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ABSTRACT Interactions between excitatory and inhibi-
tory synaptic inputs on dendrites determine the level of activity
in neurons. Models based on the cable equation predict that
silent shunting inhibition can strongly veto the effect of an
excitatory input. The cable model assumes that ionic concen-
trations do not change during the electrical activity, which may
not be a valid assumption, especially for small structures such
as dendritic spines. We present here an analysis and computer
simulations to show that for large Cl conductance changes, the
more general Nernst-Planck electrodiffusion model predicts
that shunting inhibition on spines should be much less effective
than that predicted by the cable model. This is a consequence
of the large changes in the intracellular ionic concentration of
Cl that can occur in small structures, which would alter the
reversal potential and reduce the driving force for Cl1. Shunt-
ing inhibition should therefore not be effective on spines, but it
could be significantly more effective on the dendritic shaft at
the base of the spine. In contrast to shunting inhibition,
hyperpolarizing synaptic inhibition mediated by K+ currents
can be very effective in reducing the excitatory synaptic
potentials on the same spine if the excitatory conductance
change is less than 10 nS. We predict that if the inhibitory
synapses found on cortical spines are to be effective, then they
should be mediated by K+ through GABAB receptors.

Shunting inhibition occurs when the reversal potential of the
synapse is approximately equal to the resting membrane
potential. This occurs when the inhibitory current is carried
by Cl- ions or by a particular combination of K+ and Na' or
Ca2+ ions. This type of inhibitory input is silent: it does not
change the membrane potential directly, but it can reduce the
depolarization caused by excitatory synaptic inputs (1, 2). A
measure of the effectiveness of such shunting inhibition is the
ratio of the maximum depolarization at a reference point in
the neuron caused by an excitatory input alone to the
depolarization when both the excitatory and the inhibitory
inputs are present. This ratio, called the F factor (2), is equal
to 1 if the inhibition has no effect on the excitation. One
obvious requirement for effective inhibition is that its time
course should overlap substantially with the excitatory syn-
aptic conductance change.

Cable Model Predictions

When does the cable model predict that inhibition is effec-
tive? Consider first the case in which the excitatory and
inhibitory synapses are very close to each other. According
to the cable model, the excitatory and the inhibitory synaptic
currents are, respectively, given by

Ie(t) = Ge(t)[V(t) - Ee], [1]

and

I(t) = GC(t)[V(t) - Ej] -G(t)[V(t) - Vrest], [2]

where Ee and E1 are the reversal potentials of the excitatory
and the inhibitory synapses, Ge and G1 are the transient
synaptic conductances, V is membrane potential at the syn-
apse, and Vrest is the resting membrane potential (3).
We have assumed in Eq. 2 that the reversal potential for

shunting inhibition is very close to the resting membrane
potential. In contrast, the excitatory inputs usually cause
conductance increases to ions such as Na' or Ca2l that have
a reversal potential, Ee, well above resting membrane poten-
tial. The inhibition will be effective if IIj is comparable to lIel.
This requires, first, that GC be larger than Ge. Second, V
should be well above the resting membrane potential so that
the driving force for the inhibition (V - Vrest) is comparable
to the driving force for the excitation (V - Ee). This in turn
requires that Ge be large and/or that the synapses are on small
structures, such as spines or thin dendrites, where input
resistances are large and small synaptic conductance change
can cause a large depolarization. (Large inhibitory driving
forces can also be achieved when the cell is firing an action
potential; see Discussion.) In summary, for shunting inhibi-
tion to be effective when excitation and inhibition are located
close to each other, the cable model requires that the syn-
apses should be on small structures and G1 > Ge >> Grest,
where Grest is resting conductance of the membrane at the
synapse. For stationary synaptic inputs, an explicit expres-
sion for the F factor can be derived (2, 4).

