RNA binding by the histone methyltransferases Set1 and Set2 Sayou et al., 2017

SUPPLEMENTARY INFORMATION

Supplemental tables

Table S1. Number of reads mapping to RNAPII transcripts (any read mapping to the nuclear

genome, outside of RNAPI and RNAPII transcribed genes), where PCR duplicates have been

removed, in the CRAC datasets used in this study.

	PTH-Set1_1	409896
PTH-Set1	PTH-Set1_2	207591
	PTH-Set1_3	105599
	PTH-Set1_4	138665
	PTH-Set1dRRM2_1	337413
PTH-Set1∆RRM2	PTH-Set1dRRM2_2	68136
	PTH-Set1dRRM2_3	17417
	Set1-HTP_1	406822
Set1-HTP	Set1-HTP_2	648139
	Set1-HTP_3	75245
	Set1-HTP_4	71919
	Set2-HTP_1	182583
Set2-HTP	Set2-HTP_2	136682
	Set2-HTP_3	209546
BY4741	BY4741_1	882
	BY4741_2	1162

Table S2. Yeast strains

Name	ID	Genotype	Reference
BY4741	BY4741	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0	(67)
PTH-Set1	yCA14	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; PTH- SET1	This study
PTH-Set1ARRM2	yCA18	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; PTH-	This study

		SET1ΔRRM2 (deletion nucleotides 243-482)		
Set1-HTP	D1202	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; SET1-	This study	
	_	HTP:URA3		
Set1ARRM2	vCA33	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0;	This study	
	<i>yci</i> to c	SET1ΔRRM2 (deletion nucleotides 243-482)		
Aset1:URA:nURA	vCA28	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0;	This study	
2001101010100	y 0, 120	Δset1:URA3:pURA3	The etday	
Set2-HTP	Set2-	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; SET2-	This study	
	HTP	HTP:URA3	The study	
Rpo21-HTP	Rpo21-	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0;	(33)	
	HTP	RPO21-HTP:URA3	(00)	
W/303	W303	MATa; his3-11,-15; leu2-3,-112; trp1-1; ura3-1;	R Rothstein	
11000		ade2-1; can1-100		
Aset2	Aset2	MATa; his3-11,-15; leu2-3,-112; trp1-1; ura3-1;	This study	
	AGOLE	ade2-1; can1-100; Δset2:HIS3	THIS SLUUY	

Table S3. Oligonucleotides

Strain construction					
Name	Sequence	Description	Reference		
	TGTCTGTATGAACCAGAAGACGCGTG				
oCA164	TGCTCTTCTATAGTAATTTGACATTTC	Amplify a LIRA-KAN			
	GTACGCTGCAGGTCGAC	marker from pGSKIL and			
	TAACATTCCTTATTTGTTGAATCTTTAT	integrate in between	This study		
00 165	AAGAGGTCTCTGCGTTTAGAGATAGG				
0CA 165	GATAACAGGGTAATCCGCGCGTTGGC	poet rand Set roke			
	CGATTCAT				
	TAACATTCCTTATTTGTTGAATCTTTAT				
oCA167	AAGAGGTCTCTGCGTTTAGAGAGAGG	Amplify the PTH tag and			
	AGAAATTAACCATGAACA	replace the URA-KAN	This study		
	GGTTGTCTGTATGAACCAGAAGACGC	marker upstream SET1	This study		
oCA168	GTGTGCTCTTCTATAGTAATTTGATCC	ORF			
	GGCATGGTGGTGATGGTG				
oCA151	GCACATCTGTATCCCCTTAACTTGTAT	Amplify a URA-KAN	This study		

