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SUMMARY

Single-cell quantification of transcription kinetics
and variability promotes a mechanistic understand-
ing of gene regulation. Here, using single-molecule
RNA fluorescence in situ hybridization and mathe-
matical modeling, we dissect cellular RNA dynamics
for Arabidopsis FLOWERING LOCUS C (FLC). FLC
expression quantitatively determines flowering time
and is regulated by antisense (COOLAIR) transcrip-
tion. In cells without observable COOLAIR expres-
sion, we quantify FLC transcription initiation, elon-
gation, intron processing, and lariat degradation,
as well as mRNA release from the locus and degra-
dation. In these heterogeneously sized cells, FLC
mRNA number increases linearly with cell size, re-
sulting in a large cell-to-cell variability in transcript
level. This variation is accounted for by cell-size-
dependent, Poissonian FLC mRNA production, but
not by large transcriptional bursts. In COOLAIR-
expressing cells, however, antisense transcription
increases with cell size and contributes to FLC tran-
scription decreasing with cell size. Our analysis
therefore reveals an unexpected role for antisense
transcription in modulating the scaling of transcrip-
tion with cell size.

INTRODUCTION

A thorough understanding of gene regulation requires an accu-

rate quantification of the kinetic parameters influencing the tran-

scription cycle. The rates of transcript production and mRNA

degradation directly determine mRNA concentrations (Bentley,

2014; Dolken et al., 2008; Padovan-Merhar et al., 2015; Sid-

away-Lee et al., 2014; Wu et al., 2016). However, transcription

elongation, intron splicing, and mRNA release from the locus
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can also feed through to modulate mRNA levels (Bentley, 2014;

de la Mata et al., 2003; Hazelbaker et al., 2013; Stuparevic

et al., 2013), for example where kinetic coupling occurs (Bentley,

2014; de la Mata et al., 2003; Hazelbaker et al., 2013). Such ki-

netic couplings between RNA polymerase II (Pol II) elongation,

splicing, or termination can quantitatively control the formation

of alternative mRNA isoforms (Bentley, 2014).

An element that can affect precise control of gene expression

is stochasticity (Chubb and Liverpool, 2010; Corrigan et al.,

2016; Dar et al., 2012; Elowitz et al., 2002; Huh and Paulsson,

2011; Lenstra et al., 2015; Raj et al., 2006, 2010; Raj and van Ou-

denaarden, 2008; Shahrezaei and Swain, 2008; Sherman et al.,

2015; Skinner et al., 2016; Thattai, 2016; Zenklusen et al.,

2008; Zopf et al., 2013). Any comprehensive quantification of

RNA dynamics must therefore also take into account its degree

of variability. Fundamentally, transcription and RNA degradation

are both stochastic processes. How transcriptional output could

be influenced by intrinsic stochasticity has been intensively stud-

ied (Chubb and Liverpool, 2010; Corrigan et al., 2016; Dar et al.,

2012; Elowitz et al., 2002; Huh andPaulsson, 2011; Lenstra et al.,

2015; Raj et al., 2006, 2010; Raj and van Oudenaarden, 2008;

Shahrezaei and Swain, 2008; Skinner et al., 2016; Thattai,

2016; Zenklusen et al., 2008). Nevertheless, it still remains

unclear as to what extent variation previously often attributed

to intrinsic stochasticity is actually caused by extrinsic variation

due to cell cycle, cell size, or other fundamentally deterministic

features (Battich et al., 2015; Kempe et al., 2015; Padovan-Mer-

har et al., 2015; Sherman et al., 2015; Zopf et al., 2013).

Measuring the kinetics and variability of transcription and RNA

processing in vivo is a challenging task in multicellular organ-

isms. Previous approaches have focused on parts of the RNA

life cycle (e.g., production/degradation), or have provided only

relative, not absolute kinetic measurements (Battich et al.,

2015; Corrigan et al., 2016; Dolken et al., 2008; Elowitz et al.,

2002; Huh and Paulsson, 2011; Padovan-Merhar et al., 2015;

Raj et al., 2006; Sidaway-Lee et al., 2014; Skinner et al., 2016;

Thattai, 2016; Wu et al., 2016). In this study, we combine sin-

gle-cell assays with mathematical modeling to comprehen-

sively quantitate in vivo the transcription and RNA dynamics of
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Overview of Transcriptional Regu-

lation at FLC

Schematic indicating the regulation of transcription

at FLC, which encodes a MADS-box transcription

factor that represses the Arabidopsis transition to

flowering (Michaels and Amasino, 1999; Sheldon

et al., 1999). The FLC locus is also transcribed from

its 30 end in the antisense direction, resulting in a

group of long non-coding transcript isoforms

collectively termed COOLAIR (Swiezewski et al.,

2009). In warm conditions, as investigated in this

study, unspliced COOLAIR is expressed in root

prevasculature cells (inner layer tissue) but was

not detected in outer layer cells (mostly from the

epidermis and cortex) (Rosa et al., 2016). FLC

levels are quantitatively controlled through the

antagonistic FRI and Autonomous pathways

(Crevillén and Dean, 2011; Ietswaart et al., 2012), which respectively activate and repress FLC transcription. A short period of winter cold temperatures leads

to a transient induction of COOLAIR transcription and concomitant FLC transcriptional repression (Rosa et al., 2016; Swiezewski et al., 2009). Prolonged winter

cold induces epigenetically stable repression of the FLC locus through the process of vernalization (Angel et al., 2011; Berry and Dean, 2015; Song et al., 2012).
FLOWERING LOCUS C (FLC) (Michaels and Amasino, 1999;

Sheldon et al., 1999), a key quantitative developmental regulator

in Arabidopsis thaliana (Figure 1). FLC encodes a MADS-box

transcription factor that functions as a repressor of the transi-

tion to flowering. In warm conditions, FLC is regulated by two

antagonistic pathways: it is upregulated through the transcrip-

tional activator FRIGIDA (FRI) (Crevillén and Dean, 2011), and

repressed by the so-called Autonomous pathway (Ietswaart

et al., 2012). The latter is mediated in part by a group of antisense

long non-coding transcripts, termed COOLAIR (Figure 1), whose

transcription start site is located immediately downstream of

the FLC poly(A) site (Swiezewski et al., 2009). COOLAIR expres-

sion is tissue specific and in warm conditions COOLAIR is

observed in root prevasculature cells (Figure 1) (Rosa et al.,

2016). The quantitative level of FLC established by these antag-

onistic Autonomous and FRI pathways determines whether the

plant goes through winter before flowering. If such overwintering

does occur, cellular FLC expression is epigenetically silenced by

the prolonged cold of winter, through the process of vernaliza-

tion (Figure 1) (Berry and Dean, 2015). Such silencing is a sto-

chastic all-or-nothing effect at individual FLC loci, but where

the fraction of silenced loci increases quantitatively with an

increasing duration of cold exposure (Angel et al., 2011; Song

et al., 2012). However, how quantitative regulation and stochas-

ticity interplay to determine FLC expression in warm conditions

has remained unclear.

