, the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give **S2** (0.78 g, 81%) as a colorless oil: R_f 0.36 (2:1 hexane–EtOAc); [α]_D –57.7 (*c* 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.03–6.99 (m, 2H, Ar-2,6), 6.87–6.81 (m, 2H, Ar-3,5), 5.45 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 4.05 (ddd, 1H, $J_{2,3}$ =
3.3 Hz, $J_{3,4} = 9.3$ Hz, $J_{3,OH-3} = 8.9$ Hz, H-3), 3.80 (s, 3H, OCH₃), 3.74 (dq, 1H, $J_{4,5} = 9.3$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 3.68 (dd, 1H, $J_{1,2} = 1.7$ Hz, $J_{2,3} = 3.3$ Hz, H-2), 3.62 (s, 3H, OCH₃), 3.56 (s, 3H, OCH₃), 3.07 (app t, 1H, $J_{3,4} = J_{4,5} = 9.3$ Hz, H-4), 2.45 (d, 1H, $J_{3,OH-3} = 8.9$ Hz, OH-3), 1.30 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 155.2 (Ar), 150.7 (Ar), 117.8 (Ar x 2), 114.9 (Ar x 2), 95.5, 84.0, 80.8, 71.4, 68.2, 61.2 (OCH₃), 59.3 (OCH₃), 55.9 (OCH₃), 18.2 (C-6). HRMS (ESI) Calcd. for (M + Na)⁺ C₁₅H₂₂NaO₆: 321.1314. Found 321.1313.

p-Tolyl 2-O-acetyl-4-O-benzyl-3-O-*p*-methoxybenzyl-1-thio-α-L-rhamnopyranoside (S3)

To a solution of **S20** (2.2 g, 4.58 mmol) in pyridine (5 mL) at 0 °C, Ac₂O (3 mL) was added. The reaction mixture was stirred for 3 h at rt before water (10 mL) was added. The solution was concentrated, diluted with CH₂Cl₂ (30 mL) and washed with water (2 × 30 mL). The organic layer was separated, dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (5:1 hexane–EtOAc) to give **S3** (2.27 g, 95%) as an amorphous solid: R_f 0.52 (5:1 hexane–EtOAc); [α]_D –73.9 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.40–7.27 (m, 9H, Ar-H), 7.14 (d, 2H, *J* = 8.0 Hz, Ar-H), 6.90–6.86 (m, 2H, Ar-H), 5.61 (dd, 1H, $J_{1,2}$ = 1.7 Hz, $J_{2,3}$ = 3.3 Hz, H-2), 5.35 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 4.95, 4.64 (ABq, 2H, *J* = 10.7 Hz, ArC*H*₂), 4.67, 4.51 (ABq, 2H, *J* = 11.0 Hz, ArC*H*₂), 4.25 (dq, 1H, $J_{4,5}$ = 9.4 Hz, $J_{5,6}$ = 6.3 Hz, H-5), 3.92 (dd, 1H, $J_{2,3}$ = 3.3 Hz, $J_{3,4}$ = 9.4 Hz, H-3), 3.82 (s, 3H, OC*H*₃), 3.50 (app t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.4 Hz, H-4), 2.35 (s, 3H, C*H*₃CO), 2.16 (s, 3H, ArC*H*₃), 1.36 (d, 3H, $J_{5,6}$ = 6.3 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 170.5 (*C*=O), 159.6 (Ar), 138.7 (Ar), 138.1 (Ar), 132.6 (Ar x 2), 130.4 (Ar x 2), 130.1 (Ar x 4), 128.6 (Ar x 2), 128.2 (Ar x 2), 128.0 (Ar), 114.1 (Ar x 2), 86.8, 80.4, 78.1, 75.7 (ArCH₂), 71.7 (ArCH₂), 70.9, 69.3, 55.5 (OCH₃), 21.4 (ArCH₃), 18.1 (C-6). HRMS (ESI) Calcd. for (M + Na)⁺ C₃₀H₃₄NaO₆S: 545.1968. Found 545.1967.

p-Tolyl 3,4-*O*-isopropylidene-2-*O*-methyl-1-thio-β-L-fucopyranoside (S4)

To a solution of **S22** (2 g, 6.45 mmol) and CH₃I (0.5 mL, 7.73 mmol) in DMF (15 mL), at 0 °C, NaH (60% in mineral oil, 0.25 g, 10.3 mmol) was added portion-wise over 10 min. The reaction mixture was stirred for 4 h at rt before it water (30 mL) was added. The solution was concentrated, diluted with CH₂Cl₂ (100 mL), and washed with water (2 × 100 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting residue was purified by chromatography (3:1 hexane–EtOAc) to give **S4** (1.96 g, 94%) as a colorless oil: R_f 0.42 (3:1 hexane–EtOAc); [α]_D –41.9 (*c* 0.9, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.45–7.43 (m, 2H, Ar-2,6), 7.10–7.08 (m, 2H, Ar-3,5), 4.41 (d, 1H, *J* = 9.7 Hz, H-1), 4.09 (app t, 1H, $J_{1,2} = J_{2,3} = 9.7$ Hz, H-2), 4.00 (dd, 1H, $J_{3,4} = 2.9$ Hz, $J_{4,5} = 2.1$ Hz, H-4), 3.76 (dq, 1H, $J_{4,5} = 2.1$ Hz, $J_{5,6} = 6.5$ Hz, H-5), 3.52 (s, 3H, ArOC*H*₃), 3.20 (dd, 1H, $J_{2,3} = 9.7$ Hz, $J_{3,4} = 2.9$ Hz, H-3), 2.31 (s, 3H, ArC*H*₃), 1.46 (s, 3H, (C*H*₃)₂C), 1.37 (d, 3H, $J_{5,6} = 6.5$ Hz, H-6), 1.33 (s, 3H, (C*H*₃)₂C); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 137.6 (Ar), 132.9 (Ar x 2), 129.6 (Ar), 129.5 (Ar x 2), 109.6 ((CH₃)₂C), 86.3, 80.4, 79.7, 76.4, 72.4, 59.6 (ArOCH₃), 28.0 ((*C*H₃)₂C), 26.4 ((*C*H₃)₂C), 21.1 (ArCH₃), 21.08 (C-6). (ESI) Calcd. for (M + Na)⁺ C₁₇H₂₄O₄SNa: 347.1293. Found 347.1289.

p-Tolyl 2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-1-thio-α-D-mannopyranoside (S5)

To a solution of compound **S37** (1.22 g, 2.41 mmol) in Ac₂O (20 mL), H₂SO₄ (0.2 mL) was added at 0 °C. The reaction mixture was stirred for additional 1 h at 0 °C before the addition of satd. aq. NaHCO₃ soln (15 mL), water (15 mL) and CH₂Cl₂ (50 mL). The organic layer was separated, washed with satd. aq. NaHCO₃ soln (2 x 40 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in CH₂Cl₂ (20 mL) and *p*-thiocresol (0.38 g, 3.13 mmol) was added. To this solution, BF₃·Et₂O (0.4 mL, 3.13 mmol) was added at 0 °C and the mixture was stirred overnight at rt. Then, satd. aq. NaHCO₃ soln (20 mL) and CH₂Cl₂ (20 mL) were added. The organic layer was separated, washed with water (2 x 30 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was used to °C and the mixture was stirred overnight at rt. Then, satd. aq. NaHCO₃ soln (20 mL) and CH₂Cl₂ (20 mL) were added. The organic layer was separated, washed with water (2 x 30 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting crude product was purified by

chromatography (6:1 hexane-EtOAc) to give an oil. To the soultion of this oil in 1:1 CH₃OH-CH₂Cl₂ (20 mL), 1M NaOCH₃ (0.2 mL) was added and the reaction mixture was stirred for 2 h at rt. The solution was then neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolve in pyridine (8 mL) and BzCl (0.3 mL, 3.13 mmol) was added at 0 °C. The reaction mixture was stirred for additional 2 h at rt before the addition of water (30 mL). The solution was diluted with CH₂Cl₂ (50 mL), washed with satd. aq. NaHCO₃ soln (2 x 40 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (6:1 hexane-EtOAc) to give **S5** (0.94 g, 59%) as a colorless oil: R_f 0.65 (6:1 hexane–EtOAc); $[\alpha]_D$ +36.7 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.19–8.17 (m, 3H, Ar), 8.08–8.06 (m, 1H, Ar), 7.70–7.67 (m, 2H, Ar), 7.57–7.52 (m, 4H, Ar), 7.47–724 (m, 13H, Ar), 7.08–7.06 (m, 1H, Ar), 5.88 (dd, 1H, J_{1,2} = 1.8 Hz, J_{2,3} = 3.0 Hz, H-2), 5.59 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 4.92, 4.59 (ABq, 2H, J = 10.8 Hz, ArC H_2), 4.82, 4.62 (ABq, 2H, J = 11.5 Hz, ArCH₂), 4.71, 4.52 (ABq, 2H, J = 11.8 Hz, ArCH₂), 4.43 (ddd, 1H, J_{4.5} = 9.7 Hz, J_{5.6a} = 4.1 Hz, J_{5.6b} = 4.1 Hz, H-5), 4.18 (app t, 1H, $J_{3,4} = J_{4,5} = 9.7$ Hz, H-4), 4.09 (dd, 1H, $J_{5,6a} = 4.1$ Hz, $J_{6a,6b} = 10.9$ Hz, H-6a), 3.96 $(dd, 1H, J_{2,3} = 3.0 Hz, J_{3,4} = 9.7 Hz, H-3), 3.81 (dd, 1H, J_{5,6b} = 1.8 Hz, J_{6a,6b} = 10.9 Hz, H-6b), 2.31 (s, 3H, 3H)$ ArCH₃); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 165.6 (C=O), 138.4 (Ar), 138.3 (Ar), 137.9(6) (Ar), 137.9(3) (Ar), 134.5 (Ar), 133.2 (Ar), 133.0 (Ar), 132.4 (Ar), 130.6 (Ar x 3), 129.9(5) (Ar), 129.9(0) (Ar), 129.9 (Ar), 129.7 (Ar x 2), 128.8(9) (Ar x 3), 128.8(8) (Ar), 128.4(1) (Ar), 128.3(9) (Ar), 128.3(5) (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.8 (Ar), 127.7 (Ar), 127.5(3) (Ar), 127.4(6) (Ar), 99.0, 78.4, 75.4, 74.6, 73.7, 72.0, 71.5, 69.2, 68.9, 21.1 (ArCH₃). HRMS (ESI) Calcd. for $(M + Na)^+ C_{41}H_{40}NaO_6S$: 683.2443. Found 683.2444.

p-Tolyl 2-*O*-benzoyl-3,6-di-*O*-benzyl-4-*O*-methyl-1-thio-α-D-mannopyranoside (S6)

To a solution of compound **S39** (1.04 g, 2.42 mmol) in Ac₂O (15 mL), H₂SO₄ (0.15 mL) was added at 0 °C and the reaction mixture was stirred for additional 1 h at 0 °C. A solution of satd. aq. NaHCO₃ soln (25 mL)

was added followed by water (25 mL) and CH₂Cl₂ (60 mL). The organic layer was separated, washed with satd. aq. NaHCO₃ soln (2 x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in CH₂Cl₂ (30 mL) and *p*-thiocresol (0.4 g, 3.13 mmol) was added. To this solution, BF₃·Et₂O (0.4 mL, 3.13 mmol) was added at 0 °C and the mixture was stirred overnight at rt. The reaction A solution of satd. aq. NaHCO₃ (50 mL) was added and then resulting mixture was diluted with CH₂Cl₂ (30 mL). The organic layer was separated, washed with water (2 x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting crude product was purified by chromatography (6:1 hexane–EtOAc) to give a thick syrup. This syrup was dissolved in 1:1 CH₃OH–CH₂Cl₂ (20 mL) and catalytic amount of 1M NaOCH₃ (0.2 mL) was added. The reaction mixture was stirred for 2 h at rt and then it was neutralized by Amberlite IR-120 H⁺ resin, filtered and concentrated. To the resulting residue in pyridine (10 mL), BzCl (0.3 mL, 3.13 mmol) was added at 0 °C. The reaction mixture was stirred for additional 2 h at rt before the addition of water (30 mL). The mixture was diluted with CH₂Cl₂ (50 mL), washed with satd. aq. NaHCO₃ soln (2 x 40 mL), brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (6:1 hexane–EtOAc) to give S6 (0.96 g, 68%) as a colorless oil: R_f 0.61 (6:1 hexane-EtOAc); $[\alpha]_D$ +41.2 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.06-8.04 (m, 2H, Ar), 7.55-7.52 (m, 1H, Ar), 7.41–7.26 (m, 14H, Ar), 7.08–7.06 (d, 2H, J = 8.0 Hz, Ar), 5.83 (dd, 1H, $J_{1,2} = 1.6$ Hz, $J_{2,3}$ = 3.0 Hz, H-2), 5.57 (d, 1H, J_{1,2} = 1.6 Hz, H-1), 4.81, 4.63 (ABq, 2H, J = 12.0 Hz, ArCH₂), 4.74, 4.56 (ABq, 2H, J = 11.5 Hz, ArCH₂), 4.32 (ddd, 1H, J_{4,5} = 9.6 Hz, J_{5,6a} = 4.2 Hz, J_{5,6b} = 1.8 Hz, H-5), 3.98–3.93 (m, 2H, H-3, H-6a), 3.87 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 3.81 (dd, 1H, $J_{5,6b} = 1.8$ Hz, $J_{6a,6b} = 10.9$ Hz, H-6b), 3.57 (s, 3H, OCH₃), 2.31 (s, 3H, ArCH₃); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 165.6 (C=O), 138.5 (Ar), 137.9 (Ar x 2), 137.8 (Ar), 133.2 (Ar), 132.4 (Ar), 130.6 (Ar), 130.0 (Ar x 2), 129.9 (Ar x 2), 128.9 (Ar), 128.3(8) (Ar x 2), 128.3(6) (Ar x 2), 128.3 (Ar x 2), 128.0 (Ar x 2), 127.7 (Ar), 127.4(7) (Ar x 2), 127.4(4) (Ar), 86.9, 78.4, 76.3, 73.4, 72.6, 70.7, 69.2, 61.1 (OCH₃), 21.1 (ArCH₃). HRMS (ESI) Calcd. for (M + Na)⁺ C₃₅H₃₆NaO₆S: 607.2130. Found 607.2131.

p-Tolyl 2-O-acetyl-3-O-levulinoyl-4-O-methyl-1-thio-α-L-rhamnopyranoside (S7)