	TTAAAGTCCTCAACGCAGAACCTTTCG	marker from pGSKU and	
	TACGCTGCAGGTCGAC	integrate in the RRM2	
	TTAATAACAGACCTGTTTTACATGTCT	region in SET1 ORF	
004150	CCAAAATATTTGTTGCCAAACATTAGG		
0CA152	GATAACAGGGTAATCCGCGCGTTGGC		
	CGATTCAT		
	CTCATTCGTCCGGAAGTGAAAAAAGA		
oCA175	ATTCCATATGATCTCTTGGGGGTACTC	Replace the URA-KAN	
	ATTCTCC	marker in the RRM2	This study
	GAGCTAGATTTATTGAATCTAGTTCTG	region in SET1 ORF and	This study
oCA176	TTTTGGAACCTAGGGAGAATGAGTAC	delete RRM2	
	CCCCAAG		
	GGAAAGACTTCCTTGTTTATGTGGAGC		
SET1-HisFw	ACCTAATTGTAAAGGTTTCTTGAACGA	Amplify the HTP tag and	
	GCACCATCACCATCACC	URA marker and	This study
	GGAAGGCAACGATATGTTAAATCAGG	integrate udownstream	i nis study
SETT-TAP	AAGCTCCAAACAAATCAATGTATCATC	SET1 ORF	
Rev	GTACGACTCACTATAGGG		
	TATCATCAGCATCAACAAGGATGTCTT		
oCA260	CTCCTCCACCTTCAACATCATCAGAGC	Amplify the HTP tag and	
	ACCATCACCATCACC	URA marker and	
	CTTTGGGACAGAAAACGTGAAACAAG	integrate udownstream	This study
oCA261	CCCCAAATATGCATGTCTGGTTAAACG	SET2 ORF	
	ACTCACTATAGGG		
	TAACATTCCTTATTTGTTGAATCTTTAT		
oCA201	AAGAGGTCTCTGCGTTTAGAGACTCC		
	TTACGCATCTGTGCG	Delete SET1 ORF with	
	AGCAACGATATGTTAAATCAGGAAGCT	URA3:pURA3	i nis study
oCA202	CCAAACAAATCAATGTATCATCGGGCA		
	TCAGAGCAGATTGTACTGA		
RT-qPCR	L		
Namo	Saguanaa	Target gene(s) or	Poforonco
Name	Sequence	region	Reference
ACT1-F	GAAATGCAAACCGCTGCTCA	ACT1	This study
ACT1-R	TACCGGCAGATTCCAAACCC	AUTI	This study