In this work, we determine the kinetics of FLC mRNA produc-

tion and degradation, Pol II elongation, intron processing, lariat

degradation, and mRNA release in cells without observable

COOLAIR expression.We also quantitate the degree of stochas-

ticity in the dynamics of FLC RNA. We observe large cell-to-cell

variability in FLC mRNA numbers but find that it is not due to

intrinsic stochasticity. Instead, it is well explained by a linear

scaling of transcript number with cell size. We show that this

size scaling results from a total cellular mRNA production that in-

creases linearly with cell size. Our findings are consistent with

the entire FLCRNA dynamics beingminimally stochastic. Finally,

in COOLAIR-expressing cells it is antisense transcription that

scales with cell size, which contributes to FLC transcription

now decreasing with cell size. Our work therefore reveals an un-
expected role for antisense transcription in modulating the cell

size dependence of sense transcription.

RESULTS

Cell-to-Cell Variability of FLC mRNA Is Larger than
Predicted from Poisson Production and Degradation
Processes
We utilized single-molecule fluorescence in situ hybridization

(smFISH) (Duncan et al., 2016; Raj et al., 2008; Rosa et al.,

2016) in the A. thaliana Columbia ecotype with an active FRI

allele (ColFRI) to measure single-cell RNA levels in warm condi-

tions. The samples were prepared using a root squash method

that typically yields single cell layers that originate from the outer

cell layers of the root (mostly from the epidermis and cortex) (Fig-

ure 1), with cells that do not express observableCOOLAIR (Rosa

et al., 2016). DAPI stain was then used to label nuclei and two

distinct smFISH probe sets employed to visualize FLC RNA:

one covering sense FLC exons (FLC mRNA) and the second

covering sense intron 1 (Figure 2A). Intron 1 FLC signal was

only detected in the nucleus (Figure 2A). Using consecutive

smFISH and DNA FISH, we found that intron 1 FLC co-localized

exclusively with FLC loci (Figure S1A), indicating that sense

intron 1 splicing and lariat degradation occurs at the locus.

This finding therefore enabled us to use the FLC intron 1 signal

to label transcriptionally active FLC loci. Intron 1 FLC foci were

found with counts ranging from 0 up to 4 per cell, with most

cells exhibiting at least one FLC intron 1 focus (Figure 2B). In

Arabidopsis sister-chromatid cohesion is variable and incom-

plete (Schubert et al., 2006), meaning that the presence of a

maximum of four intronic foci per cell is consistent with these

root cells being diploid (Hayashi et al., 2013; Yin et al., 2014).

Below, we quantify the underlying transcription and RNA degra-

dation kinetics responsible for these observations.

Exonic signal was abundant and mostly cytoplasmic, indi-

cating that FLC mRNA can be easily detected with the appro-

priate probe set (Figure 2A). The cellular distribution of FLC

mRNA counts was unimodal with a mean of 58 ± 2 molecules

(Figure 2C). Here and elsewhere, unless stated otherwise, we

report the mean (±SEM). We estimate our mRNA counting error
Cell Systems 4, 622–635, June 28, 2017 623
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to be at most 4% by comparing our algorithm (Duncan et al.,

2016; Olsson and Hartley, 2016) with FISH-quant, a separate

counting method (Mueller et al., 2013). By comparing these

cellular levels with a Poisson distribution (Figure 2C), we found

that the experimental mRNA distribution from single cells is

much broader than for the Poisson case (Kolmogorov-Smirnov

[KS] test, p = 10�25): the distribution variance is �14-fold larger

than the mean. Assuming that cellular mRNA production and

degradation occur as Poisson processes, i.e., independently

of each other and with constant probabilities p and d per unit

time, respectively (Chubb and Liverpool, 2010; Gardiner,

2009; Shahrezaei and Swain, 2008), we would expect a Poisson

distribution for such a birth-death process (Chubb and Liver-

pool, 2010; Gardiner, 2009; Shahrezaei and Swain, 2008; That-

tai, 2016), with mean mRNA copy number p/d. We therefore

conclude that the cellular FLC mRNA variation cannot be ex-

plained by a birth-death process with constant production and

degradation probabilities per unit time.
FLC mRNA Degradation Is Well Described by a Poisson
Process with a Constant Half-Life
To determine whether FLC mRNA degradation might be

responsible for the observed broad cell-to-cell variation in

mRNA levels, we considered what would happen to the FLC

mRNA distribution after inhibition of transcription. Initially

the mRNA distribution would be as observed in Figure 2C, but

as time progresses mRNA levels will decrease. A simple hypoth-

esis is that mRNA degradation occurs with a constant degrada-

tion rate d (units: s�1). The degradation rate d can then be esti-

mated by fitting an exponential function R(t) = R(0) exp (�d t) to

the experimentally measured mean mRNA levels (Dolken et al.,

2008; Gardiner, 2009; Sidaway-Lee et al., 2014). The corre-

sponding Poisson stochastic process is characterized by a

constant degradation probability per unit time d (Gardiner,

2009). If mRNA degradation is well described by this Poisson

model, which exhibits inherently minimal stochasticity, the

cellular mRNA distribution after transcription inhibition should

be completely determined by the mRNA distribution before inhi-

bition and the degradation probability per unit time d. To probe

this hypothesis, we first derived the probability distribution for

the number of mRNA molecules, r, as a function of time P(r,t),
Figure 2. Cellular Variation of FLC mRNA Production and Degradation

(A) Schematic of FLC gene with exons (boxes) and introns (dashed lines) indicate

intron 1 (red). Fluorescence localization (z-stack projection) of FLCmRNA, full-leng

in representative ColFRI outer layer root cells. Scale bar, 5 mm.

(B) Cellular FLC intron 1 foci counts (gray, n = 106 cells from four biological repli

(C) Histogram of cellular mRNA foci counts (blue, n = 209 cells from eight biologica

simple birth/death process of FLC mRNA production/degradation with constant

(D) Cellular FLC intron 1 foci counts after treatment with ActD or DMSO (mock) for 4

disappeared. Mock-treated FLC mRNA distributions are shown in Figure S1B.