To a solution of S44 (0.78 g, 2.77 mmol) and triethyl orthoacetate (1.0 mL, 5.55 mmol) in CH₂Cl₂ (20 mL) was added CSA (128 mg, 0.55 mmol). The reaction mixture was stirred for 2 h at rt before it was concentrated and dissolved in 80% aqueous HOAc. After stirring for additional 30 min at rt. water (10 mL) was added to the solution and it was concentrated. The mixture was diluted with CH₂Cl₂ (20 mL) and washed with water $(2 \times 20 \text{ mL})$. The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting syrup was carried to the next step without further purification. To a solution of the syrup in CH₂Cl₂ (20 mL) were added levulinic acid (0.4 mL, 3.60 mmol), DCC (0.74g, 3.60 mmol) and DMAP (67 mg, 0.55 mmol) and the reaction mixture was stirred for 3 h at rt. The solution was filtered, concentrated, and the resulting residue was purified by chromatography (4:1 hexane–EtOAc) to give S7 (0.96 g, 8 %) as a colorless oil: R_f 0.46 (4:1 hexane-EtOAc); [α]_D -76.4 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δH) 7.35-7.32 (m, 2H, Ar-2,6), 7.12–7.08 (m, 2H, Ar-3,5), 5.46 (dd, 1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.3$ Hz, H-2), 5.29 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.27 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 4.22 (dq, 1H, $J_{4,5} = 9.5$ Hz, $J_{5,6} = 6.4$ Hz, H-5), 3.53 (s, 3H, OCH₃), 3.29 (app t, 1H, J_{3,4} = J_{4,5} = 9.5 Hz, H-4), 2.89–2.49 (m, 4H, CH₂CO, CH₂COO), 2.33 (s, 3H, ArCH₃), 2.21 (s, 3H, CH₃CO), 2.13 (s, 3H, CH₃CO), 1.36 (d, 3H, J_{5,6} = 6.4 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 206.7 (C=O), 172.0 (C=O), 170.2 (C=O), 138.2 (Ar), 132.7 (Ar), 132.7 (Ar x 2), 130.1 (Ar x 2), 86.2, 80.6, 72.3, 71.9, 69.2, 60.9 (OCH₃), 38.1, 30.1, 28.2, 21.4, 21.2 (ArCH₃), 17.9. HRMS (ESI) Calcd for $(M + Na)^{+} C_{21}H_{28}O_7NaS: 447.1448$. Found 447.1446.

p-Tolyl 2-O-acetyl-4-O-benzyl-3-O-levulinoyl-1-thio-α-L-rhamnopyranoside (S8)

To a solution of compound S45 (0.9 g, 2.23 mmol) in CH_2Cl_2 (20 mL), levulinic acid (0.4 mL, 3.60 mmol), DCC (0.74 g, 3.60 mmol) and DMAP (67 mg, 0.55 mmol) were added and the reaction mixture was stirred for 3 h at rt. The solution was filtered, concentrated, and the resulting residue was purified by

chromatography (4:1 hexane–EtOAc) to give **S8** (1.03 g, 92%) as a colorless oil: R_f 0.42 (4:1 hexane–EtOAc); $[\alpha]_D$ –96.6 (c 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.39–7.28 (m, 7H, Ar), 7.12 (d, 2H, J = 8.4 Hz, Ar-2,6), 5.51 (dd, 1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.3$ Hz, H-2), 5.34–5.31 (m, 2H, H-1, H-3), 4.79, 4.68 (ABq, J = 11.2 Hz, ArC H_2), 4.38 (dq, 1H, $J_{4,5} = 9.4$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 3.60 (app t, 1H, $J_{3,4} = J_{4,5} = 9.4$ Hz, H-4), 2.80–2.66 (m, 2H, COC H_2), 2.55–2.49 (m, 2H, C H_2 CO), 2.34 (s, 3H, ArC H_3), 2.19 (s, 3H, CH_3 COCH₂), 2.15 (s, 3H, CH_3 CO), 1.37 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 206.4 (*C*=O), 172.0 (*C*=O), 170.2 (*C*=O), 138.3 (Ar), 138.2 (Ar), 132.7 (Ar x 2), 130.1 (Ar x 2), 130.0 (Ar), 128.7 (Ar x 2), 128.1 (Ar), 128.0 (Ar x 2), 86.3, 79.1, 77.0, 72.6, 72.0, 69.2, 38.1, 30.1, 28.2, 21.4, 21.2 (ArCH₃), 18.1. HRMS (ESI) Calcd for (M + Na)⁺ C₂₇H₃₂O₇NaS: 523.1761. Found 523.1755.

p-Tolyl 2,4-di-*O*-methyl-3-*O*-*p*-methoxybenzyl-1-thio-β-L-fucopyranoside (S9)

To a solution of **S27** (0.89 g, 2.21 mmol) and CH₃I (0.21 mL, 3.32 mmol) in DMF (10 mL) at 0 °C, NaH (60% in mineral oil, 110 mg, 4.43 mmol) was added after. The reaction mixture was stirred for 1 h at rt and then diluted with chilled water (30 mL), and CH₂Cl₂ (30 mL). The organic layer was washed with water (2 x 20 mL), brine (20 mL) and then dried (NaSO₄), filtered, concentrated and the resulting oil was purified by chromatography (4:1 hexanes–EtOAc) to yield **S9** (0.82 g, 89%) as a colorless oil: R_f 0.49 (4:1 hexane–EtOAc); $[\alpha]_D$ –36.0 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.46–7.44 (m, 2H, Ar), 7.31–7.25 (m, 2H, Ar), 7.10–7.05 (m, 2H, Ar), 6.90–6.86 (m, 2H, Ar), 4.68, 4.64 (ABq, 2H, *J* = 12.6 Hz, ArC*H*₂), 4.41 (d, 1H, *J*_{1,2} = 9.6 Hz, H-1), 3.8 (s, 3H, OC*H*₃), 3.61 (s, 3H, OC*H*₃) , 3.58 (s, 3H, OC*H*₃), 3.49–3.39 (m, 3H, H-2, H-3, H-5), 3.27–3.26 (m, 1H, H-4), 2.39 (s, 3H, ArC*H*₃) 1.27 (d, 3H, *J*_{5.6} = 6.4 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 137.4 (Ar), 132.2 (Ar), 130.7 (Ar x 2), 130.3 (Ar), 129. (Ar), 129.4 (Ar x 2), 129.3 (Ar x 2), 113.8 (Ar x 2), 88.1, 83.6, 79.7, 79.3, 74.5, 72.4, 61.8 (OCH₃), 61.2 (OCH₃), 55.3 (OCH₃), 21.1 (ArCH₃), 16.9. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₃H₃₀NaO₅S: 441.1712. Found 441.1701.

p-Methoxyphenyl 2,3,4-tri-*O*-acetyl-α-L-rhamnopyranoside (S10)

To a solution of 1,2,3,4-tetra-*O*-acetyl-L-rhamnopyranose (5 g, 15.05 mmol) and *p*-methoxyphenol (2.4 g, 18.05 mmol) in CH₂Cl₂ (100 mL) at 0 °C was added BF₃.OEt₂ (2.3 mL, 18.05 mmol) dropwise over 10 min. The reaction mixture was stirred for 6 h at 0 °C, diluted with CH₂Cl₂ (100 mL) and washed with satd aq NaHCO₃ soln (100 mL) and brine (100 mL). The organic layer was separated, dried with Na₂SO₄, filtered and the resulting oil was purified by chromatography (3:1 hexane–EtOAc) to afford **S10** (5.24 g, 88%) as a colorless oil: R_f 0.30 (3:1 hexane–EtOAc); [α]_D +112.4 (*c*, 0.3 CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.00 (d, 2H, *J* = 9.1 Hz, Ar-2,6), 6.83 (d, 2H, *J* = 9.1 Hz, Ar-3,5), 5.52–5.49 (dd, 1H, *J*_{2,3} = 3.5 Hz, *J*_{3,4} = 10.0 Hz, H-3), 5.43–5.42 (dd, 1H, *J*_{1,2} = 1.9 Hz, *J*_{2,3} = 3.5 Hz, H-2), 5.34 (d, 1H, *J*_{1,2} = 1.9 Hz, H-1), 5.15 (app t, 1H, *J*_{3,4} = *J*_{4,5} = 10.0 Hz, H-4), 4.07–4.00 (dq, 1H, *J*_{4,5} = 10 Hz, *J*_{5,6} = 6.0 Hz, H-5), 3.77 (s, 3H, ArOCH₃), 2.18 (s, 3H, *CH*₃CO), 2.06 (s, 3H, *CH*₃CO), 2.03 (s, 3H, *CH*₃CO), 1.22 (d, 3H, *J*_{6,5} = 6.0 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.1 (*C*=O), 170.0 (*C*=O), 169.98 (*C*=O), 117.6 (Ar x 2), 115.8 (Ar), 114.6 (Ar), 114.5 (Ar x 2), 96.4, 70.9, 69.7, 68.9, 66.9, 55.5, 20.7, 20.6(3), 20.5(8), 17.3. HRMS (ESI) calcd (M + Na)⁺ C₁₉H₂₄O₉Na: 419.1318. Found: 419.1317.

p-Methoxyphenyl α-L-rhamnopyranoside (S11)

To a solution of **S10** (5 g, 12.6 mmol) in 1:1 CH₂Cl₂–CH₃OH (100 mL) and 1M NaOCH₃ in CH₃OH (1 mL) was added. After stirring for 2 h at rt, the reaction mixture was neutralized with Amberlite IR-120 H⁺ resin, filtered, and concentrated. The resulting oil was purified by chromatography (10:1 CH₂Cl₂–CH₃OH) to afford **S11** (3.27 g, 96%) as a white amorphous solid: R_f 0.32 (10:1 CH₂Cl₂–CH₃OH); [α]_D +67.5 (*c*, 0.1 CH₃OH); ¹H NMR (400 MHz, CD₃OD, $\delta_{\rm H}$) 6.99–6.95 (m, 2H, Ar-2,6), 6.85–6.82 (m, 2H, Ar-3,5), 5.26 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 3.98–3.97 (m, 1H, H-3), 3.83 (dd, 1H, $J_{1,2}$ = 1.8 Hz, $J_{2,3}$ = 3.6 Hz, H-2), 3.74 (s, 3H, ArOCH₃), 3.48–3.40 (m, 1H, H-5), 3.29–3.28 (m, 1H, H-4), 1.23 (d, 3H, $J_{6,5}$ = 6.0 Hz, H-6); ¹³C NMR (125 MHz,

CDCl₃, δ_{C}) 156.3 (Ar), 151.7 (Ar), 118.7 (Ar x 2), 115.5 (Ar x 2), 100.6, 73.8, 72.1, 72.0, 70.3, 55.9, 17.8. HRMS (ESI) calcd (M + Na)⁺ C₁₃H₁₈O₆Na: 293.1001. Found: 293.1001.

p-Methoxyphenyl 2,3-*O*-isopropylidene-α-L-rhamnopyranoside (S12)

To a solution of **S11** (3 g, 11.11 mmol) and 2,2-dimethoxypropane (2.72 mL, 22.22 mmol) in acetone (40 mL) was added *p*-TSA (0.07 g, 0.52 mmol). The reaction mixture was stirred for 40 min at rt, diluted with CH₂Cl₂ (80 mL) and washed with satd aq NaHCO₃ soln (60 mL) and brine (60 mL). The organic layer was dried with Na₂SO₄, filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to afford **S12** (3.13 g, 91%) as a white amorphous solid: R_f 0.58 (2:1 hexane–EtOAc); $[\alpha]_D$ +127.0 (*c*, 0.3 CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_H) 6.98 (d, 2H, *J* = 9.1 Hz, Ar-2,6), 6.84 (d, 2H, *J* = 9.1 Hz, Ar-3,5), 5.26 (br s, 1H, H-1), 4.27 (d, 1H, $J_{2,3}$ = 5.9 Hz, H-2), 4.02–3.99 (dd, 1H, $J_{2,3}$ = 5.9 Hz, $J_{3,4}$ = 7.2 Hz, H-3), 3.68 (s, 3H, ArOCH₃), 3.62–3.53 (dd, 1H, $J_{4,5}$ = 9.1 Hz, $J_{5,6}$ = 6.0 Hz, H-5), 3.15–3.09 (dt, 1H, $J_{3,4}$ = 7.2 Hz, $J_{4,5}$ = 9.1 Hz, H-4), 1.41 (s, 3H, (CH₃)₂C), 1.29 (s, 3H, (CH₃)₂C), 1.04 (d, 3H, $J_{5,6}$ = 6.0 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.3 (Ar), 149.3 (Ar), 118.1 (Ar x 2), 114.3 (Ar x 2), 108.2, 95.7, 77.8, 75.0, 73.0, 66.4, 55.1, 27.7, 26.1, 17.1. HRMS (ESI) calcd (M + Na)⁺ C₁₆H₂₂O₆Na: 333.1314. Found: 333.1313.

p-Methoxyphenyl 4-*O*-benzyl-2,3-*O*-isopropylidene-α-L-rhamnopyranoside (S13)

To a solution of **S12** (2 g, 6.45 mmol) and BnBr (0.92 mL, 7.73 mmol) in DMF (15 mL) at 0 °C was added NaH (60% in mineral oil, 0.25 g, 10.3 mmol) portion-wise over 10 min. The reaction mixture was stirred for 4 h at rt before water (30 mL) was added. The solution was concentrated, diluted with CH₂Cl₂ (100 mL), and washed with water (2 × 100 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting crude product was purified by chromatography (5:1 hexane–EtOAc) to give **S13** (2.45 g, 95%) as a colorless oil: R_f 0.50 (3:1 hexane–EtOAc); [α]_D –43.6 (*c* 0.5, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.40–

7.27 (m, 5H, Ar), 7.02–6.97 (m, 2H, Ar-2,6), 6.86–6.82 (m, 2H, Ar-3,5), 5.60 (d, 1H, $J_{1,2} = 0.6$ Hz, H-1), 4.94, 4.66 (ABq, 2H, J = 12.0 Hz, ArC H_2), 4.45–4.42 (m, 1H, H-3), 4.37–4.36 (dd, 1H, $J_{1,2} = 0.6$ Hz, $J_{2,3} = 5.8$ Hz, H-2), 3.90–3.83 (dq, 1H, $J_{4,5} = 9.4$ Hz, $J_{5,6} = 6.0$ Hz, H-5), 3.78 (s, 3H, ArOC H_3), 3.31–3.27 (dd, 1H, $J_{3,4} = 7.0$ Hz, $J_{4,5} = 9.4$ Hz H-4), 1.55 (s, 3H, (C H_3)₂C), 1.43 (s, 3H, (C H_3)₂C), 1.25 (d, 3H, $J_{5,6} = 6.0$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.8 (Ar), 150.7 (Ar), 138.4 (Ar), 128.9 (Ar), 128.7 (Ar), 128.3 (Ar), 128.2 (Ar x 2), 127.9 (Ar x 2), 127.6 (Ar x 2), 109.4, 96.1, 81.0, 78.5, 76.0, 72.9, 65.3, 55.5, 27.9, 26.3, 17.7. HRMS (ESI) calcd (M + Na)⁺ C₂₃H₂₈O₆Na: 423.1784. Found: 423.1784.

p-Methoxyphenyl 4-*O*-benzyl-α-L-rhamnopyranoside (S14)

To a solution of **S13** (2 g, 5 mmol) in CH₃OH (40 mL) was added *p*-TSA (76 mg, 0.49 mmol). The reaction mixture was stirred for 3 h at rt before it was neutralized with Et₃N (1 mL) and concentrated. The crude product was purified by chromatography (2:1 EtOAc–hexane) to afford **S14** (1.26 g, 82%) as an amorphous solid: R_f 0.55 (2:1 EtOAc–hexane); [α]_D –50.4 (*c* 0.5, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.38–7.27 (m, 5H, Ar), 6.99–6.97 (m, 2H, Ar-2,6), 6.85–6.82 (m, 2H, Ar-3,5), 5.40 (s, 1H, H-1), 4.79, 4.74 (ABq, 2H, *J* = 12.0 Hz, ArCH₂), 4.14–4.10 (m, 2H, H-2, H-3), 3.90–3.86 (dq, 1H, $J_{4,5}$ = 9.4 Hz, $J_{5,6}$ = 6.1 Hz, H-5), 3.78 (s, 3H, ArOCH₃), 3.43 (app t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.4 Hz, H-4), 2.50 (br s, 1H, OH-2), 2.38 (br s, 1H, OH-3), 1.33 (d, 3H, $J_{5,6}$ = 6.1 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.8 (Ar), 150.1 (Ar), 138.1 (Ar), 128.6 (Ar x 2), 128.0 (Ar), 127.8 (Ar x 2), 117.5 (Ar x 2), 114.5 (Ar x 2), 98.0, 81.5, 71.2, 71.0, 67.8, 55.6, 18.0. HRMS (ESI) calcd (M + Na)⁺ C₂₀H₂₄O₆Na: 383.1471. Found: 383.1470.