In their analysis and simulations of shunting inhibition,
Koch et al. (2) mainly considered large synaptic conduc-
tances on spines and distal (thin) dendrites that satisfy the
inequalities discussed above. Their Ge was as large as 10 nS
and G, was 100 nS, but more recent physiological data suggest
that Ge should be -1 nS (5, 6). They also found that, for large
excitatory conductances, inhibition on the direct path to the
cell body was also effective, and that the most effective
location for the inhibition moves toward the soma as the
excitatory conductance increases (4). Two opposing factors
explain the phenomenon: when the inhibition is on the direct
path from excitation to the soma, Ii is smaller because, at the
site of inhibition, the membrane is less depolarized; but Ie is
also smaller because, at the site of excitation, the membrane
is more depolarized. They also found that when the inhibition
was more distal than the excitatory synapse, the inhibition
was no longer effective. In this case, the resistance from the
excitatory synapse to the cell body is much less than the
resistance to the inhibitory synapse at the distal tip, so less
current is shunted. Finally, Koch et al. (2) mentioned that
increasing the value of the cytoplasmic resistivity and the
membrane resistance increased the effectiveness of inhibi-
tion. This occurred because the membrane depolarization
was larger, which made the driving force for the inhibitory
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current larger and the driving force for the excitatory current
smaller.
The cable model fails for small structure and large con-

ductance changes (7, 8), precisely the conditions required for
effective shunting inhibition by the cable model. Briefly, the
cable model assumes (i) that the membrane Nernst potentials
are constant, (ii) that the longitudinal resistivities for all the
ions are constant and can be combined into a single param-
eter, and (iii) that the longitudinal diffusion of ions can be
neglected. These assumptions are invalid when there is a
large spatial and/or temporal intracellular ionic concentra-
tion gradient. We have developed an electrodiffusion model
for dendrites and spines that should give more accurate
predictions under these circumstances (8).

Electrodiffusion Model Predictions

The electrodiffusion model predicts that the shunting inhibi-
tion cannot be effective on small structures for the following
reasons. Consider first the case in which the conductance
changes are large. If the inhibitory current is carried by Cl-
ions, then during a large conductance change the Cl- con-
centration in a small structure such as a spine or a thin
dendrite will very rapidly increase. The Nernst potential for
Cl- becomes more positive and the inhibition is ineffective.
Changes in the Cl- Nernst potential have been reported (9,
10). If the conductance changes are small, then the concen-
tration changes for Cl- are small and the electrodiffusion
model will reduce to the cable model. Thus, shunting inhi-
bition will not be effective because the membrane depolar-
ization is small and the driving force for the inhibitory current
is much smaller than that for the excitatory current, as
discussed in the previous section. As a consequence, the
electrodiffusion model predicts that the shunting inhibition
can never be very effective in small structures.
A similar analysis can be applied for hyperpolarizing

inhibition carried by K+. When both the excitatory and the
inhibitory synaptic conductances are large on a small struc-
ture, K+ hyperpolarizing inhibition is just as ineffective as the
Cl- shunting inhibition because of large ionic concentration
changes. However, the situation for small synaptic conduc-
tances is different. The reversal potential for K+ is suffi-
ciently below the resting potential that the driving force for
the inhibition can be large even at the resting potential. In
addition, the intracellular K+ concentration is much higher
than Cl- and therefore the percentage change is usually
smaller. These statements will be made quantitatively precise
in the numerical simulations presented below based on both
the cable and the electrodiffusion models.

Simulations

The electrodiffusion model is based on the Nernst-Planck
equation, which considers the longitudinal diffusion process
as well as the driving force due to the potential gradient. We
previously (8) showed that the veto effect of shunting inhi-
bition was not significant on spines when the large conduc-
tance changes to Na' and K+ used by Koch et al. (2) were
applied to the electrodiffusion model. We extend these re-
sults to shunting inhibition, which was modeled by transient
Cl- conductance change. Excitation was modeled by a
combination of transient conductance changes to Na' and
K+, with the K+ conductance equal to one-tenth of Na+
conductance (11). The synaptic reversal potential under this
combination is -50 mV. We also made simulations with the
reversal potential ofthe excitatory synapse equal to 0 mV and
similar conclusions were obtained. Ionic driving forces sim-
ilar to Eqs. 1 and 2 were used for the electrodiffusion model
rather than the constant field approximation used in ref. 8.
The Nernst potentials were updated at each time step ac-

cording to the instantaneous ionic concentrations. We varied
the magnitudes and durations of the conductance changes
and the spine neck dimensions. We also compared the
effectiveness of inhibition on the spine with inhibitory input
on the dendrite at the base of the spine, as shown in Fig. 1.
The standard parameters used and details of the simulations
are summarized in the legend to Fig. 1; any variation will be
explicitly mentioned.
Synapses on spines. Approximately 7% of the spines on