(E) Left panel: histogram of cellular FLCmRNA foci counts after 4 hr of ActD treatm

distribution functions (CDFs) of the FLC mRNA foci counts and Poisson decay pr

only, as appropriate for ActD treatment.

(F) As in (E) but after 6 hr of ActD treatment. Cells in (D), (E), and (F) are pooled f

(G) Scatterplot of cellular FLC mRNA foci counts (same data as in C; blue) as a

shows FLC mRNA production increasing with cell volume and volume-independ

(H) Variance plotted against mean of cellular FLC mRNA foci counts, both for g

predicted by model with Poisson probability distribution with parameter bV(Poiss

error (Poisson + Volume error). All error bars indicate standard errors on the resp
given the observed initial distribution P(r,0) before transcriptional

inhibition (STAR Methods). This derivation resulted in:

Pðr; tÞ=
XM
b= r

�
b
r

�
ðexpð�dtÞÞrð1� expð�dtÞÞb�rPðb; 0Þ

(Equation 1)

where M indicates the maximum amount of cellular mRNA

observed in the initial distribution.

To experimentally test whether FLC mRNA degradation is

well described by this model with minimal associated stochas-

ticity, we treated plant seedlings with the transcription elonga-

tion inhibitor actinomycin D (ActD) (Dolken et al., 2008). We

then subsequently performed smFISH in a time series. We

observed that intron 1 FLC foci were almost completely absent

as compared with a DMSO-treated sample (mock) after 4 hr

and 6 hr of ActD addition, indicating that transcription was

indeed inhibited (Figure 2D). We used the experimentally

measured mean mRNA count levels hRexpðtÞi after 4 and

6 hr of treatment to estimate the mean degradation rate d:

hRexpð4 hrÞi
hRexpð6 hrÞi= exp½dð6 hr � 4 hrÞ�. This resulted in d = 3.3 ±

0.1310�5 s�1, equivalent toahalf-life of approximately t1/2z6hr.

Using the estimated degradation rate, we then compared

the stochastic model prediction from Equation 1 with the exper-

imentally observed mRNA count distributions after 4 hr and 6 hr

(Figures 2E and 2F). Here, we used the pooled mock treated

FLCmRNA count distributions (Figure S1B) as the initial distribu-

tion in the model to minimize the influence of cell size variation

(see below) between experiments. Furthermore, we assumed

that mRNA degradation started after a time lag t of 1 hr after

ActD treatment (through replacing t by t � t in Equation 1 for

t = 4 or 6 hr). Such a time lag is reasonable considering the

ActD penetration time into the plant tissue. The cumulative distri-

bution functions of the model and experiments were then indeed

similar at both the 4- and 6-hr time points, as shown in Figures 2E

and 2F (KS test, p = 0.66 and 0.21 for 4 and 6 hr, respectively).

Furthermore, starting from the experimental 4-hr distribution as

an initial condition, we could correctly predict the entire 6-hr dis-

tribution using the same degradation rate but with no time lag in

Equation 1 (KS test, p = 0.48) (Figure S1C). Note that, since our
in Outer Layer Root Cells

d, and different probe sets for labeling FLC mRNA (green) and FLC full-length

th intron 1, and an overlay containingmRNA, intron 1 FLC, andDAPI stain (blue)

cates, i.e., roots from different plants).

l replicates) and a Poisson distribution fit (red), which would be expected from a

probabilities per unit time (see schematic above).

hr and 6 hr.With ActD, after 4 hr and 6 hr the vastmajority of intron 1 signal has

ent (blue) and Poisson decay process prediction (red). Right panel: cumulative

ocess prediction. Schematic above histogram shows FLC mRNA degradation

rom three biological replicates for each treatment and time point.

function of cell volume, together with least-squares fit (red). Schematic above

ent degradation.

iven binned cell volume (ColFRI, Volume-binned). Also shown is the behavior

on), as well as a Poisson model that takes into account volume measurement

ective quantities.
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time window of 2 hr is relatively short compared with the cell cy-

cle time (17 hr) for these Arabidopsis meristematic root cells

(Hayashi et al., 2013; Yin et al., 2014), a reduction in mRNA levels

due to dilution during cell division (Huh and Paulsson, 2011) is

unlikely to affect these results. We conclude that FLC mRNA

degradation is well described by a Poisson process with a con-

stant half-life of�6 hr in all outer layer cells. The observed broad

distribution (Figure 2C) is therefore not caused by variation in

FLC mRNA degradation.

Cellular FLC mRNA Levels Scale Linearly with Cell Size,
Generated by a Similar Scaling of the Total mRNA
Production Rate
Visual inspection suggested that cellular FLC mRNA levels could

increasewith cell size asobserved for certain genes inmammalian

cells (Kempe et al., 2015; Padovan-Merhar et al., 2015).We there-

fore asked whether the broad distribution of FLC mRNA counts

could be influenced by cell-to-cell variability in cell size. We

quantified cellular volume using two separate methods (STAR

Methods), which gave consistent measures to withinz20% (Fig-

ure S1D). We then compared cell volume with the corresponding

cellular mRNA counts (Figure 2G). We found a strong linear corre-

lation between FLC mRNA (R) and cell volume (V) using linear

regression: R = a + bV (R2-statistic = 0.8, F-statistic: p = 3 3

10�74), with a slope b = 31 ± 1 pL�1 (Figure 2G). The intercept a

was not significantly different from zero (p = 0.4). Given that FLC

degradation is well described by a Poisson process with a cell

size-independent degradation probability per unit time, we

conclude that the total cellular FLC mRNA production rate would

needto increase linearlywithvolume,p(V) =bVd, inorder toexplain

the observed linear scaling between mRNA and cell volume.

The FLCmRNADistribution Is Consistent with Minimally
Stochastic Poisson Dynamics
To disentangle how much of the cell-to-cell variation in FLC

mRNA is governed by cell size under warm conditions, we can

consider the cellular mRNA levels as a random variable such

that its mean value as a function of cell volume V is given by

the observed linear relationship: R(V) = bV (Padovan-Merhar

et al., 2015). Here, b is the slope of the fit in Figure 2G. If themajor

determinant of the variation would be cell volume with minimal

residual variation, then the resulting distribution for a given vol-

ume would be Poisson, characterized by a mean and variance

being both equal to bV (Figure 2H, Poisson). To test this hypoth-

esis, we binned the experimental FLCmRNA levels according to

volume (bin width: 0.5 pL) and computed the mean and variance

for the experimental binned data (Figure 2H, experiments).