p-Methoxyphenyl 2,3-*O*-isopropylidene-4-*O*-methyl-α-L-rhamnopyranoside (S15)

To a solution of compound **S12** (2 g, 6.45 mmol) and CH_3I (0.49 mL, 7.73 mmol) in DMF (15 mL) was added NaH (60% in mineral oil, 0.25 g, 10.3 mmol) at 0 °C. The reaction mixture was then stirred for 4 h at rt before chilled water (30 mL) was added. The solution was concentrated, diluted with CH_2Cl_2 (100 mL) and

washed with water (2 × 100 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (5:1 hexane–EtOAc) to give **S15** (2.01 g, 96%) as a colorless oil: R_f 0.56 (5:1 hexane–EtOAc); [α]_D –77.1 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.02–6.98 (m, 2H, Ar-2,6), 6.87–6.82 (m, 2H, Ar-3,5), 5.60 (br s, 1H, H-1), 4.35–4.29 (m, 2H, H-2, H-3), 3.81–3.74 (m, 1H, H-5), 3.79 (s, 3H, OCH₃), 3.57 (s, 3H, OCH₃), 3.07 (dd, 1H, $J_{3,4}$ = 8.9 Hz, $J_{4,5}$ = 9.5 Hz, H-4), 1.60 (s, 3H, (CH₃)₂C), 1.42 (s, 3H, (CH₃)₂C), 1.25 (d, 3H, $J_{5,6}$ = 6.3 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 155.2 (Ar), 150.5 (Ar), 118.0 (Ar x 2), 114.9 (Ar x 2), 109.6, 96.5, 83.8, 78.5, 76.3, 65.7, 59.7 (OCH₃), 55.9 (OCH₃), 28.3, 26.6, 18.0. HRMS (ESI) Calcd. for (M + Na)⁺ C₁₇H₂₄NaO₆: 347.1465. Found 347.1468.

p-Methoxyphenyl 3-O-p-methoxybenzyl-4-O-methyl-a-L-rhamnopyranoside (S16)

To a solution of **S15** (2.4 g, 7.40 mmol) in 1:1 CH₃OH–CH₂Cl₂ (30 mL), *p*-TSA (100 mg) was added and the reaction mixture was stirred for 1 h at rt. The solution was then neutralized with Et₃N (2 mL) and concentrated. The resulting diol (2 g, 7.01 mmol) was dissolved in toluene (60 mL) and *n*-Bu₂SnO (1.75 g, 7.03 mmol) was added. The reaction mixture was stirred for 1 h at 120 °C, then cooled to 62 °C before PMBCl (1.20 g, 7.73 mmol) and *n*-Bu₄NI (3.04 g, 8.28 mmol) were added. The reaction mixture was then stirred for additional 6 h at 62 °C and then concentrated. The resulting crude product was purified by chromatography (1:1 hexane–EtOAc) to give **S16** (2.33 g, 78%) as a colorless oil: R_f 0.46 (1:1 hexane–EtOAc); $[\alpha]_D$ –97.7 (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37–7.28 (m, 2H, Ar), 7.01–7.97 (m, 2H, Ar), 6.95–6.90 (m, 2H, Ar), 6.86–6.82 (m, 2H, Ar), 5.42 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 4.73, 4.69 (ABq, 2H, J = 11.1 Hz, ArCH₂), 4.16 (dd, 1H, $J_{1,2} = 1.7$ Hz, H-2), 3.91 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3,4} = 9.1$ Hz, H-3), 3.84 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.78–3.74 (m, 1H, H-5), 3.60 (s, 3H, OCH₃), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.1$ Hz, H-4), 2.60 (br s, 1H, OH-2), 1.28 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 159.7 (Ar), 155.1 (Ar), 150.5 (Ar), 130.4 (Ar), 129.7 (Ar x 2), 117.9 (Ar x 2), 114.9 (Ar x

2), 114.2 (Ar x 2), 98.2, 82.1, 79.5, 72.3, 68.9, 68.2, 61.3 (OCH₃), 55.6 (OCH₃), 55.5 (OCH₃), 18.0. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₂H₂₈NaO₇: 427.1727. Found 427.1726.

p-Tolyl 1-thio-α-L-rhamnopyranoside (S17)

To a solution of 1,2,3,4-tetra-*O*-acetyl-L-rhamnopyranose (5 g, 15.05 mmol) and thiocresol (2.24 g, 18.05 mmol) in CH₂Cl₂ (100 mL) at 0 °C was added BF₃•OEt₂ (2.3 mL, 18.05 mmol) dropwise over 10 min. The reaction mixture was stirred for 7 h at 0 °C, diluted with CH₂Cl₂ (50 mL) and washed with satd aq NaHCO₃ soln (100 mL) and brine (100 mL). The organic layer was dried with Na₂SO₄, filtered and concentrated. The resulting residue was dissolved in 1:1 CH₂Cl₂–CH₃OH (100 mL) and 1M NaOCH₃ in CH₃OH (5 mL) was added. After stirring for 2 h at rt, the reaction mixture was neutralized with Amberlite IR-120 H⁺ resin, filtered, and concentrated. The resulting oil was purified by chromatography (10:1 CH₂Cl₂–CH₃OH) to afford **S17** (3.2 g, 78%) as a white amorphous solid: R_f 0.45 (10:1 CH₂Cl₂–CH₃OH); [α]_D +41.3 (*c*, 0.2 CH₃OH); ¹H NMR (400 MHz, CD₃OD, $\delta_{\rm H}$) 7.35–7.31 (m, 2H, Ar-2,6), 7.13–7.09 (m, 2H, Ar-3,5), 5.28 (d, 1H, $J_{1,2} = 1.2$ Hz, H-1), 4.05–4.01 (m, 2H, H-2, H-5), 3.63 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3,4} = 9.2$ Hz, H-3), 3.43 (app t, 1H, $J_{3,4} = J_{4,5} = 9.2$ Hz, H-4), 2.30 (s, 3H, ArCH₃), 1.25 (d, 3H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 138.5 (Ar), 133.1 (Ar x 2), 132.1 (Ar), 130.6 (Ar x 2), 90.4, 74.0, 73.6, 72.8, 70.7, 20.9, 17.7. HRMS (ESI) calcd (M + Na)⁺ C₁₃H₁₈O₄SNa: 293.0818. Found: 293.0818.

p-Tolyl 2,3-*O*-isopropylidene-1-thio-α-L-rhamnopyranoside (S18)

To a solution of **S17** (2.5 g, 9.25 mmol) and 2,2-dimethoxypropane (2.09 mL, 17.05 mmol) in acetone (30 mL) was added *p*-TSA (0.13 g, 0.9 mmol). The reaction mixture was stirred for 30 min at rt, diluted with CH₂Cl₂ (100 mL) and washed with satd aq NaHCO₃ soln (60 mL) and brine (60 mL). The organic layer was separated, dried with Na₂SO₄, filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to afford **S18** (2.75 g, 96%) as a white amorphous solid: R_f 0.41 (2:1

hexane–EtOAc); $[\alpha]_D$ +74 (*c*, 1.8 CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.38–7.35 (m, 2H, Ar-2,6), 7.14– 7.12 (d, 2H, *J* = 7.9 Hz, Ar-3,5), 5.67 (d, 1H, *J*_{1,2} = 0.4 Hz, H-1), 4.35–4.34 (dd, 1H, *J*_{1,2} = 0.4 Hz, *J*_{2,3} = 5.6 Hz, H-2), 4.12–4.06 (m, 2H, H-3, H-4), 3.45 (dq, 1H, *J*_{4,5} = 9.8 Hz, *J*_{5,6} = 6.4 Hz, H-5), 2.34 (s, 3H, Ar*CH*₃), 1.53 (s, 3H, (*CH*₃)₂C), 1.37 (s, 3H, (*CH*₃)₂C), 1.25 (d, 3H, *J*_{5,6} = 6.4 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 137.8 (Ar), 132.4 (Ar x 2), 129.7 (Ar x 2), 129.4 (Ar), 109.6, 84.0, 78.3, 76.4, 75.1, 66.8, 28.1, 26.3, 21.0, 17.0. HRMS (ESI) calcd (M + Na)⁺ C₁₆H₂₂O₄SNa: 333.1137. Found: 333.1136.

p-Tolyl 4-*O*-benzyl-1-thio-α-L-rhamnopyranoside (S19)

To a solution of S18 (2 g, 6.45 mmol) and BnBr (0.92 mL, 7.73 mmol) in DMF (15 mL), NaH (60% in mineral oil, 0.25 g, 10.3 mmol) was added portion-wise at 0 °C over 2 min. The reaction mixture was stirred for 1 h at rt before water (30 mL) was added. The solution was concentrated, diluted with CH₂Cl₂ (60 mL) and washed with water (2×50 mL). The organic layer was separated, dried (Na₂SO₄), filtered, concentrated and the resulting residue was carried to the next step without further purification. To a solution of the residue in 3:1 CH₃OH–CH₂Cl₂ (20 mL) was added p-TSA (40 mg, 20% w/w) and the reaction mixture was stirred for an additional 3 h. The reaction mixture was then neutralized with Et₃N (1 mL). The solution was concentrated, and the resulting residue was purified by chromatography (2:1 EtOAc-hexane) to give S19 (1.88 g, 81%) as an amorphous solid: $R_f 0.36$ (2:1 EtOAc-hexane); $[\alpha]_D - 152.7$ (c, 1.3 CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.41–7.30 (m, 7H, Ar), 7.12 (d, 2H, J = 7.9 Hz, Ar), 5.40 (d, 1H, $J_{1,2}$ = 1.5 Hz, H-1), 4.78, 4.75 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.25 (dq, 1H, $J_{4,5} = 9.4$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 4.18 (ddd, 1H, $J_{1,2}$ = 1.5 Hz, $J_{2,3}$ = 3.4 Hz, $J_{2,OH-2}$ = 3.9 Hz, H-2), 3.96 (ddd, 1H, $J_{2,3}$ = 3.4 Hz, $J_{3,4}$ = 9.4 Hz, $J_{3,OH-3}$ = 5.3 Hz, H-3), 3.44 (app t, 1H, $J_{3,4} = J_{4,5} = 9.4$ Hz, H-4), 2.87 (d, 1H, $J_{2,OH-2} = 3.9$ Hz, OH-2), 2.63 (d, 1H, $J_{3,OH-3} = 5.3$ Hz, OH-3), 2.33 (s, 3H, ArCH₃), 1.36 (d, 1H, $J_{5.6} = 6.2$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.1 (Ar), 137.6 (Ar), 132.0 (Ar x 2), 130.1 (Ar), 129.8 (Ar), 128.6 (Ar x 2), 128.0 (Ar x 2), 127.9 (Ar x 2), 87.7, 81.8, 75.0, 72.5, 71.8, 68.5, 21.0, 17.8. HRMS (ESI) calcd $(M + Na)^+ C_{20}H_{24}O_4SNa$: 383.1288. Found: 383.1291.

p-Tolyl 4-*O*-benzyl-3-*O*-*p*-methoxybenzyl-1-thio-α-L-rhamnopyranoside (S20)

Diol **S19** (1 g, 2.77 mmol) was dissolved in toluene (60 mL) and *n*-Bu₂SnO (0.7 g, 2.76 mmol) was added. The reaction mixture was stirred at 120 °C for 1 h and then it was cooled to 62 °C before PMBCI (0.49 g, 3.05 mmol) and *n*-Bu₄NI (2.40 g, 6.52 mmol) were added. The reaction mixture was stirred at 62 °C for additional 6 h and then concentrated. The resulting crude product was purified by chromatography (2:1 hexane–EtOAc) to give **S20** (1.14 g, 86%) as an amorphous solid: R_f 0.42 (2:1 hexane–EtOAc); [α]_D –173.1 (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.28 (m, 9H, Ar), 7.12–7.01 (m, 2H, Ar-2,6), 6.90–6.87 (m, 2H, Ar-3,5), 5.45 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 4.89, 4.64 (ABq, 2H, J = 11.0 Hz, ArC H_2), 4.65, 4.63 (ABq, 2H, J = 11.0 Hz, ArC H_2), 4.23–4.17 (m, 2H, H-2, H-5), 3.85 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 3.82 (s, 3H, OC H_3), 3.50 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.67 (br s, 1H, OH-2), 2.33 (s, 3H, ArC H_3), 1.30 (d, 3H, $J_{5,6} = 6.4$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 159.5 (Ar), 138.4 (Ar), 137.6 (Ar), 132.1 (Ar x 2), 130.3 (Ar), 129.8 (Ar x 2), 129.8 (Ar), 129.7 (Ar x 2), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.8 (Ar), 114.0 (Ar x 2), 87.3, 80.1, 79.8, 75.4, 71.9, 70.1, 68.7, 55.3 (OCH₃), 21.1, 17.8. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₈H₃₂NaO₅S. 503.1863. Found 503.1865.

p-Tolyl 2,3,4-tri-*O*-acetyl-1-thio-β-L-fucopyranoside (821)

To a solution of L-fucose (5 g, 30.48 mmol) in pyridine (25 mL) at 0 °C was added Ac₂O (20 mL). The reaction mixture was stirred for 7 h at rt before water (100 mL) was added. The solution was diluted with CH₂Cl₂ (150 mL) and washed with 1M HCl soln (100 mL x 2), satd aq NaHCO₃ soln (100 mL), water (100 mL x 2), and brine (100 mL). The organic layer was dried with Na₂SO₄, filtered and the resulting oil was purified by chromatography (3:1 hexane–EtOAc) to afford **S21** (10.98 g, 91%) as colorless oil: R_f 0.55 (3:1

hexane–EtOAc); $[\alpha]_D$ –113.7 (*c* 0.6, CHCl₃)¹H NMR (400 MHz, CDCl₃, δ_H) 7.40 (d, 2H, *J* = 8.2 Hz, Ar-2,6), 7.11 (d, 2H, *J* = 8.2 Hz, Ar-3,5), 5.23 (dd, 1H, *J*_{3,4} = 3.1 Hz, *J*_{4,5} = 2.8 Hz, H-4), 5.19 (app t, 1H, *J*_{1,2} = *J*_{2,3} = 9.9 Hz, H-2), 5.02 (dd, 1H, *J*_{2,3} = 9.9 Hz, *J*_{3,4} = 3.1 Hz, H-3), 4.63 (d, 1H, *J*_{1,2} = 9.9 Hz, H-1), 3.79 (dq, 1H, *J*_{4,5} = 2.8 Hz, *J*_{5,6} = 6.3 Hz, H-5), 2.33 (s, 3H, ArCH₃), 2.13 (s, 3H, CH₃CO), 2.08 (s, 3H, CH₃CO), 1.96 (s, 3H, CH₃CO), 1.22 (d, 3H, *J*_{5,6} = 6.3 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.6 (*C*=O), 170.1 (*C*=O), 169.5 (*C*=O), 138.2 (Ar), 132.9 (Ar x 2), 129.6 (Ar x 2), 129.1 (Ar), 86.9, 73.1, 72.5, 70.4, 67.4, 21.2, 20.9, 20.7, 20.6, 16.5. HRMS (ESI) calcd (M + Na)⁺ C₁₉H₂₄O₇SNa: 419.1141. Found: 419.1139.

p-Tolyl 3,4-*O*-isopropylidene-1-thio-β-L-fucopyranoside (S22)