pyramidal cells in visual cortex have both excitatory and
inhibitory profiles (12). It has been suggested that this type of
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FIG. 1. (A) Geometry of the dendrite and spine for the simula-
tions showing excitation and inhibition on the spine head (Upper) and
inhibition on the dendritic shaft at the base of the spine (Lower). The
spine was located in the center of a dendrite with a total length of 300
,m and a diameter of 1 ,m; the spine neck was 1 Am long and 0.1
,.m in diameter; the spine head was 0.69 Aum long and 0.3 ,m in
diameter. In the simulations of the electrodiffusion model, sample
points in the dendrite were 10 jum apart and the integration time step
was 0.1 jus; in the spine head and neck the spacing was 0.173 j. m and
0.167 ,m, respectively, and the time steps were 2 ns. The model had
a total of41 sample points: 31 in the dendrite, 6 in the spine neck, and
4 in the spine head. In the conventional cable model, only 33 lumped
compartments were used (1 for head, 1 for neck, and 31 for dendrite)
because of the large space constant. The time step for spine head and
neck was 0.1 /As and that for the dendrite was 1 ,us. (B) Excitatory and
inhibitory synaptic conductance changes were modeled by G(t) =

GM(et/tprak)4e-4t/tPeak, where tpak is the time to reach the peak
conductance, GM. A graph of this expression is shown with tpea =

1 ms, and GM = 1 nS. Parameters used in our simulations were as

follows: tPeak = 1 ms; membrane capacitance Cm = 1 jLF/cm2;
diffusion coefficients DK = 1.% X 10-5 Cm2/S, DNa = 1.33 X 10-5
cm2/s, and DC, = 2.03 X 10-5 cm2/s; resting membrane conduc-
tances of unit area gK,rest = 1.95 x 10-4 S.cm2, gNa.rcst = 1.63 x 10-5
Scm2 and gC1,rest = 3.89 x 10-5 S.cm2; initial intracellular concen-
trations nK.O = 140 mM, nNa.O = 12 mM, and nclo = 5.5 mM;
extracellular concentrations nK.0ut = 4 mM, nNa.out = 145 mM, and
nci out = 120 mM. With this set of parameters, the resting membrane
potential was -78 mV. The Nernst potentials for K+, Na', and Cl-
were -90, 63, and -78 mV, respectively. Total membrane resistivity
Rm was 4000 flcm2. Total cytoplasmic resistivity Ri at rest was
calculated (8) to be 87 fl-cm. Total surface area of the spine head was

0.65 ,um2. Some of these parameters were varied as explained in the
relevant figures and tables. The sources for these parameters are

given in ref. 8.
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Table 1. F factors for Cl- inhibition

GNaM = 0.1 nS GNa.M = 1.0 nS GNaM = 10 nS

GCIM/GNa.M Diffusion Cable Diffusion Cable Diffusion Cable
1 1.02 1.02 1.10 1.17 1.23 1.65

10 1.10 1.20 1.20 2.74 1.26 7.56
100 1.16 3.04 1.19 18.63 1.25 66.20

1000 1.14 20.35 1.19 163.86 1.25 602.19

F factors at the spine head when both excitatory and Cl--mediated inhibitory synaptic inputs are
located on the same spine predicted by both the electrodiffusion model and the cable model.

spine forms a "module for performing a selective AND-NOT-
like operation effectively decoupled from other such sub-
units" (13). We modeled a spine located in the middle of a
300-tkm-long dendrite and the response at the spine head was
used to calculate F factors. Our simulation results based on
both the cable model and the electrodiffusion model are
shown in Table 1. The cable model indeed showed strong
veto effects especially when the conductances were large, as
predicted. However, our electrodiffusion model showed no
significant veto effect over a wide range of conductances.
Note also that when the GCIM/GNa.M ratio was increased,
there were cases in which the F factor decreased slightly.
This occurred because the Cl- Nernst potential shifted so
much that it depolarized the membrane away from its resting
level. A Cl- conductance change alone, however, did not
cause any depolarization because there was no driving force
and therefore no concentration change.
The difference between the cable model and the electro-

diffusion model decreased as the synaptic conductances de-
creased. For GNaM = 0.1 nS, the two models were essentially
identical and both predicted that the inhibition was ineffective.
However, for longer durations of the synaptic input, the two
models may not agree even for synaptic conductance changes
as small as 0.1 nS (see Discussion). The details of the postsyn-
aptic responses on the spine head are shown in Fig. 2.