Indeed, in cells with larger sizes, the mean and variance of FLC

mRNA levels increased. However, the variances were systemat-

ically higher than the Poisson limit (Figure 2H). The above anal-

ysis assumes cell volumes are known precisely. In practice,

our measurement error of z20% for estimating cell volumes

(Figure S1D) generates additional uncertainty in the relation be-

tween cellular volume and mRNA levels. This uncertainty feeds

through into a lower limit on our observable variance (for a given

cell volume) that is higher than the Poisson limit (see derivation in

STARMethods). When we also took into account our error in vol-

ume estimation, we found that our experimental data are in fact

well described by an underlying Poisson distribution (Figure 2H,
626 Cell Systems 4, 622–635, June 28, 2017
Poisson + Volume error). To further establish that our residual

variation is consistent with a Poisson distribution, we calculated

the volume-corrected noise measure NR =
VarðRexpÞ
hRexpi2

�

CovðRexp;VexpÞ
hRexpihVexpi (STAR Methods and Padovan-Merhar et al.,

2015), where Vexp are the experimentally measured cell volumes.

This expression for NR can be evaluated directly from our data,

resulting inNR = 0.04 ± 0.01, which is indeed close to the Poisson

limit
1

hRexpi= 0:02. For comparison, NR has been found to reach

values above 1 for certain mammalian high-noise genes (Pado-

van-Merhar et al., 2015). Altogether, our analysis shows that

cell size is the major source of cell-to-cell variation in FLC

mRNA levels. Moreover, after controlling for volume measure-

ment errors, the observed residual variation is consistent with

minimal, Poisson variation.

To further test that our mRNA distribution can be explained

by cell size variation and Poisson residual variation, we per-

formed stochastic simulations using a Gillespie algorithm (Sle-

poy et al., 2008) of cellular mRNA production and degradation

(Figure S1E and STAR Methods). Degradation was simulated

with a constant degradation probability per unit time as

described above. The total cellular mRNA production probability

per unit time was given by p(V) = bVd. To approximate the deter-

ministic cell-to-cell variation in mRNA production, we used our

experimentally observed cell size distribution as an input (Fig-

ure S1F). As expected, with this procedure we could explain

the cellular mRNA distribution (Figure S1G, KS test: p = 0.35),

as well as its variance (Levene’s test: p = 0.53).
The FLC mRNA Distribution Is Inconsistent with Large
Transcriptional Bursts
To discern whether alternative mechanisms could also explain

themRNAdistribution, we altered the above cell-size-dependent

Poisson model to include an OFF state in which the production

rate was zero, but which could switch back and forth to an ON

state characterized by an mRNA production probability per

unit time pon (Figure S1E and STAR Methods). This ON/OFF

model can exhibit ‘‘bursty’’ transcription kinetics, whereby mul-

tiple transcripts are being produced in bursts as opposed to un-

correlated single transcription events generated by a Poisson

process. The transition probability per unit time from OFF to

ON is termed the burst frequency (kon), whilst the mean number

of transcripts produced per ON-OFF cycle is termed the burst

size bs=
pon

koff
(Padovan-Merhar et al., 2015). Here, koff indicates

the transition probability per unit time from the ON to the OFF

state. Transcription occurs in bursts when koff[ konwith a burst

size bs [ 1 (Dar et al., 2012; Shahrezaei and Swain, 2008). We

fixed koff = 0.1 s�1, which effectively ensured that the first condi-

tion was met in our simulations, then systematically increased

the burst size from 1 upward. The average production rate as

determined above is approximately the product of burst size

and burst frequency: pðVÞ= bVd =
pon

koff

1

1+
kon
koff

konybs kon. We

then chose to allow either burst frequency or burst size scale



with volume, the latter as proposed for mammalian genes (Pado-

van-Merhar et al., 2015). In this way the remaining a priori un-

known parameters kon and pon were also specified (STAR

Methods). We found that the ON/OFFmodel was only consistent

with our cellular FLC mRNA distribution if the burst size was

maximally three transcripts for both the cases where burst size

or burst frequency scale with volume (Figure S1G, Levine’s [vari-

ance] test: p = 0.10 and 0.05, respectively; see STAR Methods

for additional statistical test results). For a volume-dependent

burst size, this number reflects the burst size for a cell of average

volume (V = 1.8 pL). Increasing the burst size further led to too

broad an FLC mRNA distribution (Levine’s test: p < 0.05), due

to the considerable fraction of cells in either the transcriptionally

inactive or ‘‘bursty’’ states. Burst sizes compatible with our data

(at most three transcripts) do not reflect a very ‘‘bursty’’ tran-

scriptional mode, and are rather similar to Poisson transcription

which can be interpreted in terms of our ON/OFF model as hav-

ing a burst size per locus of 1. Altogether we conclude that, for a

given volume, FLC transcriptional dynamics are inconsistent

with large transcriptional bursts.

Estimation of FLC Transcription Initiation Rates
Since we have quantified cellular mRNA levels, we can utilize

these data to infer the mean absolute transcript production

rate per locus F in root outer layer cells. This quantification of F

is important for a full quantitative understanding of FLC tran-

scription, and will also be necessary to subsequently quantify

further RNA dynamics, such as intron processing. The average

cellular mRNA levels are the ratio of production and degradation:

hRi= p

d
=
NlociF

d
, where Nloci is the number of FLC gene copies.

Although the mean degradation rate is constant during the cell

cycle, the number of loci and potentially also the production

rate per locus will vary. However, averaging mRNA levels over

all observed cells is equivalent to averaging over the cell cycle

because in this tissue, cells cycle constantly and asynchro-

nously. We can thus consider an average copy number Nloci =

2.5 and mean mRNA production rate per locus F arising from

time averaging over the Arabidopsis root meristematic cell cycle

time scales (STAR Methods). Above we both experimentally

measured hRi and determined themean FLCmRNAdegradation

rate d = 3.3 ± 0.13 10�5 s�1. From the above formula for hRi, we

can therefore extract the mean production rate per locus of

F = 7.5 ± 0.4 3 10�4 s�1, approximately once per 20 min. This

estimate should be interpreted as an average over the cell cycle

and relevant to a cell of average volume 1.8 pL. Altering the rele-

vant cell cycle time scales by up to an hour resulted in Nloci

ranging from 2.4 to 2.8 (STAR Methods). It is also possible that

the production rate per locus could dynamically change during

the cell cycle to buffer against changes in gene copy number,

as found for mammalian genes (Padovan-Merhar et al., 2015).