To a solution of **S21** (5 g, 12.62 mmol) in 1:1 CH₂Cl₂–CH₃OH (50 mL), 1M NaOCH₃ in CH₃OH (5 mL) was added. After stirring for 2 h at rt, the reaction mixture was neutralized with Amberlite IR-120 H⁺ resin and filtered. The filtrate was concentrated, and the resulting oil and was dissolved in acetone (50 mL) to which 2,2-dimethoxypropane (4.52 mL, 36.92 mmol) and *p*-TSA (200 mg) were added. The reaction mixture was stirred for 40 min at rt, neutralized with Et₃N (3 mL), diluted with CH₂Cl₂ (100 mL) and washed with satd. aq. NaHCO₃ soln. (100 mL) and brine (100 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (1:1 hexane–EtOAc) to afford **S22** (3.5 g, 90%) as an amorphous solid: R_f 0.32 (1:1 hexane–EtOAc); [α]_D –81.9 (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.46–7.44 (m, 2H, Ar-2,6), 7.14–7.12 (m, 2H, Ar-3,5), 4.36 (d, 1H, $J_{1,2} = 10.2$ Hz, H-1), 4.06–4.02 (m, 2H, H-3, H-4), 3.85 (dq, 1H, $J_{4,5} = 2.3$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 3.51 (ddd, 1H, $J_{1,2} = 10.2$ Hz, $J_{2,3} = 8.4$ Hz, $J_{2,OH-2} = 2.2$ Hz, H-2), 2.45 (d, 1H, $J_{OH-2,2} = 2.2$ Hz, OH-2), 2.32 (s, 3H, ArCH₃), 1.44 (s, 3H, (CH₃)₂C), 1.42 (s, 3H, (CH₃)₂C), 1.35 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.3 (Ar), 133.2 (Ar x 2), 129.7 (Ar x 2), 128.3 (Ar), 109.8, 88.2, 79.1, 76.4, 72.8, 71.3, 28.1, 26.4, 21.1, 17.0. HRMS (ESI) Calcd. for (M + Na) C₁₆H₂₂O₄NaS: 333.1131. Found 333.1135.

p-Tolyl 2-*O*-methyl-1-thio-β-L-fucopyranoside (S23)

To a solution of **S4** (1.5 g, 4.62 mmol) in 3:1 CH₃OH–CH₂Cl₂ (20 mL) was added *p*-TSA (300 mg, 20% w/w) and the reaction mixture was stirred for 4 h, and then neutralized with Et₃N (2 mL). The solution was concentrated and the resulting residue was purified by chromatography (1:2 hexane–EtOAc) to give **S23** (1.1 g, 80%) as an amorphous solid: R_f 0.3 (1:2 hexane–EtOAc); $[\alpha]_D$ –25.9 (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.44 (d, 2H, *J* = 8.1 Hz, Ar-2,6), 7.10 (d, 2H, *J* = 8.1 Hz, Ar-3,5), 4.43 (d, 1H, *J*_{1,2} = 9.6 Hz, H-1), 3.74–3.73 (m, 1H, H-4), 3.64 (s, 3H, OCH₃), 3.61–3.57 (m, 2H, H-3, H-5), 3.22 (app t, 1H, *J*_{1,2} = *J*_{2,3} = 9.6 Hz, H-2), 2.78 (br s, 1H, OH), 2.31 (s, 3H, ArCH₃), 2.20 (br s, 1H, OH), 1.32 (d, 3H, *J*_{5,6} = 6.5 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 137.8 (Ar), 132.5 (Ar x 2), 129.8 (Ar), 129.6 (Ar x 2), 87.5, 80.0, 75.5, 74.4, 71.9, 61.2 (OCH₃), 21.1, 16.6. (ESI) Calcd. for (M + Na)⁺ C₁₄H₂₀O₄SNa: 307.0980. Found 307.0980.

p-Tolyl 3-*O*-*p*-methoxybenzyl-2-*O*-methyl-1-thio-β-L-fucopyranoside (S24)

Diol **S23** (1 g, 3.50 mmol) was dissolved in toluene (30 mL) and *n*-Bu₂SnO (0.87 g, 3.51 mmol) was added. The reaction mixture was stirred for 1 h at 120 °C and then it was cooled to 62 °C before PMBCI (0.60 g, 3.86 mmol) and *n*-Bu₄NI (1.43 g, 3.86 mmol) were added. The reaction mixture was stirred at 62 °C for additional 5 h and then concentrated. The resulting was purified by chromatography (2:1 hexane–EtOAc) to give **S24** (1.17 g, 83%) as an amorphous solid: R_f 0.35 (2:1 hexane–EtOAc); $[\alpha]_D$ +1.6 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.48–7.45 (m, 2H, Ar), 7.30–7.27 (m, 2H, Ar), 7.11–7.09 (m, 2H, Ar), 6.90–6.86 (m, 2H, Ar), 4.64 (br s, 2H, ArCH₂), 4.41 (d, 1H, $J_{1,2}$ = 9.8 Hz, H-1), 3.80 (s, 3H, OCH₃), 3.75–3.74 (m, 1H, H-4), 3.60 (s, 3H, OCH₃), 3.51 (dq, 1H, $J_{4,5}$ = 2.7 Hz, $J_{5,6}$ = 6.4 Hz, H-5), 3.44 (dd, 1H, $J_{2,3}$ = 9.5 Hz, $J_{3,4}$ = 2.7 Hz, H-3), 3.32 (dd, 1H, $J_{1,2}$ = 9.8 Hz, $J_{2,3}$ = 9.5 Hz, H-2), 2.32 (s, 3H, ArCH₃), 2.23 (s, 1H, OH-4), 1.34 (d, 3H, $J_{5,6}$ = 6.4 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 159.4 (Ar), 137.6 (Ar), 132.7 (Ar x 2), 129.9 (Ar), 129.8 (Ar), 129.4(7) (Ar x 2), 129.4(5) (Ar x 2), 113.9 (Ar x 2), 87.5, 82.5, 78.4, 74.1, 71.8, 69.5, 61.2 (OCH_3) , 55.3 (OCH_3) , 21.1, 16.7. HRMS (ESI) Calcd. for $(M + Na)^+ C_{22}H_{28}NaO_5S$: 427.1555. Found 427.1549.

p-Methoxyphenyl 2-*O*-acetyl-4-*O*-benzyl-3-*O*-*p*-methoxybenzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranoside (S25)

To a solution of donor S3 (0.95 g, 1.82 mmol) and acceptor S2 (0.82 g, 2.2 mmol) in CH₂Cl₂ (30 mL) was added crushed 4 Å molecular sieves (300 mg). After the mixture was stirred at rt for 30 min, it was cooled to -20 °C, and then NIS (416 mg, 1.85 mmol) and AgOTf (123 mg, 0.48 mmol) were added. The reaction mixture was stirred for an additional 30 min at -20 °C before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was purified by chromatography (3:1 hexane-EtOAc) to give S25 (1.13 g, 81%) as an amorphous solid: $R_f 0.50$ (2:1 hexane–EtOAc); $[\alpha]_D - 25.0$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.36–7.27 (m, 10 H, Ar), 7.21–7.19 (m, 2H, Ar), 6.97–6.96 (m, 2H, Ar), 6.83–6.78 (m, 4H, Ar), 5.52 (dd, 1H, $J_{1',2'} = 1.8$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 5.40 (d, 1H, $J_{1,2} = 1.9$ Hz, H-1), 5.09 (d, 1H, $J_{1',2'} = 1.8$ Hz, H-1'), 4.92, 4.40 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.80, 4.61 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.59 (ABq, 2H, J = 10.5 Hz, ArCH₂), 4.22 (dd, 1H, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 4.00–3.95 (m, 2H, H-3', H-5'), 3.81– 3.78 (m, 1H, H-5), 3.76 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.71 (dd, 1H, J_{1,2} = 1.9 Hz, J_{2,3} = 3.3 Hz, H-2), 3.52 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 3.49 (s, 3H, OCH₃), 3.44 (app t, 1H, $J_{3',4'} = J_{4',5'} = 9.4$ Hz, H-4'), 2.11 (s, 3H, CH₃CO), 1.35 (d, 3H, $J_{5',6'} = 6.0$ Hz, H-6'), 1.24 (d, 1H, $J_{5,6} = 6.0$ Hz, H-6); ¹³C NMR (125.7) MHz, CDCl₃, δ_C) 170.1 (C=O), 159.3 (Ar), 154.9 (Ar x 2), 150.4 (Ar x 2), 138.6 (Ar), 138.1 (Ar), 130.1 (Ar), 129.7 (Ar x 2), 128.5 (Ar x 2), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.8 (Ar), 127.7 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 113.8 (Ar x 2), 99.8, 95.6, 80.3, 80.1, 80.0, 78.8, 77.6, 75.4, 75.4, 71.4, 69.2, 68.7, 68.5, 58.9 (OCH_3) , 55.7 (OCH_3) , 55.2 (OCH_3) , 21.1, 18.2, 18.0. HRMS (ESI) Calcd. for $(M + Na)^+ C_{44}H_{52}NaO_{12}$: 795.3351. Found 795.3343.

p-Methoxyphenyl 4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranoside (S26)

To a solution of **S25** (0.5 g, 0.65 mmol) in 1:1 CH₃OH–CH₂Cl₂ (15 mL), 1M NaOCH₃ (0.5 mL) was added and the reaction mixture was stirred for 1 h at rt. The solution was then neutralized with Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was dissolved in DMF (5 mL) and CH₃I (0.1 mL, 0.9 mmol) was added and the solution was cooled to 0 °C. To this solution, NaH (60% in mineral oil, 30 mg, 1.18 mmol) was added and then the reaction mixture was stirred for 1 h at rt. Chilled water (20 mL) was then added and the mixture was diluted with CH₂Cl₂ (40 mL), washed with water (2 x 30 mL), 1M HCl soln (2 x 30 mL) and brine (30 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (4:1 hexane-EtOAc) to give a syrup. The syrup was dissolved in CH₂Cl₂ (20 mL) and TFA (1 mL, 5% v/v) was added dropwise over 2 min after the solution was cooled to 0 °C. The reaction mixture was stirred for additional 30 min at 0 °C, before the addition of Et₃N (3 mL) and concentration. The resulting crude product was purified by chromatography (2:1 hexane-EtOAc) to give **S26** (0.35 g, 87%) as a colorless oil: $R_f 0.35$ (3:1 hexane–EtOAc); $[\alpha]_D$ –6.9 (c 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41–7.26 (m, 10H, Ar), 7.03–7.00 (m, 2H, Ar-2,6), 6.86–6.83 (m, 2H, Ar-3,5), 5.43 (d, 1H, $J_{1,2} = 1.9$ Hz, H-1), 5.18 (d, 1H, $J_{1',2'} = 1.8$ Hz, H-1'), 4.93, 4.82 (ABq, 2H, J = 11.5 Hz, ArC H_2), 4.71, 4.71 (ABq, 2H, J = 11.2 Hz, ArCH₂), 4.26 (dd, 1H, $J_{2,3} = 3.2$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 4.03 (dd, 1H, $J_{2',3'} = 3.4$ Hz, *J*_{3',4'} = 9.5 Hz, H-3'), 3.91–3.84 (m, 2H, H-5, H-5'), 3.78 (s, 3H, OCH₃), 3.73 (dd, 1H, *J*_{1,2} = 2.0 Hz, *J*_{2,3} = 3.2 Hz, H-2), 3.58 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 3.54 (s, 3H, OCH₃), 3.49 (dd, 1H, $J_{1',2'} = 1.5$ Hz, $J_{2',3'}$ = 3.7 Hz, H-2'), 3.31 (app t, 1H, $J_{3',4'} = J_{4',5'} = 9.5$ Hz, H-4'), 3.23 (s, 3H, OCH₃), 1.37 (d, 3H, $J_{5',6'} = 6.4$ Hz, H-6'), 1.29 (d, 3H, $J_{5.6} = 6.5$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.4 (Ar), 138.6 (Ar), 138.4 (Ar), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.8 (Ar x 2), 127.7 (Ar x 2), 127.1 (Ar x 2), 117.6 (Ar x 2), 114.7 (Ar x 2), 98.7, 95.8, 82.1, 81.0, 80.6, 80.4, 78.7, 75.1, 71.6, 68.8, 67.9, 59.1 (OCH₃), 58.6 (OCH₃), 55.7 (OCH₃), 18.2, 18.0. HRMS (ESI) Calcd. for $(M + Na)^+ C_{35}H_{44}NaO_{10}$: 647.2827. Found 647.2823.

p-Methoxyphenyl 3,4-*O*-isopropylidene-2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranoside (S27)

Two solutions were prepared. Solution A was prepared by dissolving donor S4 (50 mg, 0.15 mmol) in CH₂Cl₂ (10 mL) containing crushed 4 Å molecular sieves (50 mg). Solution B was prepared by dissolving acceptor **S26** (80 mg, 0.13 mmol) in CH₂Cl₂ (15 mL) and crushed 4 Å molecular sieves (100 mg) was added. Both solutions A and B were stirred for 30 min at rt and then solution B was cooled to -40 °C before NIS (36 mg, 0.16 mmol) and AgOTf (10.3 mg, 0.04 mmol) were added. Solution A was then added dropwise over 5 min to solution B while stirring. The reaction mixture was stirred for additional 30 min at -40 °C before Et₃N (1 mL) was added. The solution was filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give S27 (86 mg, 80%) as a colorless oil: $R_f 0.40$ (2:1 hexane-EtOAc); $[\alpha]_D$ +0.8 (c 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.55 (m, 10H, Ar), 7.00–6.89 (m, 2H, Ar-2,6), 6.83–6.81 (m, 2H, Ar-3,5), 5.42 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.17 (d, 1H, $J_{1',2'} = 1.8$ Hz, H-1'), 5.14 (d, 1H, $J_{1'',2''}$ = 3.2 Hz, H-1''), 5.15, 4.53 (ABq, 2H, J = 10.75 Hz, ArCH₂), 4.84, 4.64 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.39 (dq, 1H, $J_{4'',5''} = 2.7$ Hz, $J_{5'',6''} = 6.3$ Hz, H-5''), 4.32 (dd, 1H, $J_{2'',3''} = 8.9$ Hz, $J_{3'',4''} = 2.8$ Hz, H-3"), 4.21 (dd, 1H, $J_{2,3} = 3.2$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 4.06 (dd, 1H, $J_{3'',4''} = 2.8$ Hz, $J_{4'',5''} = 2.7$ Hz, H-4"), 4.02 (dd, 1H, $J_{2',3'} = 3.2$ Hz, $J_{3',4'} = 9.6$ Hz, H-3'), 3.95 (dq, 1H, $J_{4',5'} = 9.6$ Hz, $J_{5',6'} = 6.2$ Hz, H-5'), 3.82 (dq, 1H, *J*_{4,5} = 9.5 Hz, *J*_{5,6} = 6.2 Hz, H-5), 3.77 (s, 3H, OC*H*₃), 3.75–3.74 (m, 1H, H-2), 3.72–3.71 (m, 1H, H-2'), 3.56-3.52 (m, 1H, H-4), 3.51 (s, 3H, OCH₃), 3.56-3.45 (m, 1H, H-4'), 3.37 (s, 3H, OCH₃), 3.33 (dd, 1H, $J_{1'',2''} = 3.2 \text{ Hz}, J_{2'',3''} = 8.9 \text{ Hz}, \text{H-2''}, 3.24 \text{ (s, 3H, OCH_3)}, 1.54 \text{ (s, 3H, (CH_3)_2C)}, 1.35-1.34 \text{ (m, 6H, (CH$ H-6'), 1.29 (d, 3H, $J_{5'',6''}$ = 6.3 Hz, H-6''), 1.27 (d, 3H, $J_{5,6}$ = 6.2 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 154.9 (Ar), 150.5 (Ar), 139.0 (Ar), 138.3 (Ar), 128.4 (Ar x 2), 128.2 (Ar x 2), 127.9 (Ar x 2), 127.7 (Ar), 127.4 (Ar), 127.3 (Ar x 2), 117.5 (Ar x 2), 114.6 (Ar x 2), 108.8, 99.3, 98.7, 95.4, 81.8, 80.5, 80.3, 80.1, 79.9,