oCA246	GATGGTACAAGGCGACGCTA	SET1	This study
oCA247	ATGCCCCTCCGACTACTGAT		The study
oCA282	ACCAGGAAACGACGGTTTGT	ORCA	This study
oCA283	CGCTTCTGCTTTCTTGCACA		The study
oCA225	TGAGAGGTCTATCTGGCGAA	All TYA encoding genes	This study
oCA226	CCGAGCTATAACTTTGGGTTTGG		
Ty-SetC-F	TCACTACACCACGTCGTTCC	YLR035C-A, YHR214C-	(18)
Ty-SetC-R	GGAGTGGAAGATCAGCGATAA	B, YER160C	(10)
p17-F	GGAAAGCGGGAAGGAATAAG	IGS1, region of the rDNA	
n17-R		repeat between RDN37	(68)
		and <i>RDN5</i>	
oCA235	TGGGGTGGTATAGTCCGCAT	IGS2, region of the rDNA	
004236		repeat between RDN5	This study
00/1200		and RDN37	
ChIP-qPCR			•
Name	Sequence	Target gene(s) or	Poforonco
			Nelelelice
Nume	ocquence	region	Reference
PMA1_1up	GGTACCGCTTATGCTCCCCTCCAT	region	Reference
PMA1_1up PMA1_1low	GGTACCGCTTATGCTCCCCTCCAT ATTTTTTTTCTTTCTTTTGAATGTGTG	region	Kelerence
PMA1_1up PMA1_1low PMA1_2up	GGTACCGCTTATGCTCCCCTCCAT ATTTTTTTCTTTCTTTGAATGTGTG AAGTCGTCCCAGGTGATATTTTGCA	region	Kelerence
PMA1_1up PMA1_1low PMA1_2up PMA1_2low	GGTACCGCTTATGCTCCCCTCCAT ATTTTTTTCTTTCTTTGAATGTGTG AAGTCGTCCCAGGTGATATTTTGCA AACGAAAGTGTTGTCACCGGTAGC	PMA1	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up	GGTACCGCTTATGCTCCCCTCCAT ATTTTTTTTCTTTCTTTGAATGTGTG AAGTCGTCCCAGGTGATATTTTGCA AACGAAAGTGTTGTCACCGGTAGC CAGAGTTGTTGAAATCTTGC	region 	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTTTTTTTTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGC	region - - - - PMA1	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTCTTTCTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACC	region - - - - PMA1	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up PMA1_4low	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTCTTTCTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTTCATC	region - - - - - PMA1	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up PMA1_4low oCA262	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTCTTTCTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTTCATCGTTGTCGTTATCGGTCATGTCG	region PMA1 TEE1_TEE2	(32)
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_2low PMA1_3low PMA1_3low PMA1_4up PMA1_4low oCA262 oCA263	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTCTTTCTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTATCGGTCATGTCGGTTGTCGTTATCGGTCATGTCGCTTGTCCAAAACCCAAGCGT	region PMA1 TEF1, TEF2	(32) This study
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_2low PMA1_3up PMA1_3low PMA1_4low oCA262 oCA263 oCA263	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTCTTTCTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTTCATCGTTGTCGTTATCGGTCATGTCGCTTGTCCAAAACCCAAGCGTCGACCCATTCATCACCAACG	region PMA1 TEF1, TEF2	(32) This study
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up PMA1_4up PMA1_4low oCA262 oCA263 oCA268 oCA269	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTCTTTCTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTCATGTCGCTTGTCCAAAACCCAAGCGTCGACCCATTCATCACCAAGCGTACCCCATGGCAAGTTAGCTG	region PMA1 TEF1, TEF2 TDH3	(32) This study This study
PMA1_1up PMA1_1low PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up PMA1_4up PMA1_4low oCA262 oCA263 oCA268 oCA269 oCA272	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTTTTTTTTTTTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTTCATCGTTGTCGTTATCGGTCATGTCGCTTGTCCAAAACCCAAGCGTCGACCCATTGCAAGCTTACCCACGACCCCATGGCAAGTTAGCTGTCTGCAACTCCCGTGTCATC	region PMA1 TEF1, TEF2 TDH3	(32) This study This study
PMA1_1up PMA1_1ow PMA1_2up PMA1_2low PMA1_3up PMA1_3low PMA1_4up PMA1_4up PMA1_4low oCA262 oCA263 oCA263 oCA269 oCA272 oCA273	GGTACCGCTTATGCTCCCCTCCATATTTTTTTTTTTTTTTTTTTTTTTTTTGAATGTGTGAAGTCGTCCCAGGTGATATTTTGCAAACGAAAGTGTTGTCACCGGTAGCCAGAGTTGTTGAAATCTTGCTGTCTGGAGGTCTTCAAAGCTCATCGCTACCATGTTTACCCTTCATTGGCTTACCGTTCATCGTTGTCCGTTATCGGTCATGTCGCTTGTCCAAAACCCAAGCGTCGACCCATTCATCACCAAGCGTACCCCATGGCAAGTTAGCTGTCTGCAACTCCCGTGTCATCGGCCAGTCAGCTCTTCGTA	region PMA1 TEF1, TEF2 TDH3 ILV5	(32) This study This study This study

Table S4. Set1 ChIP-qPCR expressed as percentage of input DNA from biological triplicates.