This case leads to Nloci = 2.7 (STAR Methods). In all of these

cases, the effective value for Nloci is only changed slightly from

its original value of 2.5. Hence, a mean production rate per locus

of approximately once per 20 min is retained.

Above we found a linear scaling of the total mRNA production

rate with cell volume (Figure 2): p(V) = bVd. Since the total pro-

duction rate is the sum of the production rates at the individual

loci, we also have p(V) = F(V)Nloci(V), where we now explicitly
include volume dependence in both the number of loci Nloci(V)

and the production rates per locus F(V). Rearranging, we

conclude that FðVÞ= bVd

NlociðVÞ. Unfortunately, however, the rela-

tionship Nloci(V) between gene copy number and cell volume re-

mains unclear. Nevertheless, by using 2 and 4 as respective

lower and upper bounds on the gene copy number Nloci(V), we

can estimate bounds on the average production rates per locus

for a given volume. For small cells (V = 0.5 pL), these bounds are

once per 135min and 65min. In large cells (V = 4 pL), the average

production rate is increased to lie between once per 16 min

and 8 min.

In our analysis above, we have extracted mRNA production

rates per locus. Such a production rate can be interpreted as a

transcription initiation rate provided there is no premature Pol II

termination or co-transcriptional degradation of the transcripts.

Previous work has failed to find evidence for such processes

at FLC in high transcriptional states such as those investigated

here (Wu et al., 2016). We therefore interpret our mRNA produc-

tion rates per locus as transcription initiation rates, with a mean

value of approximately once per 20 min per locus.

Finally, we also revisited the ON/OFF model from the previous

section to investigate whether bursty transcription dynamics at

each locus could be consistent with our cellular mRNA distribu-

tion. Here, we used the above mRNA production rate per locus

F(V), using the lower (upper) bound values of Nloci = 2 (4) (STAR

Methods). The cellular mRNA levels are the sum over Nloci inde-

pendent simulation outcomes. We then repeated our earlier

analysis to find again that a burst size per locus of at most three

transcripts remained consistent with our observed mRNA distri-

bution for both Nloci = 2 and 4 (STAR Methods). These results

reconfirm that FLC transcriptional dynamics are inconsistent

with large transcriptional bursts.

Simultaneous Quantification of Pol II Elongation, Intron
1 Processing, and Lariat Degradation
To further quantitate any relation between cell size and the

transcriptional and RNA processing dynamics at FLC, we

next investigated FLC intron 1 levels more extensively using

smFISH. Generally intronic RNA levels depend on Pol II initiation

(F, unit: s�1), Pol II elongation (v, unit: bp/s), and intron processing

(s, unit: s�1) (Figure 3A). The timescale s�1 equates to the time in-

terval between completion of intron 1 transcription and the start

of lariat degradation, and thus includes the acts of splicing and

lariat debranching. Intronic RNA levels are additionally depen-

dent on lariat degradation. Since it is unclear how lariat degrada-

tion occurs (Hesselberth, 2013), we allow for both 50 to 30 and 30 to
50 degradation, with rates k53 and k35, respectively (unit: bp/s).

Potential other RNA degradation mechanisms, e.g., endoribonu-

clease cleavage, could be captured through large values of either

or both of the degradation rates described above. However, as

shown below, we find little evidence for such scenarios at FLC.

To quantify these processes we developed a new methodol-

ogy, measuring various different intronic RNA levels and using

thesemeasurements to determine the above kinetic parameters.

Specifically, we designed four different smFISH probe sets (Fig-

ure 3B) covering, respectively: the full intron 1 as described

above (Figure 2A), the 50 half, the middle of the intron (symmetri-

cally positioned with a length of half the intron), and the 30 half.
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Figure 3. Quantification of Pol II Elongation, FLC Intron 1 Processing, Lariat Degradation, and mRNA Release from the Locus

(A) Schematic of different processes contributing to FLC intron 1 life cycle: transcription initiation rate (F), Pol II elongation (v), and intron processing rate (s). Time

scale s�1 indicates the time interval between completion of intron 1 transcription and start of lariat degradation, which can occur from 50 to 30 end (rate: k53) and/or

30 to 50 end (rate: k35). Also shown is mRNA release from the locus (rate: kx) and subsequent degradation (rate: d).

(B) Fluorescence localization (z-stack projection) of four different FLC intron 1 probe sets, as indicated on schematic: full-length (full, red), 50 end (red), middle

(mid, red), and 30 end (green). All images are overlays of respective intron 1 signal and DAPI stain (blue) in representative outer layer root cells. Scale bar, 5 mm.

(legend continued on next page)
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We denote their respective mean RNA levels at an FLC locus as

If, I50, Im and I30. For all of the probe sets, the mean RNA levels are

then described by Ij = FTj. F is the average FLC transcription initi-

ation rate per locus as estimated above and Tj is the mean life-

time of the intronic RNA, which is specific for each probe set

location (subscript j = {f,50,m,30}). Importantly, for each probe

set, the respective lifetime Tj depends on the kinetic parameters

(STAR Methods). This timescale is additionally dependent on

how many probes need to be bound for a signal to be experi-

mentally detected. We and others have found that having only

two-thirds of the probe set bound could already be sufficient

to generate a detectable signal (Duncan et al., 2016; Raj et al.,

2008; Rosa et al., 2016). Consequently, intronic RNA with a

‘‘missing length fraction’’ of up to one-third of the probe set

length is assumed to still generate a detectable smFISH signal

(STAR Methods).

To quantify the four unknown kinetic rates (v, s, k35, and k53),

we determined for each of the four probe sets the mean number

of foci per cell, indicated respectively as hSfi, hS50i, hSmi, and
hS30i (Figures 3B and 3C). We found that hSfi and hS30i were

similar and likewise for hS50i and hSmi (Figure 3C). Consistent

with hS50i being larger than hS30i (Figure 3C), all 30 foci co-local-
ized with 50 foci but not the reverse. A positive signal corre-

sponds to at least one intron RNA molecule, which co-localizes

with the FLC locus exclusively (Figure S1A). Therefore, the

mean foci number per cell equals the average number of FLC

loci per cell multiplied by the expectation to observe a signal at

a locus (STAR Methods): hSji=Nlocið1� e�FTj Þ.
Here, we use Poisson transcription initiation and RNA degra-

dation kinetics, consistent with our findings above. To determine

which values for the a priori unknowns (v, s, k35, and k53) gener-

ated a good fit to the average foci per cell for each probe set,

we systematically varied these four parameters, calculated the

respective model values for the average foci per cell, and as-

sessed with a c2 test (degrees of freedom k = 4, acceptance

probability p R 0.1) whether the model values were sufficiently

probable compared with the experimental data in Figure 3C.