79.5, 79.4, 76.1, 75.6 75.2, 75.2, 68.7, 68.5, 63.6, 58.8 (OCH₃), 58.4 (OCH₃), 57.6 (OCH₃), 55.6 (OCH₃), 28.4, 26.4, 18.2, 18.0, 16.6. HRMS (ESI) Calcd. for (M + Na)⁺ C₄₅H₆₀NaO₁₄: 847.3875. Found 847.3867.

p-Methoxyphenyl 2-*O*-acetyl-4-*O*-benzyl-3-*O*-*p*-methoxybenzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (S28)

To a solution of donor S3 (0.47 g, 0.91 mmol) and acceptor S2 (0.31 g, 1.01 mmol) in CH₂Cl₂ (30 mL) was added crushed 4 Å molecular sieves (200 mg). After the reaction mixture was stirred at rt for 30 min, it was cooled to -20 °C, and then NIS (209 mg, 0.93 mmol) and AgOTf (61.6 mg, 0.24 mmol) were added. The reaction mixture was stirred for additional 30 min before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was purified by chromatography (3:1 hexane-EtOAc) to give S28 (0.53 g, 85%) as an amorphous solid: $R_f 0.29$ (3:1 hexane–EtOAc); $R_f 0.31$ (3:1 hexane–EtOAc); $[\alpha]_D$ –6.1 (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.25 (m, 5H, Ar), 7.27–7.25 (m, 2H, Ar), 7.00–6.96 (m, 2H, Ar), 6.85–6.81 (m, 4H, Ar), 5.46 (dd, 1H, $J_{1',2'} = 1.8$ Hz, $J_{2',3'} = 3.3$ Hz, H-2'), 5.37 (d, 1H, $J_{1,2} = 1.9$ Hz, H-1), 5.08 (d, 1H, $J_{1',2'} = 1.8$ Hz, H-1'), 4.94, 4.50 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.65, 4.63 (ABq, 2H, J = 11.2Hz, Ar-CH₂), 4.10 (dd, 1H, J_{2,3} = 3.3 Hz, J_{3,4} = 9.6 Hz, H-3), 3.99–3.93 (m, 2H, H-3', H-5'), 3.79 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.68 (dq, 1H, J_{4.5} = 9.6 Hz, J_{5.6} = 6.2 Hz, H-5), 3.65 (dd, 1H, J_{1.2} = 1.9 Hz, J_{2.3} = 3.3 Hz, H-2), 3.52 (s, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 3.47–3.45 (m, 1H, H-4'), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} =$ 9.6 Hz, H-4), 2.17 (s, 3H, CH₃CO), 1.36 (d, 3H, $J_{5'6'}$ = 6.3 Hz, H-6'), 1.26 (d, 3H, J_{56} = 6.2 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 170.3 (C=O), 159.3 (Ar), 154.9 (Ar), 150.4 (Ar), 138.6 (Ar), 130.1 (Ar), 129.7 (Ar x 2), 128.4 (Ar x 2), 128.0 (Ar x 2), 127.7 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 113.8 (Ar x 2), 99.7, 95.9, 82.4, 80.2, 80.1, 78.3, 77.4, 75.4, 71.5, 69.4, 68.8, 68.4, 61.1 (OCH₃), 59.1 (OCH₃), 55.7 (OCH₃), 55.3 (OCH₃), 21.1, 18.2, 17.8. HRMS (ESI) Calcd. for $(M + Na)^+ C_{38}H_{48}NaO_{12}$: 719.3038. Found 719.3030.

p-Methoxyphenyl 3,4-*O*-isopropylidene-2-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*- methyl- α -L-rhamnopyranoside (S29)

Two solutions were prepared. Solution A was prepared by dissolving donor S4 (25 mg, 0.08 mmol) in CH₂Cl₂ (10 mL); containing crushed 4 Å molecular sieves (100 mg). Solution B was prepared by dissolving acceptor 19 (38 mg, 0.07 mmol) in CH₂Cl₂ (10 mL); containing crushed 4 Å molecular sieves (100 mg). Both solutions A and B were stirred for 30 min at rt and then Solution B was cooled to -40 °C before NIS (18 mg, 0.08 mmol) and AgOTf (5 mg, 0.02 mmol) were added. Solution A was then added to Solution B dropwise over 5 min while stirring. The reaction mixture was stirred for additional 30 min at -40 °C before it was neutralized by the addition of Et₃N (1 mL). The solution was filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give S29 (43.5 mg, 83%) as a colorless oil: $R_f 0.36$ (2:1 hexane-EtOAc); $[\alpha]_D$ +89.0 (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.55 (m, 5H, Ar), 7.00–6.89 (m, 2H, Ar), 6.83–6.81 (m, 2H, Ar), 5.43–5.42 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 5.17 (d, 1H, $J_{1',2'} = 1.7$ Hz, H-1), 5.17 (d, 1H, J_{1',2'} = 1.7 Hz, H_1), 5.17 (d, 1H, J_{1',2'} = 1.7 1.8 Hz, H-1'), 5.14 (d, 1H, $J_{1'',2''}$ = 3.5 Hz, H-1''), 5.15, 4.53 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.45 (dq, 1H, $J_{4'',5''} = 2.8$ Hz, $J_{5'',6''} = 6.4$ Hz, H-5''), 4.34 (dd, 1H, $J_{2'',3''} = 9.8$ Hz, $J_{3'',4''} = 2.8$ Hz, H-3''), 4.47–4.44 (m, 2H, H-3, H-4"), 4.01 (dd, 1H, $J_{2'3'} = 3.2$ Hz, $J_{3'4'} = 9.5$ Hz, H-3'), 3.93 (dg, 1H, $J_{4'5'} = 9.4$ Hz, $J_{5'6'} = 6.4$ Hz, H-5'), 3.84–3.79 (m, 1H, H-5), 3.77 (s, 3H, OCH₃), 3.71–3.66 (m, 2H, H-2, H-2'), 3.55 (s, 3H, OCH₃), 3.51– 3.47 (m, 7H, H-4', OCH₃ x 2), 3.38 (s, 3H, OCH₃), 3.35 (dd, 1H, $J_{1'',2''} = 3.1$ Hz, $J_{2'',3''} = 9.8$ Hz, H-2''), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.54 (s, 3H, (CH₃)₂C), 1.36–1.34 (m, 9H, (CH₃)₂C, H-6', H-6''), 1.26 (d, 3H, $J_{5.6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 154.9 (Ar), 150.5 (Ar), 139.0 (Ar), 128.2 (Ar x 2), 127.9 (Ar x 2), 127.4 (Ar), 117.5 (Ar x 2), 114.6 (Ar x 2), 108.8, 99.3, 98.7, 95.6, 82.1, 80.5, 80.3, 80.1, 79.9, 79.5, 79.4, 76.1, 75.6, 75.2, 68.7, 68.5, 63.6, 61.3 (OCH₃), 58.8 (OCH₃), 58.4 (OCH₃), 57.6 (OCH₃), 55.6 (OCH₃), 28.4, 26.4, 18.2, 18.0, 16.6. HRMS (ESI) Calcd. for (M + Na)⁺ C₃₉H₅₆NaO₁₄: 771.3562. Found 771.3562.

p-Methoxyphenyl 3-O-p-methoxybenzyl-2-O-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -4-O-benzyl-2'-O-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-methyl- α -L-rhamnopyranoside (S30)

To a solution of donor 25 (70 mg, 0.16 mmol) in CH₂Cl₂ (10 mL), crushed 4 Å molecular sieves (100 mg) was added (Solution A). To another solution, containing acceptor 26 (72 mg, 0.13 mmol) in CH₂Cl₂ (10 mL) was added crushed 4 Å molecular sieves (100 mg) (Solution B). Both solutions were then stirred for 30 min at rt. After 30 min, Solution A was cooled to -40 °C. To solution B was added NIS (36 mg, 0.16 mmol) and AgOTf (10 mg, 0.04 mmol) and it was then added dropwise to Solution A over 5 min while stirring. The reaction mixture was stirred for additional 30 min at -40 °C before Et₃N (1 mL) was added. The solution was filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give a syrup. This syrup was dissolved in AcOH (4 mL) and (Ph₃P)₄Pd (18 mg, 20% w/w) was added. The reaction mixture was stirred overnight at rt before it was filtered, concentrated and the resulting residue was purified by chromatography (1:1 hexane–EtOAc) to give S30 (76.4 mg, 71%) as colorless oil: $R_f 0.52$ (1:1 hexane-EtOAc); $[\alpha]_{D}$ +0.3 (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.40-7.26 (m, 7H, Ar), 7.00-6.97 (m, 2H, Ar), 6.86–6.81 (m, 4H, Ar), 5.39 (d, 1H, $J_{12} = 1.7$ Hz, H-1), 5.19, 4.55 (ABg, 2H, J = 11.0 Hz, ArCH₂), 5.20–5.17 (m, 2H, H-1', H-1''), 4.72, 4.64 (ABq, 2H, J = 11.0 Hz, ArCH₂), 4.18 (dq, 1H, $J_{4'',5''} = 2.7$ Hz, $J_{5''6''} = 6.3$ Hz, H-5''), 4.20–4.06 (m, 2H, H-3', H-4''), 3.96–3.90 (m, 2H, H-3, H-5'), 3.86–3.84 (m, 1H, H-4'), 3.77 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.75–3.67 (m, 4H, H-2, H-2', H-3", H-5), 3.59 (dd, 1H, J_{1",2"} = 3.3 Hz, $J_{2'',3''}$ = 9.7 Hz, H-2"), 3.44 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.37 (s, 3H, OCH₃), 3.23 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.75 (br s, 1H, OH-3"), 1.33 (d, 3H, $J_{5',6'} = 6.2$ Hz, H-6'), 1.29 (d, 3H, $J_{5.6} = 6.2$ Hz, H-6), 1.27 (d, 1H, $J_{5''.6''} = 6.3$ Hz, H-6''); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 159.3 (Ar), 154.9 (Ar), 150.5 (Ar), 139.1 (Ar), 130.3 (Ar x 2), 129.3 (Ar x 2), 128.2 (Ar x 2), 127.8 (Ar x 2), 117.5 (Ar x 2), 114.6 (Ar x 2), 113.9 (Ar x 2), 99.8, 98.5, 95.6, 82.0, 80.7, 80.2, 79.9, 79.6, 77.7, 77.1, 75.1, 72.0, 70.1, 68.8, 68.6, 65.7, 61.2, 59.2 (OCH₃), 59.1 (OCH₃), 58.9 (OCH₃), 57.8 (OCH₃), 55.7 (OCH₃), 55.2 (OCH_3) , 18.2, 17.9, 16.4. HRMS (ESI) Calcd. for $(M + Na)^+ C_{44}H_{60}NaO_{15}$: 851.3824. Found 851.3809.

Methyl 2,3-*O*-isopropylidene-6-*O*-tosyl-α-D-mannopyranoside (S32)

To a solution of methyl α -D-mannopyranoside (**S31**, 2 g, 10.3 mmol) in pyridine (15 mL), DMAP (0.19 g, 0.1% w/w) and TsCl (2.04 g, 10.92 mmol) were added and the reaction mixture was stirred overnight at rt. Water (50 mL) was then added and the mixture was diluted with CH₂Cl₂ (60 mL), washed with water (2 × 60 mL), 1M HCl soln (2 x 60 mL), and finally brine (2 x 60 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in acetone (30 mL) and DMP (2 mL) and *p*-TSA (20 mg) were added. The reaction mixture was stirred for 2 h at rt and then Et₃N (1 mL) was added. The solution was concentrated and the resulting residue was purified by chromatography (4:1 hexane–EtOAc) to give **S32** (3.12 g, 78%) as a colorless oil: *R*_f0.49 (3:1 hexane–EtOAc); [α]_D –11.0 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ _H) 7.81–7.97 (m, 2H, Ar), 7.35–7.33 (m, 2H, Ar), 4.83 (br s, 1H, H-1), 4.28 (app d, 2H, *J*_{5,6} = 4.0 Hz, H-6), 4.10–4.09 (m, 2H, H-2, H-3), 3.74–3.70 (m, H, H-5), 3.62–3.55 (m, 1H, H-4), 3.33 (s, 3H, OC*H*₃), 2.83 (d, 1H, *J*_{4,OH-4} = 5.0 Hz, OH-4), 2.44 (s, 3H, ArC*H*₃), 1.47 (s, 3H, (*CH*₃)₂C), 1.32 (s, 3H, (*CH*₃)₂C); ¹³C NMR (125.7 MHz, CDCl₃, δ _C) 144.9 (Ar), 132.9 (Ar), 129.8 (Ar x 2), 128.0 (Ar x 2), 109.8, 98.3, 78.0, 75.4, 69.2, 68.6, 68.3, 55.2 (OCH₃), 27.8, 26.0, 21.7. HRMS (ESI) Calcd. for (M + Na)⁺ C₁₇H₂₄NaO₈S, 411.1084. Found 411.1086.

Methyl 6-deoxy-2,3-*O*-isopropylidene-4-*O*-methyl-α-D-mannopyranoside (S33)

To a solution of **S32** (1.5 g, 3.86 mmol) in DMSO (30 mL) was added NaBH₄ (0.18 g, 4.63 mmol) and the reaction mixture was stirred for 8 h at 80 °C. The solution was cooled to 0 °C before the addition of water (30 mL). The mixture was diluted with CH_2Cl_2 (50 mL), washed with water (2 x 50 mL), 1M HCl soln (2 x 50 mL) and brine (50 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in DMF (10 mL) and CH_3I (0.30 mL, 4.63 mmol) was added. To this solution, NaH (60% in mineral oil, 0.18 g, 6.2 mmol) was added at 0 °C and then the reaction mixture was stirred for 1 h at rt. Then, chilled water (20 mL) was added and then mixture was diluted with CH_2Cl_2 (40

mL), washed with water (2 x 30 mL), 1M HCl soln (2 x 30 mL) and brine (30 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting residue was purified by chromatography (5:1 hexane–EtOAc) to give **S33** (0.62 g, 69%) as a colorless oil: R_f 0.65 (5:1 hexane–EtOAc); [α]_D +29.1 (*c* 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 4.84 (br s, 1H, H-1), 4.14–4.09 (m, 2H, H-2, H-3), 3.57 (dq, 1H, $J_{4,5} = 9.8$ Hz, $J_{5,6} = 6.4$ Hz, H-5), 3.53 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃), 2.97 (dd, 1H, $J_{3,4} = 6.5$ Hz, $J_{4,5} = 9.8$ Hz, H-4), 1.55 (s, 3H, (CH₃)₂C), 1.35 (s, 3H, (CH₃)₂C), 1.28 (d, 3H, $J_{5,6} = 6.4$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 109.3, 98.3, 83.8, 78.5, 76.2, 64.7, 59.6 (OCH₃), 55.0 (OCH₃), 28.3, 26.5, 17.9. HRMS (ESI) Calcd. for (M + Na)⁺ C₁₁H₂₀NaO₅: 255.1203. Found 255.1206.