Protein A beads were used for ChIP in BY4741 (untagged strain), PTH-Set1 and PTH-

Primer	Mean			Standard deviation		
pairs	PTH-Set1	PTH-Set1ARRM2	BY4741	PTH-Set1	PTH-Set1 ARRM 2	BY4741
PMA1-1	0,0403	0,0282	0,0009	0,0031	0,0043	0,0003
PMA1-2	0,0672	0,0456	0,0017	0,0045	0,0022	0,0004
PMA1-3	0,0301	0,0329	0,0024	0,0028	0,0012	0,0008
PMA1-4	0,0254	0,0289	0,0020	0,0010	0,0017	0,0009
TEF1	0,1009	0,0766	0,0013	0,0081	0,0159	0,0003
TDH3	0,1436	0,0967	0,0014	0,0304	0,0204	0,0002
ILV5	0,1070	0,0784	0,0015	0,0170	0,0158	0,0003

Set1∆RRM2.

Table S5. Methylated H3K4 ChIP in the wild-type (expressing endogenous Set1) and Set1ΔRRM2 strains from biological triplicates. Antibodies against H3K4me3, H3K4me2 and H3K4me1, or GFP (negative control) have been used for ChIP. The signal is normalized the total H3 signal.

Primer	Antibody	Mean		Standard deviation	
pairs	Antibody	Set1	Set1 ARMM 2	Set1	Set1 ARMM2
	H3K4me1	0,408	0,395	0,095	0,094
PMA1-1	H3K4me2	3,024	4,526	0,478	0,762
	H3K4me3	3,087	1,888	0,678	0,307
	GFP	5,869E-05	1,040E-04	1,562E-05	1,257E-04
DMA1-2	H3K4me1	0,428	0,437	0,120	0,095
	H3K4me2	0,983	1,230	0,212	0,316
	H3K4me3	0,489	0,404	0,084	0,099
	GFP	4,298E-05	9,150E-05	3,671E-05	1,026E-04
	H3K4me1	0,202	0,210	0,052	0,038
PMA1-3	H3K4me2	0,312	0,441	0,063	0,089
	H3K4me3	0,118	0,116	0,013	0,032

	GFP	8,729E-05	1,252E-04	8,586E-05	4,215E-05
DMA1 4	H3K4me1	0,208	0,218	0,052	0,031
	H3K4me2	0,311	0,389	0,072	0,030
	H3K4me3	0,122	0,129	0,010	0,033
	GFP	8,352E-05	1,065E-04	7,269E-05	1,115E-04
	H3K4me1	0,188	0,193	0,047	0,029
триз	H3K4me2	2,105	3,779	0,726	0,768
топр	H3K4me3	5,135	3,468	0,335	0,645
	GFP	2,862E-05	1,771E-05	1,534E-05	1,124E-05
	H3K4me1	0,084	0,087	0,037	0,016
TEF1	H3K4me2	1,196	2,388	0,376	0,232
	H3K4me3	8,341	5,773	1,398	0,738
	GFP	2,636E-05	1,512E-05	2,852E-06	1,552E-06
	H3K4me1	0,113	0,133	0,040	0,016
II \/5	H3K4me2	1,165	3,084	0,376	0,551
	H3K4me3	4,755	3,074	0,131	0,960
	GFP	1,437E-04	6,050E-05	1,728E-04	5,766E-06

Supplemental Figures and legends

Figure S1. Protein level and crosslinking efficiency in the different strains.

A. Protein abundance and H3K4me3 levels in the Set1 strains used in this study, detected by western-blot. Yeast cells were grown in rich medium. * indicates a non-specific band detected with the anti-Set1 antibodies.

B. H3K36 mono-, di- and tri-methylation levels in the Set2-HTP, the isogenic Δset2 and the untagged (BY4741) strains, detected by western-blot. Yeast cells were grown in minimal media lacking tryptophan. Bellow each H3K36me blot is the H3 blot obtained from the same membrane.

C. Growth curves of the different strains used in this study. Cells were grown in minimal media lacking tryptophan.

D. SDS-PAGE and autoradiography of the 5' [³²P] labeled, crosslinked RNAs after purification of the Set1-HTP protein, or after mock purification from the untagged strain (BY4741).

E. Number of reads recovered from a CRAC experiment where crosslinked and barcoded samples from PTH-Set1, PTH-Set1ΔRRM2 and from the untagged strain (BY4741) were mixed prior to SDS-PAGE separation and RT-PCR amplification.