Quantal analysis on excitatory postsynaptic potentials in
area CA3 of the rat hippocampus (5, 6) gave a quantal
conductance of =1 nS at mossy fiber synapses. Therefore,
the synaptic conductance change due to a single presynaptic
action potential should be a few nanosiemens. Similar mea-
surements of unitary inhibitory conductance performed on
CA3 pyramidal cells of guinea pig hippocampus obtained a
value of 5-9 nS (14). However, the conductance of synapses
on pyramidal cells in cerebral cortex may be much smaller.
In the following simulations, we fixed GNaM at 1 nS and
varied GcCM unless otherwise indicated.
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FIG. 2. Postsynaptic responses relative to the resting level at the
spine head calculated with the electrodiffusion model (solid lines) and
the cable model (dotted lines). Two traces are shown for each model:
the top trace is the response with excitatory synaptic input alone and
the bottom trace is the response to both excitatory and shunting
inhibitory inputs. Excitatory synaptic input, GNa.M = 1 nS; inhibitory
synaptic input, GcI.M = 10 nS.

The morphologies of spines vary greatly. The critical
parameters for our simulations were the diameter and length
of spine neck, which were varied from 0.1 to 0.25 ,um and
from 0.4 to 1.0LOm, respectively, with the neck membrane
area kept constant. We also considered the case in which
there was no spine neck and the spine head was connected
directly to dendrite. The cable model gave large F factors
when the neck was long and narrow and/or GclM was large,
but the electrodiffusion model produced no F factor larger
than 2 over the entire range. The effectiveness of inhibition
was not very sensitive to the dimensions of the spine neck
because of two competing effects that cancel: as the spine
neck length was decreased and the diameter increased, the
concentration changes in the spine were reduced, making the
inhibition more effective. However, the input resistance of
the spine head was also decreased, resulting in a smaller
depolarization and a reduced driving force for the inhibition.
On-path inhibition. Inhibitory synapses on pyramidal neu-

rons are commonly located on the dendritic shaft at the base
of the spine (12, 15). The simulations in Fig. 3 show that
dendritic on-path inhibition is much more effective than
inhibition on the spine head. The ionic concentration changes
were much smaller for the dendritic inhibition because the
dendrite had a diameter of 1 um, and hence the cable equation
was a good approximation. Also, the driving force for the
inhibition was strong because the spine was electrically
coupled to the dendrite well enough that the excitation of the
spine caused a large depolarization at the dendritic shaft.

Interactions between synapses on dendrites. We next
studied interactions between excitatory and inhibitory syn-
apses at adjacent sites on dendrites ranging in diameter from
0.1 to 2.0 A.m. The predicted F factors for the cable model,
given in Table 2, were very large when the dendritic diameter
was small and the Gcl was large. For the electrodiffusion
model, two competing factors determined the effectiveness
of inhibition: for dendrites with large diameters, the concen-
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FIG. 3. Responses relative to the resting level at the dendritic
shaft at the base of a spine under three conditions: no inhibition and
the excitatory input (GNa.M = 1 nS) on the spine head alone (solid
line), the excitatory input (GNa M = 1 nS) and the inhibitory input
(GcI.M = 10 nS) both on the same spine head (dashed line), and the
excitatory input (GNa.M = 1 nS) on the spine head and the inhibitory
input (GCI.M = 10 nS) on the dendritic shaft at the base of the spine
(dotted line).
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Table 2. F factors by electrodiffusion and cable models

Dendritic diameter, jim
GClM/GNaM 0.1 0.25 0.5 1.0 2.0

Electrodiffusion
0.1 1.07 1.04 1.02 1.01 1.00
1 1.47 1.45 1.18 1.07 1.03

10 1.87 1.66 2.26 1.66 1.31
100 1.91 2.67 3.43 3.10 3.25

Cable
0.1 1.08 1.06 1.04 1.02 1.01
1 1.72 1.39 1.19 1.08 1.04

10 8.31 5.16 3.03 1.88 1.38
100 73.07 43.15 22.46 11.01 5.65

F factors for both excitatory and inhibitory synapses on dendrites
at the same site, with different dendritic diameters. GNaM = 1 nS.