Methyl 2-O-acetyl-3-O-benzyl-6-deoxy-4-O-methyl-a-D-mannopyranoside (S34)

To a solution of **S33** (0.5 g, 2.16 mmol) in 3:1 CH₃OH–CH₂Cl₂ (20 mL), *p*-TSA (10 mg) was added. The reaction mixture was stirred for 4 h at rt before the addition of Et₃N (1 mL). The reaction mixture was then concentrated and the resulting residue was dissolved in toluene (30 mL) and *n*-Bu₂SnO (0.53 g, 2.16 mmol) was added. The reaction mixture was heated at 120 °C for 1 h. Then, it was cooled to 62 °C, and *n*-Bu₄NI (0.6 g, 2.4 mmol) and BnBr (0.28 mL, 2.4 mmol) were added. The reaction mixture was stirred for additional 7 h at 62 °C and then cooled and concentrated. The resulting residue was purified by chromatography (3:1 hexane–EtOAc) to give an oil. This oil was dissolved in pyridine (5 mL), before Ac₂O (2 mL) was added. The reaction mixture was stirred for 1 h at rt before the addition of water (20 mL). Dilution of the mixture with CH₂Cl₂(40 mL) was followed by separation of the organic layer, which was washed with water (2 x 30 mL), 1M HCl soln (2 x 30 mL), brine (30 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (6:1 hexane–EtOAc) to give **S34** (0.53 g, 79%) as a colorless oil: *R_f* 0.39 (6:1 hexane–EtOAc); [*α*]_D +22.5 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.38–7.28 (m, 5H, Ar-H), 5.33 (dd, 1H, *J*_{1,2} = 1.8 Hz, *J*_{2,3} = 3.5 Hz, *J*_{3,4} = 9.4 Hz, H-3), 3.63 (dq, 1H, *J*_{4,5} = 9.4 Hz, *J*_{5,6} = 6.4 Hz,

H-5), 3.58 (s, 3H, OC*H*₃), 3.35 (s, 3H, OC*H*₃), 3.15 (app t, 1H, $J_{3,4} = J_{4,5} = 9.4$ Hz, H-4), 2.14 (s, 3H, C*H*₃CO), 1.34 (d, 3H, $J_{5,6} = 6.4$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 170.6 (*C*=O), 138.4 (Ar), 128.6 (Ar x 2), 128.1 (Ar x 2), 127.9 (Ar), 98.9, 82.1, 78.0, 71.9, 69.2, 67.8, 61.3 (OCH₃), 55.1 (OCH₃), 21.3, 18.1. HRMS (ESI) Calcd. for (M + Na)⁺ C₁₇H₂₄NaO₆: 347.1465. Found 347.1469.

Methyl 2,3-O-isopropylidene-6-tert-butyldiphenylsilyl-α-D-mannopyranoside (S35)

To a solution of methyl α-D-mannopyranoside, (S31, 3 g, 15.05 mmol) in pyridine (20 mL) and Et₃N (2.5 mL), TBDPSCI (4.96 g, 18.06 mmol) was added and the reaction mixture was heated at 60 °C for 3 h. Water (50 mL) was added and then solution was diluted with CH_2Cl_2 (80 mL), washed with water (2 × 60 mL), 1M soln HCl (2 x 60 mL) and brine (2 x 60 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in acetone (30 mL) before DMP (4 mL) and p-TSA (100 mg) were added. The reaction mixture was stirred for 3 h at rt before Et₃N (1 mL) was added. The reaction mixture was concentrated and the resulting crude product was purified by chromatography (4:1 hexane-EtOAc) to give S35 (6.25 g, 88%) as a colorless oil: $R_f 0.78$ (4:1 hexane–EtOAc); $[\alpha]_D = -0.13$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.75–7.73 (m, 4H, Ar), 7.48–7.41 (m, 6H, Ar), 4.91 (d, 1H, $J_{1,2}$ = 4.5 Hz, H-1), 4.19–4.13 (m, 2H, H-2, H-3), 3.98–3.90 (m, 2H, H-6 x 2), 3.85–3.81 (m, 1H, H-4), 3.68–3.64 (m, 1H, H-5), 3.37 (s, 3H, OCH₃), 2.82 (s, 1H, OH-4), 1.53 (s, 3H, (CH₃)₂C), 1.37 (s, 3H, (CH₃)₂C), 1.10 (s, 9H, (*CH*₃)₃C); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 135.7 (Ar x 2), 135.6 (Ar x 2), 133.1 (Ar), 133.0 (Ar), 129.8(3) (Ar), 129.8(1) (Ar), 127.7(8) (Ar x 2), 127.7(4) (Ar x 2), 109.5, 98.3, 78.2, 75.3, 70.6, 69.5, 64.7, 54.9 (OCH_3) , 27.9, 26.1, 26.8, 19.2. HRMS (ESI) Calcd. for $(M + Na)^+ C_{26}H_{36}NaO_6Si$: 495.2173. Found 495.2171.

Methyl 4,6-di-O-benzyl- α -D-mannopyranoside (S36)

To a solution of S35 (3 g, 6.35 mmol) in THF (40 mL), TBAF (7.75 mL of 1M soln in THF, 7.75 mmol) was added and the reaction mixture was stirred for 2 h at rt before water (60 mL) was added. The solution was diluted with CH₂Cl₂ (100 mL) and washed with 1M soln HCl (2 x 80 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in DMF (20 mL) and BnBr (2 mL, 15.5 mmol) was added. To this solution, NaH (60% in mineral oil, 0.6 g, 20.64 mmol) was added portionwise over 2 min at 0 °C and it was then stirred for additional 2 h at rt before chilled water (30 mL) and CH₂Cl₂ (60 mL) were added. The organic layer was washed with water (2 x 50 mL), satd. aq. NaHCO₃ soln (2 x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting crude product was purified by chromatography (4:1 hexane-EtOAc) to give a syrup. To the solution of this syrup in 2:1 CH₃OH–CH₂Cl₂ (30 mL), p-TSA (100 mg) was added. The reaction mixture was stirred overnight at rt before Et₃N (1 mL) was added. The solution was then concentrated and the resulting residue was purified by chromatography (1:1 hexane-EtOAc) to give S36 (1.76 g, 74%) as a colorless oil: Rf 0.45 (1:1 hexane-EtOAc); $[\alpha]_D$ +39.0 (c 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.46–7.25 (m, 10H, Ar), 4.75, 4.57 $(ABq, 2H, J = 12.1 \text{ Hz}, ArCH_2), 4.76 \text{ (d, } 1H, J_{1,2} = 1.8 \text{ Hz}, H-1), 4.69, 4.59 \text{ (ABq, } 2H, J = 12.2 \text{ Hz}, ArCH_2),$ 3.95-3.89 (m, 2H, H-2, H-3), 3.83-3.73 (m, 4H, H-4, H-5, H-6 x 2), 3.39 (s, 3H, OCH₃), 2.66 (d, 1H, J_{2,OH-2} = 5.2 Hz, OH-2), 2.49 (d, 1H, $J_{3 \text{ OH-3}}$ = 6.0 Hz, OH-3); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 138.6 (Ar), 138.2 (Ar), 135.8 (Ar), 135.0 (Ar), 129.8 (Ar), 128.8 (Ar), 128.6 (Ar), 18.2(2) (Ar), 128.1(6) (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 100.9, 77.0, 74.9, 73.8, 72.1, 71.2, 70.9, 69.1, 55.2 (OCH₃). HRMS (ESI) Calcd. for $(M + Na)^{+} C_{21}H_{26}NaO_{6}$: 397.1622. Found 397.1625.

Methyl 2-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranoside (S37)

To a solution of **S36** (1.6 g, 4.27 mmol) in toluene (40 mL), *n*-Bu₂SnO (1.17 g, 4.70 mmol) was added and the reaction mixture was heated at 120 °C for 1 h. The solution was then cooled to 62 °C, *n*-Bu₄NI (1.9 g,

5.19 mmol) and BnBr (0.62 mL, 5.14 mmol) were added and the reaction mixture was stirred overnight at 62 °C. The reaction mixture was then concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give a syrup. This syrup was dissolved in pyridine (10 mL) and Ac₂O (2 mL) was added. The reaction mixture was stirred for 1 h at rt before the addition of water (30 mL) and CH₂Cl₂ (50 mL). The organic layer was separated, washed with water (2 x 50 mL), 1M HCl soln (2 x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting crude product was purified by chromatography (6:1 hexane–EtOAc) to give S37 (1.81 g, 84%) as a colorless oil: $R_f 0.52$ (6:1 hexane–EtOAc); $[\alpha]_D + 24.3$ (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.40–7.28 (m, 13H, Ar), 7.21–7.17 (m, 2H, Ar), 5.39 (dd, 1H, *J*_{1,2} = 1.9 Hz, *J*_{2,3} = 3.3 Hz, H-2), 4.89, 4.51 (ABq, 2H, *J* = 10.5 Hz, ArC*H*₂), 4.76 (d, 1H, *J*_{1,2} = 1.9 Hz, H-1), 4.74, 4.55 (ABq, 2H, J = 10.5 Hz, ArCH₂), 4.72, 4.57 (ABq, 2H, J = 10.5 Hz, ArCH₂), 3.99 (dd, 1H, J_{2,3} = 3.3 Hz, $J_{3.4} = 9.4$ Hz, H-3), 3.90 (app t, 1H, $J_{3.4} = J_{4.5} = 9.4$ Hz, H-4), 3.88–3.73 (m, 3H, H-5, H-6 x 2), 3.38 (s, 3H, OCH₃), 2.17 (s, 3H, CH₃CO); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 170.7 (C=O), 138.7 (Ar), 138.5 (Ar), 138.2 (Ar), 128.6 (Ar x 2), 128.6 (Ar x 2), 128.3 (Ar x 2), 128.1 (Ar x 2), 128.0(0) (Ar x 2), 127.9(6) (Ar), 127.8(2) (Ar x 2), 127.8(1) (Ar x 2), 99.0, 78.4, 75.4, 74.6, 73.7, 72.0, 71.5, 69.17, 68.9, 55.2 (OCH₃), 21.4. HRMS (ESI) Calcd. for $(M + Na)^+ C_{30}H_{34}NaO_7$: 529.2197. Found 529.2189.

Methyl 6-O-benzyl-2,3-O-isopropylidene-4-O-methyl-a-D-mannopyranoside (S38)

To a solution of compound **S35** (3.05 g, 6.45 mmol) and CH₃I (0.6 mL, 7.75 mmol) in DMF (20 mL), NaH (60% in mineral oil, 0.25 g, 10.3 mmol) was added at 0 °C portionwise over 2 min. The reaction mixture was stirred for 1 h at rt before the addition of water (30 mL). The solution was concentrated, diluted with CH₂Cl₂ (60 mL) and washed with water (2×50 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated. The resulting residue was dissolved in THF (20 mL), TBAF (7.75 mL of 1M soln in THF, 7.75 mmol) was added and the reaction mixture was stirred for 2 h at rt. Water (50 mL) was added and the solution was diluted with CH₂Cl₂ (60 mL) and washed with 1M soln HCl (2 x 50 mL). The organic layer was

separated, dried (Na₂SO₄), filtered and concentrated. The resulting crude product was purified by chromatography (2:1 hexane–EtOAc) to give a syrup. This syrup was dissolved in DMF (20 mL) and BnBr (1.9 mL, 15.48 mmol) was added. To this solution, NaH (60% in mineral oil, 0.5 g, 20.65 mmol) was added portionwise over 2 min at 0 °C and the reaction mixture was stirred for additional 3 h at rt before chilled water (40 mL) and CH₂Cl₂ (60 mL) were added. The organic layer was washed with water (2 x 50 mL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (5:1 hexane–EtOAc) to give **S38** (1.7 g, 78%) as a colorless oil: R_f 0.54 (5:1 hexane–EtOAc); [α]_D +30.6 (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.39–7.27 (m, 5H, Ar), 4.95 (br s, 1H, H-1), 4.68, 4.58 (ABq, 2H, *J* = 11.5 Hz, ArCH₂), 4.22–4.18 (m, 1H, H-3), 4.13 (d, 1H, $J_{2,3}$ = 3.5 Hz, H-2), 3.77–3.64 (m, 3H, H-5, H-6 x 2), 3.41 (s, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 3.34 (dd, 1H, $J_{3,4}$ = 9.7 Hz, $J_{4,5}$ = 8.9 Hz, H-4), 1.56 (s, 3H, (CH₃)₂C), 1.37 (s, 3H, (CH₃)₂C); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 138.7 (Ar), 128.5 (Ar x 2), 127.8 (Ar x 2), 127.7 (Ar), 109.5, 98.6, 78.9, 78.1, 76.1, 73.7, 69.6, 68.6, 59.4 (OCH₃), 55.1 (OCH₃), 28.2, 26.5. HRMS (ESI) Calcd. for (M + Na)⁺ Cl₈H₂₆NaO₆: 361.1622. Found 361.1621.

Methyl 2-O-acetyl-3,6-di-O-benzyl-4-O-methyl-α-D-mannopyranoside (S39)

To a solution of **S38** (3 g, 8.9 mmol) in 3:1 CH₃OH–CH₂Cl₂ (50 mL), *p*-TSA (100 mg) was added and the mixture was stirred for 4 h at rt before Et₃N (2 mL) was added. The solution was concentrated and the resulting residue was dissolved in toluene (70 mL) and *n*-Bu₂SnO (2.19 g, 8.87 mmol) was added. The reaction mixture was heated at 120 °C for 1 h. Then, it was cooled to 62 °C before *n*-Bu₄NI (3.59 g, 9.76 mmol) and BnBr (1.15 mL, 9.76 mmol) were added and the reaction mixture was stirred for additional 7 h at 62 °C. The solution was then concentrated and the resulting residue was purified by chromatography (3:1 hexane–EtOAc) to give a syrup. This syrup was dissolved in pyridine (10 mL), Ac₂O (5 mL) was added and the reaction mixture was stirred for 1 h at rt before water (40 mL) and CH₂Cl₂ (60 mL) were added. The organic layer was separated, washed with water (2 x 50 mL), 1M HCl soln (2 x 50 mL), brine (50 mL), dried

(Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (6:1 hexane–EtOAc) to give **S39** (2.79 g, 73%) as a colorless oil: R_f 0.45 (6:1 hexane–EtOAc); $[\alpha]_D$ +29.8 (*c* 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40–7.27 (m, 10H, Ar), 5.33 (dd, 1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.4$ Hz, H-2), 4.73, 4.68 (ABq, 2H, J = 10.1 Hz, ArC H_2), 4.72 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 4.58, 4.51 (ABq, 2H, J = 10.1 Hz, ArC H_2), 3.86 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3,4} = 9.8$ Hz, H-3), 3.82–3.78 (m, 1H, H-5), 3.74–3.36 (m, 2H, H-6 x 2), 3.59 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 3.51 (s, 3H, OC H_3), 3.38 (s, 3H, OC H_3), 2.14 (s, 3H, C H_3 CO); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 170.7 (C=O), 138.6 (Ar), 138.4 (Ar), 128.6 (Ar x 2), 128.5 (Ar x 2), 128.1 (Ar x 2), 127.9 (Ar x 2), 127.8 (Ar x 2), 99.0, 78.2, 76.7, 73.7, 72.0, 71.6, 69.3, 69.0, 61.1, 21.4. HRMS (ESI) Calcd. for (M + Na)⁺ C₂₄H₃₀NaO₇: 453.1884. Found 453.1885.

p-Methoxyphenyl 2-*O*-benzoyl-3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -4-*O*-allyl-2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (S40)

