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1 Predictive performance of Random Forest and BioHEL

The new presented version of RGIFE replaces BioHEL Bacardit et al. (2009) with a random forest Breiman
(2001) as base classifier. This choice is mainly due to reduce the overall computational cost required by the
heuristic. In order to check whether the usage of a different base classifier can drastically affect the overall
performance of the heuristic, we tested the predictive performance of BioHEL and random forest using the
10 transcriptomics datasets (considering the whole set of attributes) presented in the main manuscript. We
calculated the accuracy obtained by each classifier using a 10-fold cross-validation. The accuracies, dataset by
dataset are reported in Table S1.

Dataset Random Forest BioHEL
CNS 0.637 0.645
Leukemia 0.986 0.946
Breast 0.860 0.877
Dlbcl 0.597 0.553
Prostate-Singh 0.913 0.914
Prostate-Sbo. 0.740 0.749
Pancreas 0.898 0.873
AML 0.687 0.663
Colon-Breast 0.947 0.927
Bladder 0.806 0.800

Table S1: BioHEL and Random Forest classification accuracy for each dataset, in 10-fold cross-validation experiments
on the original set of attributes.

Using the Wilcoxon rank-sum statistic test we established that the performances of the two classifier are sta-
tistically equal. In fact, on average the difference in accuracies is only 0.016 in favor of the random forest.
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2 Time complexity

We tested the time complexity of each feature extraction method across 10 different datasets. We calculated the
time, measured in second, required to identify the optimal subset of features by each method presented in the
main manuscript. Figure S1 shows the running times averaged across the experiments performed for the 10-fold
cross-validation. When plotting the times required by RGIFE, we considered, for each fold, the average time
obtained by three executions of the heuristic. Overall, the methods more time consuming are CFS and RGIFE,
they performed similarly with large datasets (in Figure S1 the datasets are ranked by increasing number of total
attributes), while RGIFE was clearly slower for smaller dataset. The other four methods in general required
less computational time with the L1-based approach that appeared to be the fastest one.
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Figure S1: Average execution times (calculated using a 10-fold cross-validation) of each methods across different
datasets. The datasets are sorted by increasing number of attributes.
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3 Default parameter values of the methods used for the analysis

This section includes the default parameters used for the methods employed in the analysis. The WEKA
software (Hall et al., 2009) (version 3.6.10) was used for the implementation of CFS, SVM-RFE, ReliefF and
Chi-Square, while the sci-kit learn python library (Pedregosa et al., 2011) (version 0.17.1) was used for the
L1-based feature selection.

• RGIFE:

– Random Forest depth: unlimited
– Random forest trees: 3000
– CV scheme: DB-SCV
– CV repetitions: 10

• CFS:

– Search method: Best First
– Search direction: forward
– Search termination: 5

• SVM-RFE:

– SVM kernel: linear
– Complexity: 0
– Epsilon: 1.0E-25
– Percent threshold: 0
– Percent to eliminate per iteration: 5
– Tolerance: 1.0E-10

• ReliefF:

– Number of neightbours: 10
– Sigma: 2
– Sample size: all

• Chi-Square:

– Missing merge: True

• L1-based feature selection:

– SVC kernel: linear
– Cost: 1
– Penalty: L1
– Loss: Squared hinge
– Tolerance: 1.0E-4
– Dual opt. problem: True
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4 Predictive performance with synthetic datasets

We tested the predictive performance of the attributes selected by each method using different synthetic datasets.
Table S2 shows the accuracies, obtained from a 10-fold cross-validation, using the datasets described in Bolón-
Canedo et al. (2013). In Table S3 are reported the accuracies calculated from the analysis of the madsim data
Dembélé (2013). Each row includes the average values associated to the analysis of datasets having 1%, 2% and
5% of up/down regulated attributes (genes).