tration effects were small so the Nernst potential did not
change very much and the inhibition was effective. However,
the depolarization ofthe membrane from the resting level was
smaller in larger dendrites, which made inhibition less effec-
tive. The F factors by electrodiffusion model (Table 2) were
not monotonically increasing with increasing dendritic diam-
eter because of these two factors and their interaction. For Gi
= Ge the first factor dominated and the inhibition was
comparatively more effective on small dendrites. When G, -

Ge, the second factor dominated and the inhibition was more
effective on large dendrites. In any case, when the dendritic
diameter was 0.1 ,um, the F factors were always <2, similar
to the previous results for inhibition on spines.
K+-mediated inhibition. The equilibrium potential for K+ is

generally below the resting membrane potential (12 mV below
in our model) so that an increase in K+ conductance leads to
a hyperpolarization. In a previous study we found that inhi-
bition on spines mediated by K+ was not effective for exci-
tatory conductances -10 nS (8). In this section, we consider
excitatory conductances that are lower and more realistic for
pyramidal neurons. We find that for smaller excitatory con-
ductances, hyperpolarizing inhibition can be quite effective.
Synaptic responses to GNaM = 0.1 nS are shown in Fig. 4,
which also shows that an inhibition of GK,M = 1 nS is very
effective in reducing the response. In comparison, the inhibi-
tion due to a similar or much larger conductance change for
Cl- was not effective. For large excitatory conductance
changes, the K+ inhibition became as ineffective as Cl-
because of the large K+ concentration changes that rapidly
shift the K+ Nernst potential, as shown in Table 3.

Inhibition mediated by K+ in cortical neurons has a time
course that can last for a significant fraction ofa second when
it is activated by GABAB receptors through guanine nucle-
otide-binding regulatory proteins (G proteins). We therefore
studied the steady-state behavior following a step change in
conductances of GNa = 0.1 nS and GK = 1 nS and found that
the response at the spine head was -6.9 mV with excitation
alone and 1.3 mV with both excitation and inhibition. In
steady state, the K+ efflux from the spine head was balanced
by the K+ diffusion from the dendritic shaft to the head.

Table 3. F factors for K+ inhibition
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FIG. 4. Response relative to the resting level at the spine head to
an excitatory input of GNa.M = 0.1 nS and one of the following three
different inhibitory synaptic inputs: no inhibition (-), K+ inhib-
itory synaptic input with GKM = 1 nS (....), Cl- inhibitory input with
GCI1M = 1 nS (--- -), and GCi.M = 100 nS (---).

Thus, the inhibition mediated by K+ conductances remained
effective for slow inhibitory synaptic potentials when the
excitatory conductances were small. Since an excitatory
synaptic conductance typically lasts for only a few millisec-
onds, an excitatory input arriving a few milliseconds earlier
than the inhibitory input will not be affected by the inhibition.
Once an inhibitory input is active, there is a long time window
during which arriving excitatory inputs are inhibited.

Discussion

The major conclusion of this paper is that Cl- shunting
inhibition on spines cannot be effective regardless of how
large the synaptic conductance changes are. Shunting inhi-
bition is significantly more effective when it is on the den-
dritic shaft on path to the cell body. This may partly explain
the anatomical findings that most synapses on spines are
putatively excitatory and that the majority of the putative
inhibitory synapses are found on dendritic shafts. For exam-
ple, in hippocampal pyramidal cells, almost all synapses
found on spines are excitatory (16). In the cat primary visual
cortex only 7% of synapses on spines are inhibitory (12),
although they comprise almost one-third of the total number
of inhibitory synapses on a pyramidal cell. Shunting inhibi-
tory synapses on spines may have other functions. Although
they may not contribute significantly to the electrical re-
sponses of the cell, they can certainly cause large local ionic
concentration changes that may be important in regulating
certain cellular functions.
The inhibitory synapses on spines may contribute to the

electrical responsiveness of a cell if they are mediated
through K+ currents. Our simulations predict that K+ hy-
perpolarizing inhibition on a spine head can be very effective
when the excitatory synaptic conductance changes are <10
nS. The major inhibitory neurotransmitter in the visual cortex
is y-aminobutyric acid (GABA); GABAA receptors are cou-
pled to Cl- channels and GABAB receptors are linked to K+
channels. Therefore, we specifically predict that the inhibi-
tion on spines is mediated by the GABAB receptors. This

