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Table S1 The current data at +/- 1V of each curve in Fig. 3 are listed in Table. The same color code 
represents the same combination. 

 
Ctip/mM Cbulk/mM i+1V/nA i-1V/nA Cbulk/mM Ctip/mM i+1V/nA i-1V/nA 

 
1 

1 2.9 -0.4  
1 

1 2.9 -0.4 
5 5.4 -0.6 5 4.2 -0.6 
10 6.3 -0.7 10 6.0 -0.8 
25 7.8 -0.9 25 8.0 -1.2 

 
25 

1 8.0 -1.2  
25 

1 7.8 -0.9 
5 16.2 -1.4 5 15.5 -1.3 
10 23.8 -1.7 10 23.5 -1.7 
25 29.9 -2.1 25 29.9 -2.1 

 
 
 
 
 
Table S2 Analysis of the cross point potential (VCPP), measured zero-current potential (reversal potential 
Vrev) and calculated surface effective potential (VM). The VM = VCPP - Vrev. At each tip concentration, the 
error is within 5 mV range at different bulk concentrations in general. 

 
Ctip/mM 

 
Cbulk/mM 

 
VCPP/mV 

 
Vrev/mV 

 
VM/mV 

 
1 

1 59 5 54 
5 3 -52 55 
10 -17 -70 53 

 
5 

1 108 63 45 
5 51 1 50 
10 21 -22 43 

 
10 

1 129 88 41 
5 79 32 46 
10 49 4 45 

 
25 

5 95 63 32 
10 65 33 32 
25 31 0 31 

 

 

 
 

  



 

Table S3 Comparison of power generation from different nanopipettes with related literature under 
comparable experimental conditions. 

Our 
Results 

Nanodevice 
platform 

Ctip(mM):Cbulk 

(mM) 
Power Estimation/pW 

cpp cpp cppP V I 

 
i 0 V 0P V I   P(t) V(t) I(t)   Psurface 

1 (data 
reported in 
manuscript) 

60-nm 
nanopipette 

10:1 
 

18.8 
 

4.0 
 

F(0.6 V) 2064 1200 
B(0.6 V) 2250 1400 

2 60-nm 
nanopipette 

10:1 
 

7.0 
 

3.2 
 

F(0.6 V) 786 -67 
B(0.6 V) 930 77 

3 40-nm 
nanopipette 

10:1 
 

12.2 
 

8.4 
 

F(0.6 V) 594 25 
B(0.6 V) 720 151 

4 30-nm 
nanopipette 

10:1 
 

4.5 
 

1.7 
 

F(0.6 V) 1032 463 
B(0.6 V) 1092 523 

Literature      

5 41-nm 
polyimide 

conical 
nanopore1 

 
10:1  

pH 10.5 

 
N/A 

 
10.9 

 
N/A 

6 40-nm  
Boron-Nitride 

nanotude2 

 
10:1 

pH 11 

 
N/A 

 
15.2 

 
N/A 

7 Less than 10 
nm polymer 

(COO- 
terminated) 
nanopore3 

 
100:10 

 
N/A 

 
15~20 

 
N/A 

 

Here, PCPP represents the cross point power generation. 
CPP CPP CPPP V I  . P(t) represents the total 

transient power at a specific time. P(t) V(t) I(t)  .  

VC refers to volumetric contributions (ohmic conductance by nanogeometry and solution resistivity). PVC 
represents the power without contribution from surface charge, which is mainly determined by tip 
concentration. 2

VC tipP V(t) G  . Gtip is the tip solution conductance. 

Note: the contribution from volume conductance to the overall conductance can be estimated from Fig.3 
in main text. Ignoring it in the above analysis of PVC does not affect the general outcome of our analysis 
and has been confirmed by the analysis with square root tip*bulk. 

tip
tip tip tip

1 1
G

R r tan 4r
 

    
  ,          2

vc
tip tip

1
P (t) V(t)

r tan 4r
 

    
   . 

Psurface (t) is the power generation contributed from the surface at a specific time t. Psurface(t) = P(t) – PVC(t). 
Forward (F) and backward (B) refer to the bias V(t) being scanned away and toward the cross point 
respectively. Therefore, at the same bias, two current values are listed as the consequence of the 
hysteresis effects. 
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Conductivity analysis: 

The size of the nanopipettes is normally calculated from conductivity results in literature. The nanopipette 
size/s used in those i-V studies were analyzed following the same procedure in literature detailed below.   

The total pipette resistance comprises two major components: Rgeo and Racc, where Rgeo is geometric 
resistance and Racc is access resistance. Racc is determined by its radius and solution conductivity given 
that the pipette orifice is disk-shaped in approximation.  

geo

h
R

r(r h tan )



  

,  accR
4r


 , geo acc

h
R R R

r(r h tan ) 4r

 
   

  
  

Here, R is the resistance of solution.  is resistivity of the medium. h is the effective length.  θ is the half 
cone. Because of the long stem of the pulled nanopipettes and the small radius employed in this study, 
r+htanθ is approximated to htanθ.  Then,  

R
r tan 4r

 
 
 

,           
4 tan

r
4 Rtan

   


 
  

Here, θ is equal to 5.5o and R can be calculated from the slope of i-V curves in high electrolyte 
concentration near zero bias that normally displays linear responses.  
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