Class. Dataset RGIFE-Min RGIFE-Max RGIFE-Union CFS Relief SVM-RFE Chi-Square L1

RF

CorrAL 0.675 0.725 0.758 0.675 0.758 0.783 0.658 0.733
XOR-100 1.000 1.000 1.000 0.500 0.480 0.500 0.420 0.580
Parity3+3 1.000 1.000 1.000 0.521 0.933 0.429 0.474 0.502
Monk3 0.935 0.935 0.935 0.935 0.910 N/A 0.935 0.935
Madelon 0.869 0.868 0.874 0.805 0.866 0.787 0.835 0.744
SD1 0.240 0.319 0.333 0.414 0.452 0.478 0.437 0.421
SD2 0.389 0.639 0.635 0.521 0.456 0.466 0.477 0.458
SD3 0.317 0.626 0.626 0.428 0.476 0.473 0.487 0.526

SVM

CorrAL 0.633 0.625 0.658 0.608 0.642 0.725 0.600 0.658
XOR-100 0.598 0.700 0.707 0.500 0.400 0.480 0.500 0.360
Parity3+3 0.348 0.348 0.348 0.550 0.319 0.502 0.500 0.505
Monk3 0.828 0.828 0.828 0.813 0.820 N/A 0.837 0.789
Madelon 0.598 0.600 0.600 0.557 0.600 0.593 0.595 0.562
SD1 0.238 0.293 0.281 0.437 0.386 0.376 0.369 0.398
SD2 0.371 0.349 0.351 0.395 0.626 0.459 0.473 0.473
SD3 0.306 0.358 0.393 0.353 0.469 0.461 0.492 0.515

KNN

CorrAL 0.575 0.600 0.625 0.758 0.733 0.758 0.625 0.608
XOR-100 0.987 0.962 0.973 0.560 0.460 0.460 0.500 0.520
Parity3+3 0.219 0.219 0.219 0.550 0.936 0.486 0.560 0.543
Monk3 0.887 0.887 0.887 0.902 0.894 N/A 0.877 0.878
Madelon 0.698 0.694 0.699 0.868 0.913 0.828 0.894 0.805
SD1 0.292 0.350 0.352 0.423 0.453 0.442 0.414 0.374
SD2 0.436 0.393 0.419 0.421 0.487 0.470 0.476 0.446
SD3 0.352 0.375 0.441 0.462 0.510 0.545 0.520 0.546

GNB

CorrAL 0.608 0.600 0.633 0.650 0.708 0.717 0.600 0.683
XOR-100 0.602 0.689 0.691 0.480 0.420 0.480 0.480 0.420
Parity3+3 1.000 1.000 1.000 0.567 0.233 0.486 0.500 0.488
Monk3 0.894 0.894 0.894 0.887 0.887 N/A 0.894 0.887
Madelon 0.698 0.694 0.699 0.699 0.703 0.688 0.699 0.675
SD1 0.21 0.278 0.249 0.437 0.463 0.477 0.411 0.382
SD2 0.283 0.666 0.666 0.451 0.533 0.458 0.443 0.474
SD3 0.293 0.667 0.667 0.346 0.494 0.473 0.499 0.498

Table S2: Accuracies obtained by each method across the synthetic datasets using four classifiers. The highest accuracies
are shown in bold. N/A is used for SVM-RFE when tested with the Monk3 dataset because the method can not deal
with categorical attributes. RF: Random Forest, KNN: K-nearest neighbour, GNB: Gaussian Naive Bayes.