As a result, we obtained distributions of parameter values that

generated good model fits (Figure 3D), with all the consistent

parameter estimates lying in the range v = 2–20 bp/s, s = 1.0–

2.03 10�3 s�1, k53 = 1–5 bp/s, and k35 = 1–4 bp/s. To determine

the robustness of our parameter estimates to uncertainty in the

missing length fraction, we repeated the parameter inference

also for a range of missing length fractions (STAR Methods).
(C) Average foci counts per cell for the four probe sets described in (B) from outer

parameter values, see text and STAR Methods). Number of cells analyzed, respe

four, and four biological replicates, respectively. Error bars denote SEM.

(D) Marginal distributions for intron processing (s), elongation (v), 50 to 30 lariat deg
the data shown in (C) according to a c2 test (degrees of freedom k = 4, acceptanc

minimum, 25% quantile, median, 75% quantile, and maximal values.

(E) Volume dependence of average cellular foci counts per cell in outer layer cells

Also shown are analytical model fits (black, gray) with parameter values that gener

2 bp/s, and k35 = 2 bp/s. Error lines denote SEM as function of volume.

(F) As in (E) but for middle (mid) and 30 end FLC intron 1 probe sets.

(G) Locus-associated exonic FLC RNA (Rloc) distributions given presence of full-

methods were used on the same experimental dataset (n = 114 cells pooled from

profile (Int), superposition of point spread functions (PSF), and superposition of a

(H) Volume dependence of average locus-associated exonic FLC RNA levels. D

denote SEM as a function of volume.
The resulting variation in our kinetic rate estimates was limited

(Figures S2A–S2D), yielding similar estimates to the abovemeth-

odology. Our elongation rate (0.1–1.2 kb/min) and intron pro-

cessing timescale estimates (8–17min) are in line with the ranges

described for other species (Bentley, 2014).

We next wondered whether the four above kinetic rates might

scale with cell size, similar to the transcription initiation rate. To

investigate this question, we first examined how the number

of intron foci scaled as a function of cell size by sorting and

including cells according to their size (STARMethods). We found

that levels of intronic RNA from all four probe sets hSj(V)i
increased systematically with increasing cell size (Figures 3E,

3F, and S2E), as would be expected with a transcription initiation

rate that also increases with cell size.

To investigate whether we could explain these cell size depen-

dencies with our above determined kinetic rate estimates,

we first generalized the model prediction for the foci number

for a given volume V: hSjðVÞi=NlociðVÞð1� e�FðVÞTjðVÞÞ. We next

assumed that only the transcription initiation rate varied with

size: FðVÞ= bVd

Nloci
, with the size-independent probe specific life-

times Tj(V) = Tj as determined above. To account for the unknown

behavior of Nloci(V), we adopted a similar approach as previ-

ously, first using the mean Nloci = 2.5, before investigating Nloci =

2 and Nloci = 4 as lower and upper bounds. Using Nloci = 2.5, we

were able to reproduce the observed number of foci over the

range of observed volumes (see Figures 3E and 3F with v =

3 bp/s, s = 1.5 3 10�3 s�1, k53 = 2 bp/s, and k35 = 2 bp/s).

However, fitting using the lower and upper bounds Nloci = 2

and Nloci = 4, for both small volumes (0.9 pL) and large volumes

(2.8 pL), yielded fits with 3-fold or more variation in the parameter

values for v, s, k53, and k35 from those given above. Given

this spread, we cannot rigorously conclude whether the co-

transcriptional parameters v, s, k53, and k35 depend on cell

size. Nevertheless, by analyzing intronic RNA foci we have

been able to extract robust mean values for the FLC elongation,

intron processing, and lariat degradation.

Quantification of FLC mRNA Release from the Locus
The release of mRNA from a transcribed locus is an important

part of the RNA life cycle (Figure 3A) as it can influence transcript

fate (Stuparevic et al., 2013). To quantify FLC mRNA release

from the locus, we assessed the exonic FLC RNA distribution,

i.e., FLC exonic sequences present at the FLC locus itself
layer cells together with analytical model fits (mean and SEM using all allowed

ctively, for full, mid, 50, and 30: 200, 382, 326, and 326 pooled from three, four,

radation (k53), and 30 to 50 lariat degradation (k35) rates that generate good fits to

e probability pR 0.1) with the ‘‘missing’’ length fraction 1/3. Box plots indicate

for FLC intron 1: full-length (full) and 50 end. Number of cells analyzed as in (C).

ated good fits to population averages in (C): v = 3 bp/s, s = 1.53 10�3 s�1, k53 =

length FLC intron 1 signal from outer layer cells. Three different quantification

four biological replicates): integration of 2D Gaussian fit to the spatial intensity

mplitudes of PSF at the locus (Amp) (STAR Methods; Mueller et al., 2013).

ata and three different quantification methods as described in (G). Error lines
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Table 1. Overview of Kinetic Rates and Quantities Estimated in This Study

Symbol Definition Estimate

R cellular FLC mRNA counts (in outer layer cells) average: 58 ± 2; min–max: 7–145

V cell volume (in outer layer cells) average: 1.8 pL; min–max: 0.5–4 pL

b slope of linear relationship between cellular FLC mRNA count

and cell volume

31 ± 1 pL�1

d mRNA degradation rate 3.3 ± 0.1 3 10�5 s�1

p cellular mRNA production rate average: 1.8 3 10�3 s�1; min–max: 0.5–4 3 10�3 s�1

Nloci cell cycle averaged number of FLC loci per cell 2.5; range: 2.4–2.8

F cell cycle averaged FLC transcription initiation rate 7.5 ± 0.4 3 10�4 s�1

v Pol II elongation rate 2–20 bp/s

s intron processing rate 1.0–2.0 3 10�3 s�1

k53 intron lariat 50 to 30 degradation rate 1–5 bp/s

k35 intron lariat 30 to 50 degradation rate 1–4 bp/s

Rloc FLC mRNA levels at locus average: 2.2 ± 0.3; min–max: 0–6

kx mRNA release rate from locus 3.4–5 3 10�4 s�1

bs burst size in ON/OFF model 1–3

koff transition rate from ON to OFF state in ON/OFF model 0.1 s�1
(Figure 2A). By utilizing the software package FISH-quant (Muel-

ler et al., 2013), we performed an unbiased quantitative image

analysis on the FLC exonic intensities at FLC loci. First, a system-

atic averaging of FLC exonic smFISH signal (Figure 2A) spatial in-

tensity profiles resulted in the point spread function (PSF) that

represents a single FLC RNA molecule (Mueller et al., 2013).