To a solution of donor **S5** (360 mg, 0.55 mmol) and acceptor **27** (240 mg, 0.32 mmol) in CH₂Cl₂ (30 mL), crushed 4 Å molecular sieves (300 mg) were added. After the reaction mixture was stirred at rt for 30 min, it was cooled to -20 °C, NIS (103.5 mg, 0.46 mmol) and AgOTf (30.8 mg, 0.12 mmol) were added. The reaction mixture was stirred for additional 30 min at -20 °C before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was purified by chromatography (2:1 hexane–EtOAc) to give **S40** (259 mg, 63%) as a colorless oil: R_f 0.55 (2:1 hexane–EtOAc); [α]_D +0.4 (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.08–8.06 (m, 2H, Ar), 7.57–7.53 (m, 1H, Ar), 7.50–7.711 (m, 22H, Ar), 7.00–6.97 (m, 2H, Ar), 6.84–6.81 (m, 2H, Ar), 5.93–5.86 (m, 1H, =CH), 5.73–5.72 (m, 1H, H-2″''), 5.39 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 5.36 (d, 1H, $J_{1',2'}$ = 1.8 Hz, H-1'), 5.27–5.23 (m, 1H, CH₂=), 5.18 (d, 1H, $J_{1',2''}$ = 3.3 Hz, H-1″), 5.16–5.13 (m, 3H, H-1″', =CH₂, ArCH₂), 4.92, 4.52 (ABq, 2H, J = 11.2 Hz, ArCH₂), 4.80, 4.55 (ABq, 2H, J = 11.2 Hz, ArCH₂), 4.70, 4.53 (ABq, 2H, J = 10.8 Hz, ArCH₂), 4.59 (d, 1H, J = 11.3 Hz, ArCH₂), 4.34–4.30

(m, 1H, CH₂O), 4.25 (dd, 1H, $J_{2",3"} = 9.8$ Hz, $J_{3",4"} = 2.8$ Hz, H-3"), 4.18 (dq, 1H, $J_{4",5"} = 2.7$ Hz, $J_{5",6"} = 6.4$ H, H-5"), 4.12–4.03 (m, 4H, CH₂O, H-6"" x 2, H-5'), 4.01–3.92 (m, 3H, H-5"", H-3, H-5), 3.87 (dd, 1H, $J_{2',3"} = 3.3$ Hz, $J_{3',4"} = 9.5$ Hz, H-3'), 3.81–3.77 (m, 4H, OCH₃, H-2), 3.74–3.67 (m, 4H, H-2', H-2", H-3"", H-4"), 3.57–3.54 (m, 4H, H-4"", OCH₃), 3.50–3.46 (m, 4H, H-4', OCH₃), 3.44 (s, 3H, OCH₃), 3.32 (s, 3H, OCH₃), 3.22 (app t, 1H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 1.33 (d, 3H, $J_{5',6"} = 6.2$ Hz, H-6'), 1.27 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6), 1.20 (d, 3H, $J_{5",6"} = 6.4$ Hz, H-6"); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 165.5 (*C*=O), 154.9 (Ar), 150.5 (Ar), 139.1 (Ar), 138.6 (Ar), 138.6 (Ar), 137.9 (Ar), 135.2 (=CH), 133.0(2) (Ar), 130.0(3) (Ar), 130.0 (Ar), 129.1 (Ar), 128.4 (Ar x 2), 128.4 (Ar x 2), 128.3 (Ar x 2), 128.3 (Ar x 2), 128.1 (Ar x 2), 127.8 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4(3) (Ar), 127.3(8) (Ar), 127.1 (Ar), 126.3 (Ar), 117.5 (Ar), 117.4 (CH₂=), 114.6 (Ar x 2), 99.6, 99.3, 98.5, 95.6, 82.0, 81.4, 80.6, 80.0, 79.4, 79.3, 79.3, 78.9, 77.8, 75.9, 75.1, 75.1, 74.3(9), 74.3(6), 73.5, 72.6, 71.4, 69.4, 68.9, 68.7(3), 68.6(7), 66.9, 61.2 (OCH₃), 58.9 (OCH₃), 38.6 (OCH₃), 57.8 (OCH₃), 55.7 (OCH₃), 18.2(1), 18.1(7), 16.8. HRMS (ESI) Calcd. for (M + Na)⁺ C₇₃H₈₈NaO₂₀: 1307.5761. Found 1307.5746.

p-Methoxyphenyl 2-*O*-benzoyl-3,6-di-*O*-benzyl-4-*O*-methyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4-*O*-allyl-2-*O*-methyl- α -L-fucopyranosyl-(1 \rightarrow 3)-4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl- α -L-rhamnopyranoside (S41)

To a solution of donor **S6** (158 mg, 0.27 mmol) and acceptor **27** (120 mg, 0.16 mmol) in CH₂Cl₂ (30 mL), crushed 4 Å molecular sieves (200 mg) were added. After the mixture was stirred at rt for 30 min, it was cooled to -20 °C, NIS (52 mg, 0.23 mmol) and AgOTf (15.4 mg, 0.06 mmol) were added and the reaction mixture was stirred for additional 30 min at -20 °C before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was purified by chromatography (2:1 hexane–EtOAc) to give **S41** (122 mg, 63%) a colorless oil: R_f 0.49 (4:1 hexane–EtOAc); [α]_D –23.7 (*c* 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.11–8.03 (m, 3H, Ar), 7.59–7.10 (m, 17H, Ar), 6.99–6.96 (m, 2H, Ar), 6.83–6.80 (m, 2H, Ar),

5.93–5.85 (m, 1H, =CH), 5.67–5.66 (m, 1H, H-2^{'''}), 5.38 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 5.32 (d, 1H, $J_{1',2'}$ = 1.8 Hz, H-1'), 5.27–5.23 (m, 1H, = CH_2), 5.16–5.14 (m, 3H, H-1", H-1"', = CH_2), 5.11, 4.66 (ABq, 2H, J = 11.8Hz, ArCH₂), 4.78, 4.50 (ABq, 2H, J = 12.0 Hz, ArCH₂), 4.73, 4.53 (ABq, 2H, J = 11.75 Hz, ArCH₂), 4.68– 4.61 (m, 1H, H-5"), 4.59 (dd, 1H, $J_{2",3"} = 9.7$ Hz, $J_{3",4"} = 2.7$ Hz, H-3"), 4.33–4.29 (m, 1H, CH₂O), 4.23–4.18 (m, 2H, H-5', CH₂O), 4.09–4.04 (m, 2H, H-6''' x 2), 3.99–3.94 (m, 2H, H-3, H-5), 3.88–3.84 (m, 2H, H-3', H-5"), 3.76 (s, 3H, OCH₃), 3.73–3.67 (m, 4H, H-2, H-2', H-2", H-3"), 3.54 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 3.43 (s, 3H, OCH₃), 3.37–3.32 (m, 2H, H-4', H-4''), 3.30 (s, 3H, OCH₃), 3.24– 3.16 (m, 2H, H-4, H-4'''), 1.31 (d, 3H, $J_{6',5'} = 6.2$ Hz, H-6'), 1.26 (d, 3H, $J_{6,5} = 6.2$ Hz, H-6), 1.19 (d, 3H, $J_{6'',5''}$ = 6.5 Hz, H-6"); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 165.5 (C=O), 154.9 (Ar), 150.5 (Ar), 139.1 (Ar), 138.6 (Ar), 138.0 (Ar), 135.1 (=CH), 133.3 (Ar), 130.0 (Ar), 129.9 (Ar), 128.4 (Ar x 2), 128.3 (Ar), 128.2(9) (Ar), 128.2(6) (Ar), 128.1 (Ar x 2), 128.0 (Ar), 127.9 (Ar), 127.6 (Ar), 127.4 (Ar x 2), 127.4 (Ar x 2), 127.3 (Ar x 2), 127.1 (Ar), 126.3 (Ar), 117.4(9) (Ar x 2), 117.4(8) (=CH₂), 114.6 (Ar x 2), 99.7, 99.3, 98.5, 95.6, 82.0, 80.7, 80.2, 80.0, 79.8, 79.5, 79.4, 78.9, 77.6, 76.3, 75.9, 74.4, 74.1, 73.9, 73.5, 71.7, 71.4, 71.1, 69.5, 68.9, 68.7, 61.2 (OCH₃), 58.9 (OCH₃), 58.6 (OCH₃), 57.7 (OCH₃), 57.4 (OCH₃), 55.7 (OCH₃), 18.1(9), 18.1(6), 16.7. HRMS (ESI) Calcd. for $(M + Na)^+ C_{67}H_{84}NaO_{20}$: 1231.5448. Found 1231.5437.

4-(1-Hydroxynonadecyl) anisole (S42)

To a solution of mechanically activated magnesium turnings (1.07 g, 44.98 mmol) in anhydrous THF (2 mL) in a three-necked rounded bottom flask was added 1-bromooctadecane (1 mL from a solution of 5 g in 20 mL anhydrous THF, 14.99 mmol) and the solution was gently warmed until it started to reflux by itself. The remained of 1-bromooctadecane solution (19 mL) was added dropwise over 20 min while the reaction mixture continued to reflux. After the addition was complete, the reaction mixture was heated at reflux for an 1 h. After 1 h, the reaction mixture was cooled to rt and *p*-anisaldehyde (2.75 mL, 22.48 mmol) was added dropwise over 10 min. After the addition was complete, the reaction mixture was heated at reflux for 1 h.

Then, the solution was cooled to rt and the excess Grignard reactant was quenched carefully by the addition of ice-cold water (50 mL). The solution was then diluted with CH₂Cl₂ (100 mL), washed with 1M HCl soln (2 x 50 mL), water (2 x 50 mL) and brine (75 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (7:1 hexane–EtOAc) to afford **S42** (4.38 g, 75%) as an amorphous solid: R_f 0.48 (7:1 hexane–EtOAc); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.30–7.27 (m, 2H, Ar-2,6), 6.92–6.89 (m, 2H, Ar-3,5), 4.63 (dt, 1H, J = 7.1 Hz, J = 3.1 Hz, H-1'), 3.83 (s, 3H, OCH₃), 1.85–1.79 (m, 1H, H-2'a), 1.78 (d, 1H, J = 2.6 Hz, OH), 1.73–1.76 (m, 1H, H-2'b), 1.43–1.27 (m, 32H, CH₂ x 16), 0.91 (t, 3H, $J_{18',19'}$ = 7.0 Hz, CH₃-19'); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 159.0 (Ar), 137.1 (Ar), 127.2 (Ar x 2), 113.8 (Ar x 2), 74.3, 55.3 (OCH₃), 39.0, 32.0, 29.7(2) (CH₂ x 8), 29.6(8), 29.6(2), 29.5(8), 29.5(6), 29.4, 25.9, 22.7, 14.2. HRMS (ESI) Calcd for (M–H₂O)⁺ C₂₆H₄₄O: 372.3392. Found 372.3393

4-Nonadecylanisole (S43)

To a solution of **S42** (0.78 g, 2 mmol) and Me₃SiH (0.5 mL, 4 mmol) in dry CH₂Cl₂ (4 mL) at 0°C, BF₃·Et₂O (0.5 mL, 4 mmol) was added and the reaction mixture was stirred for 1 h. The Lewis acid was quenched by the addition of sat. aq. NaHCO₃ soln (10 mL), and the mixture was diluted with CH₂Cl₂ (20 mL), and then washed with water (2 x 10 mL) and brine (10 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (10:1 hexane–EtOAc) to afford **S43** (0.71 g, 94%) as an amorphous solid: R_f 0.51 (10:1 hexane–EtOAc); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.11–7.07 (m, 2H, Ar-3,5), 6.84–6.80 (m, 2H, Ar-2,6), 3.79 (s, 3H, OCH₃), 2.54 (t, 2H, $J_{1',2'}$ = 7.6 Hz, CH_2 -1'), 1.59–1.54 (m, 2H, CH_2 -2'), 1.31–1.26 (m, 32H, CH_2 x 16), 0.89 (t, 3H, $J_{18',19'}$ = 7.0 Hz, CH_3 -19'); ¹³C NMR (125.7 MHz, CDCl₃, $\delta_{\rm C}$) 157.2 (Ar), 134.7 (Ar), 128.8 (Ar x 2), 113.2 (Ar x 2), 54.9 (OCH₃), 34.7, 31.5, 31.4, 29.3 (CH₂ x 11), 29.2, 20.1, 29.0, 28.9, 22.3. HRMS Calcd for (ESI) (M)⁺ C₂₆H₄₆O: 374.3549. Found 374.3546.

p-Tolyl 4-*O*-methyl-1-thio-α-L-rhamnopyranoside (S44)

To a solution of **S18** (0.64 g, 2.1 mmol) in DMF (10 mL) and CH₃I (0.21 mL, 3.32 mmol), NaH (60% in mineral oil, 106 mg, 4.43 mmol) was added at 0 °C and then the reaction mixture was stirred for additional 1 h at rt. The mixture was diluted with chilled water (30 mL) and CH₂Cl₂ (30 mL) and the organic layer was washed with water (2 x 20 mL) and brine (20 mL) before being dried (NaSO₄), filtered and concentrated. The resulting oil was dissolved 1:1 CH₃OH–CH₂Cl₂ (10 mL) and *p*-TSA (20 mg) was added. The reaction mixture was stirred for 3 h at rt before Et₃N (0.5 mL) was added. The solution was concentrated, and the resulting residue was purified by chromatography (1:1 hexane–EtOAc) to afford **S44** (0.53 g, 84%) as an amorphous solid: R_f 0.29 (1:1 hexane–EtOAc); [α]_D –28.9 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.37–7.34 (m, 2H, Ar-2,6), 7.13–7.11 (m, 2H, Ar-3,5), 5.41 (d, 1H, $J_{1,2}$ = 1.8 Hz, H-1), 4.20 (dd, 1H, $J_{1,2}$ = 1.8 Hz, $J_{2,3}$ = 3.3 Hz, H-2), 4.15 (dq, 1H, $J_{4,5}$ = 9.5 Hz, $J_{5,6}$ = 6.3 Hz, H-5), 3.89 (dd, 1H, $J_{2,3}$ = 3.3 Hz, $J_{3,4}$ = 9.5 Hz, H-3), 3.59 (s, 3H, OC H_3), 3.18 (app t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.5 Hz, H-4), 2.34 (s, 3H, ArC H_3), 1.34 (d, 3H, $J_{5,6}$ = 6.2 Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_{C}) 137.9 (Ar), 132.3 (Ar x 2), 130.5 (Ar), 130.07 (Ar x 2), 88.1, 83.7, 72.8, 71.9, 68.8, 61.0 (OCH₃), 21.4, 18.1. HRMS (ESI) Calcd for (M + Na)⁺ C₁₄H₂₀O₄NaS: 307.0975. Found 307.0977.

p-Tolyl 2-O-acetyl-4-O-benzyl-1-thio-α-L-rhamnopyranoside (S45)

To a solution of **S19** (0.99 g, 2.75 mmol) and triethyl orthoacetate (1.02 mL, 5.55 mmol) in CH₂Cl₂ (20 mL) was added CSA (128 mg, 0.55 mmol). The reaction mixture was stirred for 2 h at rt before it was concentrated and dissolved in 80% HOAc and stirred for additional 30 min at rt. Water (10 mL) was added and the mixture was concentrated, diluted with CH₂Cl₂ (20 mL) and washed with water (2 × 20 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated to a syrup, which was purified by chromatography (4:1 hexane–EtOAc) to give **S45** (0.96 g, 87%) as a colorless oil: R_f 0.31 (1:2 hexane–EtOAc); $[\alpha]_D$ –133.4 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.39–7.28 (m, 7H, Ar), 7.13 (d, 2H, J=

8.1 Hz, Ar-2,6), 5.40–5.37 (m, 2H, H-1, H-2), 4.79, 4.68 (ABq, J = 11.2 Hz, ArC H_2), 4.26 (dq, 1H, $J_{4,5} = 9.4$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 4.16–4.10 (m, 1H, H-3), 3.46 (app t, 1H, $J_{3,4} = J_{4,5} = 9.4$ Hz, H-4), 2.36 (s, 3H, ArC H_3), 2.28 (d, 1H, $J_{3,OH-3} = 5.1$ Hz, OH-3), 2.16 (s, 3H, CH_3 CO), 1.37 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 170.9 (*C*=O), 138.4 (Ar), 138.2 (Ar), 132.6 (Ar x 2), 130.3 (Ar), 130.1 (Ar), 128.8 (Ar x 2), 128.3 (Ar), 128.2(2) (Ar), 128.1(4) (Ar x 2), 86.5, 82.2, 75.5, 74.6, 71.0, 68.9, 21.4, 21.3, 18.1. HRMS (ESI) Calcd for (M + Na)⁺ C₂₂H₂₆O₅NaS: 425.1393. Found 425.1405.