Class. Attributes RGIFE-Min RGIFE-Max RGIFE-Union CFS Relief SVM-RFE Chi-Square L1

RF

5 000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.977 0.980 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.993 0.993 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.983 0.993 1.000 1.000 1.000 1.000 0.997 1.000

SVM

5 000 0.990 0.987 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.983 0.987 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.990 0.990 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.987 0.993 1.000 1.000 1.000 1.000 0.997 1.000

KNN

5 000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.977 0.987 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.987 0.990 1.000 1.000 1.000 1.000 0.997 1.000
40 000 0.997 0.987 1.000 1.000 1.000 1.000 1.000 1.000

GNB

5 000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.983 0.993 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.990 0.993 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.987 0.997 1.000 1.000 1.000 1.000 0.997 1.000

Table S3: Accuracies obtained by each method across the synthetic datasets using four classifiers. The highest accuracies
are shown in bold. RF: Random Forest, KNN: K-nearest neighbour, GNB: Gaussian Naive Bayes.
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5 Signatures analysed in the case study

In here we report the signatures (list of genes) extracted by each method when analysing the Prostate-Singh
(Singh et al., 2002) dataset within the case study.

RGIFE-Min: EPB41L3, HPN, HSPD1, PTGDS, NELL2, TGFB3, GSTM2

RGIFE-Max: TNN, KCNN4, CELSR1, KIAA1109, PEX3, HPN, MFN2, ATP6V1E1, HSPD1, PTGDS,
SLC9A7, NELL2

RGIFE-Union: ANXA2P3, TGFB3, CRYAB, NELL2, MFN2, TNN, KIAA1109, PEX3, ATP6V1E1, HPN,
HSPD1, LMO3, PTGDS, SLC9A7, SERPINF1, KCNN4, EPB41L3, CELSR1, GSTM2, EPCAM
ERG

SVM-RFE: HPN, HSPD1, MAF, S100A4, JUNB, SERPINB5, C7, TBC1D2B, SDC1, IPO5, SFRP1, PGCP,
PEX3, SPTB, FOXO1, GSTA4, CD38, RBBP6, SERINC5, VCAN, C5orf13

Relief : HPN, HSPD1, NBL1, MAF, DPYSL2, C7, PEX3, TGFB3, CFD, TARP, PAGE4, XBP1, PTGDS,
PDLIM5, RBP1, LMO3, SERPINF1, DPT, FAM107A, SERINC5, TACSTD2

Chi-Square: HPN, NELL2, HSPD1, RBP1, PTGDS, CALM1, CDKN1C, PDLIM5, CFD, SERPINF1, TARP,
COX7A1, GSTM2, CRYAB, RPLP0, TGFB3, ANGPT1, EPCAM, VCL, TMSB15A, LMO3

CFS: RPL13, RPLP0, HBB, RPL6, HOXB3, TSPAN2, MCF2L2, PHEX, CNKSR2, CPA3, PLA2G7,
SCGN, COL13A1, CHD9, EPB41L3, MEIS2, CREB3L1, ZFP161, ADORA2A, GLCE, SLC35A2,
DDHD2, WIF1, HEPH, TMSB15A, DIXDC1, KIAA0427, PEX3, ZNF146, TRIM23, HPN, PITX1,
SLC1A1, PENK, RBP1, C14orf2, TUBB2A, MAP1LC3B, CALCOCO2, CYP1B1, SLC25A6,
ORAI2, GSTA4, AHR, SERPINF1, COBLL1, STK38L, SLC7A5, MRPL40, DST, JUNB, GSTP1,
LGALS1, SPTAN1, ABI1, SPON1, ROCK2, AKR1B1, TSC22D3, GPM6A, PLAGL1, PLA2G2A,
CKS1B, PDLIM5, HSPD1, LMO3, S100A4, PKD2, PTGDS, CDKN1C, CRMP1, CFD, CALR,
NELL2, RGS10, ABL1, SERINC5, PMS2L5, MAPK10, GTF2B, RGN, ERG, SERPINB5, NAP1L3,
LAMB1, GSTM2, IL11RA, CYP21A2