Figure S2. Set1 and Set2 relative enrichment and mRNA stability.

A-D. PTH-Set1 (A), PTH-Set1ΔRRM2 (B), Set1-HTP (C), Set2-HTP (D) enrichment relative to RNAPII (Rpo21-HTP) across mRNAs is plotted against the mRNA half-lives (38).

Figure S3. Set1, Set2 and RNAPII distribution across transcripts.

A-D. Coverage, in reads per million of RNAPII transcripts, for selected individual protein coding genes: *PMA1* (A), *RPS13* (B), *TEF1* (C), *RPL3* (D). Transcription units are represented under the plots with thicker boxes correspond to coding sequences.

E-F. Distribution of PTH-Set1 (E) and Set2-HTP (F) enrichment relative to total RNAPII, across individual mRNAs. Transcripts are aligned to the TSS and pA site in the left and right panels, respectively. Distances are indicated in nucleotides. Blue color indicates depletion, and red color indicates enrichment relative to total RNAPII.

G. Metagene analysis of PTH-Set1, Set2-HTP, RNAPII-S2P and RNAPII-S5P enrichment relative to total RNAPII across mRNAs (left), SUTs (middle) and CUTs (right) with similar expression levels, based on their total RNAPII CRAC signal over the first 300 nt (33). Each subset contains 211 to 213 transcripts.

Figure S4. Set1 binding to *SET1* mRNA and retrotransposons, and transcripts abundance in the different strains.

A. Set1-HTP coverage, in reads per million of RNAPII transcripts, at the *SET1* locus. The transcription unit is represented under the plot with the thicker box corresponding to the coding sequence. The corresponding plots for PTH-Set1 and RNAPII are shown in Figure 3C. B. PTH-Set1 and RNAPII coverage, in reads per million of RNAPII transcripts, at a retrotransposon locus. *YML045W-A* and *YML045W* are coding for TYA and TYA-TYB, respectively. The LTRs are shadowed on the plots.

C-E. Transcript level measured by RT-qPCR. * indicates a relative expression different from that of BY4741 with a p-value bellow 0.01, calculated with a Dunnett's test. *SET1* mRNA (C), IGS transcripts (D) and retrotransposons (E) have been assessed.

Figure S5. Enrichment for Set1 or Set2 relative to RNAPII on transcripts.

A. PTH-Set1dRRM2 coverage over genomic features is plotted against PTH-Set1 coverage. The different transcript classes have been plotted separately on different panels. Selected classes of transcripts have been highlighted, as indicated below the plots. B. PTH-Set1dRRM2 coverage over genomic features is plotted against RNAPII coverage (Rpo21-HTP). Note that the fill color of the points represents the enrichment for PTH-Set1 relative to RNAPII.

C. PTH-Set1 (top), Set2-HTP (bottom) coverage over genomic features is plotted against RNAPII coverage. The fill color of the points represents the enrichment for Set1 or Set2 relative to RNAPII (as in Figure 3A-B).

D. PTH-Set1 (left) or Set2-HTP (right) coverage over mRNAs is plotted against RNAPII coverage (Rpo21-HTP). The fill color of the points represents the enrichment for Set1 or Set2 relative to RNAPII. mRNAs found as differentially expressed in *set1* Δ (18) or *set2* Δ (this study) compared to wild-type in RNA-seq analysis are highlighted in green.

Figure S6. Global methylated H3K4 levels in Set1 and Set1∆RRM2.

A. H3K4me3, H3K4me2, H3K4me1, H3 (loading) and Pgk1 (loading) levels in the wild type (Set1), Set1 Δ RRM2 and Δ set1 stains, detected by western-blot. Yeast cells were grown in minimal medium, each line results from an independent clone.

B. Quantification of the western-blots shown in A, were the signals have been normalized to H3.

Supplemental references

67. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132.
68. Huang J, Moazed D. 2003. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17:2162–2176. https://doi.org/10.1101/gad.1108403.

(