Next we exploited the full-length FLC intron 1 probe set to label

the FLC locus itself (Figures 2A and S1A). The exonic FLC RNA

signals co-localizing with intron 1 were then quantitatively

compared with the PSF intensity using three different quantifica-

tion algorithms (STAR Methods; Mueller et al., 2013) each esti-

mating how many exonic RNAs are at the locus (Figure 3G). All

three methods gave similar exonic FLC RNA distributions (Fig-

ure 3G), with up to at most six transcripts at the locus in all three

methods, which indicates the robustness of this approach. We

estimate the average exonic FLC RNA at the locus (conditioned

on the presence of intron 1 FLC) to be hRloci = 2.2 ± 0.3.

To quantify the mean exonic FLC RNA release rate from the

locus, we first assume that the mean total release is equal to

kxhRloci, where kx is the release rate. Equating this to the mean

initiation rate F, we find that kx = 3.4 3 10�4 s�1. However, this

analysis overlooks any possible correlations between the pres-

ence of exonic and intronic signal. Since our measurements of

exonic RNA are conditioned on the presence of intronic RNA

signal, such correlations might alter our estimate for kx. To quan-

titatively investigate this possibility, we performed stochastic

simulations of the transcriptional dynamics at an individual FLC

locus using a spatiotemporal Gillespie algorithm (Figures 3A

and S3A; STAR Methods). This methodology simulated the

spatiotemporal transcriptional dynamics at FLC, including FLC

mRNA release from the locus as a single-step Poisson process

with an a priori unknown probability per unit time kx. This anal-

ysis generated results that could then be compared with the

experimental exonic FLC RNA distributions. We used the ki-

netic parameters determined previously (v = 3 bp/s, s = 1.5 3

10�3 s�1, k53 = 2 bp/s, k35 = 2 bp/s) to simulate an FLC locus

in a cell of average size hVi = 1.8 pL, where the mean transcrip-
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tion initiation probability per unit time was given by F =
bhVid
Nloci

,

with b = 31 pL�1, d = 3.3 3 10�5 s�1,and Nloci = 2.5, assuming

also a missing length fraction of 1/3 for all smFISH species. As

expected, with this procedure we could reproduce the mean

levels of the FLC mRNA as well as the four different intron 1

probe sets. We next output the simulated distributions of exonic

RNA at the locus given that at least one intron was present at the

locus and fitted kx, the mean release probability per unit time,

through themean value of the experimental exonic RNA distribu-

tion hRloci. This resulted in kx = 53 10�4 s�1, approximately once

per half an hour, similar to our earlier estimate.

We next checked that our Gillespie algorithm simulations

could account for our earlier data on intron foci number as a

function of cell size. Using a size-dependent transcription initia-

tion probability per unit time per locus of FðVÞ= bVd

Nloci
, we could

again reproduce these data satisfactorily (Figure S3B), confirm-

ing our earlier analytic approach.

Finally, we measured experimentally the amount of exonic

RNA at the locus as a function of cell size (Figures 3H and

S3C). Notably, this quantity varied only weakly with cell size,

quite unlike the intronic foci signal (Figures 3E and 3F). This result

suggests that the RNA release rate from the locus should scale

linearly with cell size in order to compensate for a similarly

increasing transcription initiation rate, thereby generating an

approximately constant exonic signal. Overall, we have suc-

ceeded in quantitating the size scaling of total mRNA production

and the size-independent mRNA degradation rate, as well as the

mean rates for transcription elongation, intron processing, lariat

degradation, and mRNA release from the locus (Table 1).

Antisense Transcription Contributes to a Decrease of
Intronic FLC Levels with Cell Size in
Prevasculature Cells
FLC expression is quantitatively repressed by the Autono-

mous pathway, in a mechanism involving antisense (COOLAIR)



Figure 4. Antisense Transcription Contributes to a Reduction of FLC Intron 1 Expression with Cell Size in Prevasculature Tissue

(A) Fluorescence localization of full-length sense intron 1 (red, top right) and antisense (COOLAIR) 50 end distal intron (green, bottom right) and wider-field merge

(left), all with DAPI stain (blue), in representative ColFRI prevasculature root cells, with the same cells in different images identified by * or **, respectively. Scale

bar, 5 mm. Also shown (top) is schematic of FLC gene with sense transcript as in Figure 2A, and antisense proximal and distal isoforms together with corre-

sponding sense and antisense probe sets.

(B) Average cellular foci number of full-length FLC intron 1 and COOLAIR 50 end distal intron in outer layer (black) and prevasculature cells (white), from one and

three biological replicates, respectively. Error bars denote SEM. *p < 0.05, ****p < 10�4.

(C) Area dependence of average cellular foci count per cell of full-length FLC intron 1 and COOLAIR 50 end distal intron in ColFRI root outer layer cells (outer) and

full-length FLC intron 1 in prevasculature (prevasc) root cells. Data as in (B) and Figure 2B. Error lines denote SEM as a function of area.

(legend continued on next page)
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transcription. The COOLAIR transcription start site is located

immediately downstream of the sense FLC poly(A) site (Swie-

zewski et al., 2009) (Figure 4A). In the root outer layer (epidermis

and cortex) cells studied above (Figure 1), from where our esti-

mates for FLC transcriptional kinetics are extracted, we detected

no antisense COOLAIR expression (Figure 4B). To investigate

the role of antisense transcription on sense regulation, we there-

fore shifted our focus onto the inner prevasculature cells (Fig-

ure 1), which show higher levels of COOLAIR transcription (Fig-

ure 4B) (Rosa et al., 2016).

Due to the dense packing of prevasculature cells (Figure 4A),

accurate cellular volume and FLC mRNA estimates could not

be obtained. This difficulty precluded quantification of transcrip-

tional kinetics in these cells. However, cell area as well as sense

and antisense intronic smFISH foci (Figure 4A) could still be

determined manually, the small number of intron signals being

much easier to definitely assign to cells, as compared with the

much larger number of FLC mRNA foci. With this approach, it

was therefore still possible to investigate the cell size depen-

dencies of sense and antisense transcription using the intronic

signals.