L1-based: AVPR1B, TGM2, TSC22D3, ACTG1, ACTG2, MYH11, LYPLA2, BGN, HBB, SBF1, B2M,
PRB1, MROH5, IGKC, CLSTN1, MYL9, ST5, GRK6, GADD45B, LYZ, PTGER3, ANXA2P3,
PTP4A3, EDN2, ZNF337, MSMB, IFITM3, P4HB, SLC25A6, IFI30, ATP1B1, KLK2, KLK3,
RPL10, RPL13, CYP3A5, COX6A1, RPL19, LOC91316, ORM1, NME2, CCND1, SFI1, SFN, NPY,
UBB, MAF, ACTB, ACTA2, GRIN2C, RPL8, RPL9, HLA-C, PABPC1, RPL5, GAPDH, SEPT9,
TUBB4B, NDRG1, PAGE4, RPS2P5, C21orf2, UBE3B, NBL1, ZFP36, MT1H, C4A, TACSTD2,
MT1G, C1QL1, NACA, TPT1, FOS, VCL, UBC, IGL@, IGFBP5, COX7A1, FTO, LGALS3BP,
PMP22, ALDH4A1, SDC1, KRT17, KRT15, KRT13, FLNA, LUZP1, CCL2, RPLP1, RPLP0,
RPL18A, RPS6, RPS3, TXNIP, RPS17, LUM, TMED2, RPL6, TPM1, RPL13A, FASN, RPL7,
CST3, DUSP1, TNFRSF6B, MARCKSL1, RPS24, ZFP36L1, ZFP36L2, TOP3B, PLA2G2A, LTF,
S100A4, RPS4X, CLU, LRP3, HDGF, ACPP, RPSA, C7, GSTM2, ID1, CTGF, HSP90AA1,
PSCA, COX7C, RPL36A, RBM3, RPS14, TMSB4X, EEF1A1, JUNB, JUND, TARP, ATP11A,
PTGDS, XBP1, HLA-DRA, SERPINA3, RPL29, CEBPD, HSPD1, LDHA, AMD1, GALNS, PDIA2,
IGH@, AAK1, ARR3, HPN, AP2A2, IGHM, VAMP1, SORD, E2F4, HAP1, C1QTNF3, CFD,
RPL32, MAP3K11, GSTP1, TSPAN1, PTRF, SYN1, EEF2
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6 Signature induced network

We generated a signature induced network from a PPI network by aggregating all the shortest paths between
all the genes extracted by RGIFE-Union when applied to case study dataset (Singh et al., 2002). If multiple
paths existed between two genes, the path that overall (across all the pairs of genes) was the most used
was included. The paths were taken from the PPI network employed in (Vlassis and Glaab, 2015) that was
assembled from 20 public protein interaction repositories (BioGrid, IntAct, I2D, TopFind, MolCon, Reactome-
FIs, UniProt, Reactome, MINT, InnateDB, iRefIndex, MatrixDB, DIP , APID, HPRD, SPIKE, I2D-IMEx,
BIND, HIPPIE, CCSB), removing non-human interactions, self-interactions and interactions without direct
experimental evidence for a physical association. The network resulted in 93 nodes and 190 edges is illustrated
in Figure S2.

Figure S2: Signature induced network generated from the genes extracted using the RGIFE-Union policy.

References
Bacardit, J. et al (2009). Improving the scalability of rule-based evolutionary learning. Memetic Computing,
1(1), 55–67.

Bolón-Canedo, V. et al (2013). A review of feature selection methods on synthetic data. Knowledge and
Information Systems, 34(3), 483–519.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Dembélé, D. (2013). A flexible microarray data simulation model. Microarrays, 2(2), 115–130.

Hall, M. et al (2009). The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10–18.

Pedregosa, F. et al (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2825–2830.

Singh, D. et al (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2), 203
– 209.

Vlassis, N. et al (2015). Genepen: analysis of network activity alterations in complex diseases via the pairwise
elastic net. Statistical applications in genetics and molecular biology, 14(2), 221–224.

6


	1 Predictive performance of Random Forest and BioHEL
	2 Time complexity
	3 Method parameter values used for the analysis
	4 Predictive performance with synthetic datasets
	5 Signatures analysed in the case study
	6 Signature induced network