GNaM = 0.1 nS GNaM = 1.0 nS GNa M = 10 nS

GKM/GNaM Diffusion Cable Diffusion Cable Diffusion Cable

0.1 1.01 1.07 1.02 1.07 1.07 1.07
1 1.11 1.18 1.24 1.33 1.58 1.79

10 6.05 8.03 7.35 17.65 1.70 47.53
100 * * * * 1.66 *

F factors at the spine head when both excitatory and K+-mediated inhibitory synaptic inputs are
located on the same spine predicted by both the electrodiffusion and the cable models.
*F factors undefined because the responses were hyperpolarizing, indicating very effective inhibition.
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prediction is consistent with the finding that GABAB input to
hippocampal pyramidal cells is preferentially dendritic (17),
where the majority of inputs are onto spines. Another way to
have effective inhibition on a spine is through conductance
decreases of either Na' or Ca2+, although this type of
inhibitory mechanism has not been found in cortical neurons.
The best estimates available for the synaptic conductance

changes on spines are in the range of 0.1 to 10 nS. Our
simulations show that shunting inhibition of this size can at
best achieve an F factor of -2. The proposal that shunting
inhibition enables a dendritic tree to perform many spatially
localized logical operations, such as directional selectivity in
visual neurons, should be reconsidered (2).
Our simulations have shown that discrepancies between

the cable model and our electrodiffusion model increase with
the magnitude and duration of the synaptic conductance
changes. Since the cable model is valid only when the
concentration changes are small, we can derive a condition
under which the cable model is self-consistent. The intracel-
lular concentration change of the kth ionic species caused by
membrane current Ik within time duration At is Ank =
IkAt/vzF, where v is the effective intracellular volume, z is
the valence of the ion involved, and F is the Faraday
constant. (Of course, nk will eventually stop changing with
time when the membrane current is balanced by the intra-
cellular diffusion.) The criterion for the self-consistency of
the cable model is simply IAnkI/nk,o << 1, where nk,O is the
initial intracellular ionic concentration, or, At << IvzFnkO/
IkI. When the synaptic conductance Gk is small, say 0.1 nS,
Ik-kEk, where Ek is the reversal potential relative to the
resting potential. The above condition gives At << 10 ms for
Na+ in a spine, assuming that the effective volume v is equal
to twice the volume of the spine. Therefore, the cable model
may not be valid for spines if the duration of the conductance
change is longer than 10 ms even for synaptic conductance
changes as small as 0.1 nS. The inclusion of ionic pumps
would not alter the above conclusions for a typical Na-K
pump current density of 1 ttA/cm2 (18), in which case the
total pump current of the spine head is -10 fA, 3 orders of
magnitude smaller than the synaptic current. Even when the
pump molecules are close-packed in the membrane, the
maximum possible pump current density is 100 ILA/cm2 and
the total pump current of the spine head is still =10 times
smaller than the synaptic current for a 0.1-nS conductance.
The effect of the Na-K pump would be significant if we
assume that the spine apparatus is also densely packed with
pump molecules and its surface area is =10 times that of the
spine.
Large compartments such as cell bodies and thick den-

drites do not suffer from the concentration effects that reduce
the effectiveness of inhibition in smaller structures such as
spines. On the other hand, large compartments are also
harder to depolarize, which is needed to increase the driving

force for the inhibitory currents. This second factor may not
be as important ifa compartment also receives a large number
of convergent excitatory synapses. Note that the more de-
polarized a cell, the more effective the inhibitory synapses
become and the less effective the excitatory synapses. In-
deed, if the depolarization is large enough to trigger an action
potential, the driving forces for the inhibitory currents on the
soma and dendrites reach their maximum and the driving
forces for the excitatory currents reach their minimum,
especially if the effects of the action potentials propagate up
the dendritic tree. Thus, inhibitory synapses on the cell body
and proximal dendrites could control the effects of action
potentials propagating up dendritic trees and the temporal
firing patterns of the neuron (W. W. Lytton and T.J.S.,
unpublished data).
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