4-Nonadecylphenyl 2-O-acetyl-4-O-methyl-α-L-rhamnopyranoside (S46)

To a solution of S7 (385 mg, 0.91 mmol) and 35 (396 mg, 1.1 mmol) in CH₂Cl₂ (20 mL) were added crushed 4 Å molecular sieves (200 mg). After stirring at rt for 30 min, the solution was cooled to -20 °C and then NIS (206 mg, 0.92 mmol) and AgOTf (62 mg, 0.24 mmol) were added. The reaction mixture was then stirred for another 30 min before the addition of Et₃N (1 mL). The solution was concentrated to a crude residue that was dissolved in CH₂Cl₂ (20 mL) and NH₂NH₂·HOAc (126 mg, 1.36 mmol) was added. The reaction mixture was stirred for 5h at rt before it was concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give S46 (337 mg, 66%) as a colorless oil: $R_f 0.28$ (2:1 hexanes–EtOAc); $[\alpha]_D$ –3.6 (c 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.08–7.05 (m, 2H, Ar-2,6), 6.94–6.91 (m, 2H, Ar-3,5), 5.40 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.26 (dd, 1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.6$ Hz, H-2), 4.22 (dd, 1H, $J_{2,3} = 3.6$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 3.79 (dq, 1H, *J*_{4,5} = 9.5 Hz, *J*_{5,6} = 6.4 Hz, H-5), 3.59 (s, 3H, OC*H*₃), 3.13 (app t, 1H, *J*_{3,4} = *J*_{4,5} = 9.5 Hz, H-4), 2.53 (t, 2H, J_{1',2'} = 7.6 Hz, CH₂-1'), 2.18 (s, 3H, CH₃CO), 1.59–1.53 (m, 2H, CH₂-2'), 1.26 (d, 3H, $J_{5.6} = 6.4$ Hz, H-6), 1.29–1.24 (m, 32H, CH₂ x 16), 0.87 (t, 3H, $J_{18',19'} = 6.6$ Hz, CH₃-19'); ¹³C NMR (125.7) MHz, CDCl₃, δ_C) 170.7 (*C*=O), 154.2 (Ar), 137.0 (Ar), 129.3 (Ar x 2), 116.3 (Ar x 2), 95.8, 83.3, 72.5, 69.8, 68.1, 60.9 (OCH₃), 35.1, 31.9, 31.6, 29.7 (CH₂ x 10), 29.6, 29.5, 29.4, 29.3, 22.7, 21.0, 18.0, 14.1. HRMS (ESI) Calcd for $(M + Na)^+ C_{34}H_{58}O_6Na$: 585.4126. Found 585.4122.

p-Nonadecylphenyl 2-*O*-acetyl-4-*O*-benzyl-3-*O*-levulinoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-*O*-acetyl-4-*O*-methyl- α -L-rhamnopyranoside(S47)

To a solution of **S8** (225 mg, 0.45 mmol) and **S46** (309.1 mg, 0.55 mmol) in CH₂Cl₂ (20 mL), crushed 4Å molecular sieves (200 mg) were added. After the reaction mixture was stirred at rt for 30 min, it was cooled to -20 °C, and then NIS (103.5 mg, 0.46 mmol) and AgOTf (30.8 mg, 0.12 mmol) were added. The reaction mixture was stirred for 30 min before the addition of Et₃N (1 mL). The solution was filtered and concentrated to a crude residue that was purified by chromatography (2:1 hexane-EtOAc) to give S47 (333 mg, 79%) as a colorless oil: $R_f 0.45$ (2:1 hexane–EtOAc); $[\alpha]_D - 39.7$ (c 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.36– 7.25 (m, 5H, Ar), 7.07–7.04 (m, 2H, Ar-2,6), 6.92–6.90 (m, 2H, Ar-3,5), 5.36 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.30–5.26 (m, 3H, H-2, H-2', H-3'), 5.02 (d, 1H, $J_{1'2'}$ = 1.8 Hz, H-1'), 4.72, 4.63 (ABq, 2H, J = 11.4 Hz, ArCH₂), 4.16 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3,4} = 9.5$ Hz, H-3), 3.87 (dq, 1H, $J_{4',5'} = 9.5$ Hz, $J_{5',6'} = 6.3$ Hz, H-5'), 3.75 (dq, 1H, $J_{4,5} = 9.6$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 3.56 (s, 3H, OCH₃), 3.51 (app t, 1H, $J_{3',4'} = J_{4',5'} = 9.5$ Hz, H-4'), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.76–2.63 (m, 2H, CH_2 -1"), 2.54–2.44 (m, 4H, CH_2CO_2 , CH₂COO), 2.17 (s, 3H, CH₃CO), 2.15 (s, 3H, CH₃CO), 2.14 (s, 3H, CH₃CO), 1.57–1.54 (m, 2H, CH₂-2_{aglv}), 1.31–1.24 (m, 38H, H-6 x 3, H-6' x 3, CH₂ x 16), 0.87 (t, 3H, $J_{18,19} = 7.0$ Hz, CH₃-19_{aglv}); ¹³C NMR (125.7) MHz, CDCl₃, δ_C) 206.1 (C=O), 171.8 (C=O), 170.4 (C=O), 170.0 (C=O), 154.1 (Ar), 138.2 (Ar), 137.0 (Ar), 129.3 (Ar x 2), 128.4 (Ar x 2), 127.8 (Ar x 2), 127.7 (Ar), 116.3 (Ar x 2), 99.5, 95.6, 82.1, 78.4, 77.3, 74.6, 71.9, 71.8, 70.4, 68.5, 68.5, 37.9, 35.1, 31.9, 31.6, 29.8, 29.7 (CH₂ x 10), 29.6, 29.5, 29.4, 29.3, 28.0, 22.7, 21.0, 20.9, 17.9, 17.8, 14.1. HRMS (ESI) Calcd for $(M + Na)^+ C_{54}H_{82}O_{13}Na$: 961.5640. Found 961.5648.

p-Nonadecylphenyl 2,4-di-*O*-methyl-α-L-fucopyranosyl-(1→3)-2-*O*-acetyl-4-*O*-benzyl-α-L-rhamnopyranosyl-(1→3)-2-*O*-acetyl-4-*O*-methyl-α-L-rhamnopyranoside (S48)

To a solution of **S47** (150 mg, 0.16 mmol) in CH_2Cl_2 (20 mL) was added NH_2NH_2 ·HOAc (22 mg, 0.24 mmol) and the reaction mixture was stirred for 5 h at rt. The solution was filtered, concentrated and the

resulting residue was purified by chromatography (2:1 hexane-EtOAc) to give a colorless oil. Next, two solutions were prepared. Solution A was prepared by dissolving the product of the NH₂NH₂·HOAc reaction in CH₂Cl₂ (10 mL) and crushed 4Å molecular sieves (100 mg) was added. Solution B was prepared by dissolving **S9** (87 mg, 0.21 mmol) in CH₂Cl₂ (10 mL) containing crushed 4Å molecular sieves (100 mg). Both solutions A and B were stirred for 30 min at rt and then solution A was cooled to -40 °C before NIS (51.8 mg, 0.23 mmol) and AgOTf (15.4 mg, 0.06 mmol) were added. Solution B was then added dropwise to solution A over 10 min while stirring. The reaction mixture was stirred for additional 30 min at -40 °C before Et₃N (0.25 mL) was added. The solution was filtered, concentrated and the resulting residue was dissolved in CH₂Cl₂ (20 mL). To this solution at 0 °C, TFA (1 mL, 5 % v/v) was added and the reaction mixture was stirred for 45 min. To this solution was added Et₃N (2 mL) and the mixture was then concentrated, and the resulting crude product was purified by chromatography (1:1 hexane-EtOAc) to give S48 (63 mg, 39 %) as a colorless oil: R_{f} 0.49 (1:1 hexane–EtOAc); $[\alpha]_{D}$ –29.8 (c 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.34– 7.25 (m, 5H, Ar), 7.06 (d, 2H, J = 8.6 Hz, Ar-2,6), 6.91 (d, 2H, J = 8.6 Hz, Ar-3,5), 5.36 (d, 1H, $J_{1,2} = 1.8$ Hz, H-1), 5.27 (dd, 1H, $J_{1,2} = 1.8$ Hz, $J_{2,3} = 3.5$ Hz, H-2), 5.19 (dd, 1H, $J_{2',3'} = 3.1$ Hz, $J_{3',4'} = 1.9$ Hz, H-2'), 5.10 (d, 1H, $J_{1',2'} = 1.7$ Hz, H-1'), 5.06 (d, 1H, $J_{1'',2''} = 3.5$ Hz, H-1''), 4.67, 4.64 (ABq, 2H, J = 12.0 Hz, ArCH₂), 4.17 (dd,1H, J_{2.3} = 3.5 Hz, J_{3.4} = 9.5 Hz, H-3), 4.07–4.06 (m, 1H, H-3'), 4.02–3.99 (m, 2H, H-3", H-5"), 3.84 (dq, 1H, $J_{4',5'} = 9.4$ Hz, $J_{5',6'} = 6.3$ Hz, H-5'), 3.75 (dq, 1H, $J_{4,5} = 9.5$ Hz, $J_{5,6} = 6.4$ Hz, H-5), 3.63– 3.59 (m, 1H, H-2"), 3.62 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 3.49–3.46 (m, 1H, H-4'), 3.47 (s, 3H, OCH₃), 3.99-3.98 (m, 1H, H-4"), 3.21 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.52 (t, 2H, $J_{1,2} = 8.0$ Hz, CH_2-1_{aglv}), 2.17(s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO), 1.57–1.54 (m, 2H, CH₂-2""), 1.29–1.23 (m, 41H, H-6 x 3, H-6' x 3, H-6" x 3, CH_2 x 16), 0.87 (t, 3H, $J_{18,19} = 6.8$ Hz, CH_3 -19_{aglv}); ¹³C NMR (125.7 MHz, CDCl₃, δ_C) 167.9 (C=O), 167.7 (C=O), 151.6 (Ar), 135.9 (Ar), 134.5 (Ar), 126.7 (Ar x 2), 125.8 (Ar x 2), 125.1 (Ar x 3), 113.8 (Ar x 2), 98.0, 95.4, 93.2, 80.0, 79.4, 76.2, 75.9, 74.4, 73.8, 72.2, 70.8, 69.3, 67.3, 66.2, 66.0, 64.3, 59.7(4) (OCH₃), 58.7(9) (OCH₃), 54.7 (OCH₃), 32.6, 29.4, 29.1, 27.2 (CH₂ x 10), 27.1, 27.0, 26.7(8), 26.7(4), 22.2, 21.0, 20.8, 17.9, 17.7, 16.5, 13.9. HRMS (ESI) Calcd for (M + Na)⁺ C₅₇H₉₀O₁₅Na: 1037.6178. Found 1037.6177.
Immunological Evaluation

Immunoinhibition assay of compounds 1–17 Pam3CSK4 [TLR2 agonist] as stimulant

Figure S1. IL-6 immunoinhibition assay of compounds 8–11.

Figure S2. IL-6 immunoinhibition assay of compounds 12–17.

Figure S3. IL-6 immunoinhibition assay of compounds 18–24.

Figure S4. IL-1ß immunoinhibition assay of compounds 8–11.

Figure S5. IL-1ß immunoinhibition assay of compounds 12–17.

Figure S6. IL-1ß immunoinhibition assay of compounds **18–24**.

Figure S7. MCP-1 immunoinhibition assay of compounds 8–11.

Figure S8. MCP-1 immunoinhibition assay of compounds 12–17.

Figure S9. MCP-1 immunoinhibition assay of compounds 18-24.

Figure S10. Nitric oxide immunoinhibition assay of compounds 8–11.

Figure S11. Nitric oxide immunoinhibition assay of compounds 12-17.

Figure S12. Nitric oxide immunoinhibition assay of compounds 18–24.

Immunoinhibition assay of compounds 1–17 Ultra pure LPS [TLR4 agonist] as stimulant

1. IL-6

Figure S13. IL-6 immunoinhibition assay of compounds 8–11.

Figure S14. IL-6 immunoinhibition assay of compounds 12–17.

Figure S15. IL-6 immunoinhibition assay of compounds 18–24.

Figure S16. IL-1ß immunoinhibition assay of compounds 8–11.

Figure S17. IL-1ß immunoinhibition assay of compounds 12–17.

Figure S18. IL-1ß immunoinhibition assay of compounds 18–24.

Figure S19. MCP-1 immunoinhibition assay of compounds 8-11.

Figure S20. MCP-1 immunoinhibition assay of compounds 12–17.

Figure S21. MCP-1 immunoinhibition assay of compounds 18–24.

Figure S22. Nitric oxide immunoinhibition assay of compounds 8–11.

Figure S23. Nitric oxide immunoinhibition assay of compounds 12–17.

Figure S24. Nitric oxide immunoinhibition assay of compounds 18-24.

Glycolipids 16, 34 and 35.

1. Pam3CSK4 as stimulant

Figure S25. IL-6 immunoinhibition assay of compounds 16, 34 and 35.

Figure S26. MC-1 immunoinhibition assay of compounds 16, 34 and 35.

Figure S27. IL-18 immunoinhibition assay of compounds 16, 34 and 35.

Figure S28. Nitric oxide immunoinhibition assay of compounds 16, 34 and 35.

2. Ultrapure LPS

Figure S29. TNF-α immunoinhibition assay of compounds **16**, **34** and **35**.

Figure S30. IL-6 immunoinhibition assay of compounds 16, 34 and 35.

Figure S31. MCP-1 immunoinhibition assay of compounds 16, 34 and 35.

Figure S32. IL-1ß immunoinhibition assay of compounds 16, 34 and 35.

¥	10
	30 20 10 0
	70 60 50 40
	90 80
	130 f1 (ppm)
	170 150
	190
	0 210

	e e e e e e e e e e e e e e e e e e e	T
	1000 Million and a	-10
		- 0
C'01-		10
8.71		20
9·55- 6·85-		- 00
5.88- 9.88-		9
2'69 5'T2-		0
8°TZ- 2'92-T		0
2.77- 2.77-		0
£.08		- 0
8.28		8
5'56~ 7'66~	and the second s	6
9.66		10-
		11
211-		F F
		13(
		F.
051— #ST—		15(
		E.
		170
	ANTIMA ANTIMA	190
o pu		Ē
uodu voen	AMANUKI	210
of cor		
MR CO		230
£ C Z O	YIM WAY	-

¹H NMR of compound S18

2'91	The second se
8/21	-
9.62-	-
225-	- 0
3.82-	10
·T9-1	
19-	2
991	0
·89-	
89-	- 01
·02-	-
12-	20 -
-221	-
221	-9
· / 1	E
SZ L	
92	
22.5	
	- 06
82-r	
62-1	F -
62-	- 0
62-	11
081	
18-	
S6-	- m
66-1	
II-F	
71-	115
ZI-	
21-	The second se
21-	- 20
ZL1	1
71-	-
-12	110
ZI- To Page 12	
21 8 ° C	
	2
ET E	
	- 05
-5 m	-