Average cellular FLC intron 1 foci counts were lower in pre-

vasculature tissue than in the root outer layer (Figure 4B), partly

because prevasculature cells are smaller (Figure 4C). As ex-

pected, in outer layer cells, FLC intron 1 foci counts increased

with cell size, consistent with transcription initiation increasing

with cell size in these cells. However, in prevasculature cells

the intron 1 foci counts generally reduced with cell size (Fig-

ure 4C). Moreover, using probes at the 50 end of the distal

COOLAIR intron (Figure 4A), COOLAIR foci counts increased

with cell size in the prevasculature cells (Figure 4D). We found

previously that COOLAIR and FLC expression are mutually

exclusive at single FLC loci (Figure S4 and Rosa et al., 2016).

Consistently, we find here that mean sense/antisense levels

as a function of cell size in prevasculature tissue are strongly

anticorrelated (Figure 4D, Pearson correlation coefficient r =

�0.9, p = 10�73). To investigate whether COOLAIR transcription

caused the reduction in sense intronic RNA levels with cell size,

we measured sense intronic RNA foci counts in plants with

reduced antisense expression using a previously described

FLC Terminator EXchange (FLC-TEX) transgene (Csorba

et al., 2014; Rosa et al., 2016). This transgene exchanges the

FLC terminator/COOLAIR promoter with the strong RBCS

terminator from Arabidopsis RBCS3B, acting to reduce anti-

sense expression. As expected, in outer layer cells without

observable antisense expression in ColFRI (Figures 4B and

4C), FLC intron 1 foci in FLC-TEX still increased with cell size

(Figure 4E). Moreover, compared with an FLC control (FLC-

CTL) transgene (Csorba et al., 2014; Rosa et al., 2016), anti-

sense expression was now almost absent in prevasculature

tissue in FLC-TEX (Figure 4F). In these cells, FLC intron 1

RNA foci counts were now increased (Figure 4F), most notably

in larger cells where antisense expression was highest in
(D) As in (C), here for FLC and COOLAIR expression in prevasculature cells.

(E) Area dependence of average cellular foci counts per cell of full-length FLC intro

layer (outer) or prevasculature (prevasc) root cells, all from four biological replica

(F) As in (E), here for FLC and COOLAIR 50 end distal intron expression in prevas

(G) Schematic of FLC regulation by cell-size-dependent COOLAIR transcription
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ColFRI (Figure 4D) and FLC-CTL (Figure 4F). This result strongly

favors a causal role for COOLAIR in repressing sense transcrip-

tion. However, sense intron 1 RNA foci counts in FLC-TEX pre-

vasculature cells did not revert to increasing with cell size, as in

the outer cells, but were instead roughly constant with cell size

(Figure 4F). We conclude that in prevasculature cells COOLAIR

expression increases with cell size and that COOLAIR contrib-

utes to repression of sense FLC transcription (Figure 4G). As a

result, sense FLC expression in prevasculature cells reduces

with increasing cell size.

DISCUSSION

In this work, we have dissected with high resolution the cell-size-

dependent RNA kinetics and variability of FLC, an important

developmental regulator in a multicellular eukaryote. Our anal-

ysis has indicated that in outer layer cells without observable

COOLAIR expression, total cellular mRNA production increases

linearly with cell size, while themRNAdegradation rate is cell size

independent. In these cells, we also quantified themean rates for

transcription elongation, intron processing, and lariat degrada-

tion, as well as mRNA release from the locus (Table 1) using a

new methodology measuring intronic RNA levels. The net result

of these dependencies is a cytoplasmic FLC mRNA number

that scales linearly with cell size (Figure 2G). We also found low

levels of stochasticity at FLC, with little evidence for bursty

transcription.

The low levels of stochasticity at FLC do not support the con-

ventional picture of bursty gene regulation. Instead, the apparent

broad width of the cellular FLC mRNA distribution is almost

entirely explained by a linear scaling of total mRNA production

with cell size. This striking conclusion suggests that previous

work on stochastic gene expression may need to be revisited,

more carefully controlling for sources of deterministic variation

between cells, as recently argued for mammalian cells (Battich

et al., 2015; Kempe et al., 2015; Padovan-Merhar et al., 2015).

Potentially, the large cell size diversity (�8-fold) predisposes

this feature as being particularly important in plants. When con-

trolling for cell size, the residual FLC mRNA variation is then

consistent with Poissonian transcription initiation dynamics.

Limited bursty transcription kinetics are also consistent with

our data but where the burst size is atmost only three transcripts.

These conclusions are supported by the low levels of transcript

accumulation observed at FLC loci and are also compatible

with a burst size of about five transcripts found for a number

of endogenous mammalian genes (Levesque and Raj, 2013).

Importantly, transcriptional bursts, often modeled as purely

stochastic events, could arise not only due to intrinsic noise in

biochemical reactions, but also through deterministic sources

of cell-to-cell or time-dependent variation (Sherman et al.,

2015; Zopf et al., 2013). Altogether, our findings significantly

advance our understanding of gene regulation in plants,

where issues such as transcriptional scaling with cell size and
n 1 from terminator exchange (TEX) or wild-type FLC transgenes (CTL), in outer

tes per condition. Error lines denote SEM as a function of area.

culature cells.

in prevasculature cells.



stochastic or bursty gene expression have not previously been

investigated.

A further key outcome of our analysis is quantification of tran-

scription initiation and elongation rates for FLC. We found that in

an outer layer cell of average size, the typical time between initi-

ation events (�20min) is similar to the time to elongate (5–50min)

through the gene. Previous work has indicated that the FLC

locus adopts a 50 to 30 end looped configuration (Crevillen

et al., 2013). We propose as a possible scenario that in outer

layer cells, which lack observable antisense expression, a single

Pol II could transcribe the sense strand almost continuously

and reinitiate soon after termination. This mechanism could

also explain the apparent absence of large transcriptional bursts

at FLC. Furthermore, intron processing and degradation of FLC

intron 1 (�3.5 kb in length) takes a considerable time (15–45 min)

and appears to occur on a similar timescale as Pol II elongation

through the gene. Our estimates are also consistent with recent

findings in budding yeast that splicing (exon/exon ligation) oc-

curs mostly up to 50 bp downstream of the intron acceptor site

(Carrillo Oesterreich et al., 2016). With our Pol II elongation rates,

this would be within a minute and thus much shorter than our

intron-processing timescale (8–17 min), which reflects the time-

scale from intron birth until the start of lariat degradation. Overall,

our transcription and RNA-processing kinetic estimates indicate

that these processes occur in parallel and with relatively similar

timescales.

We have found that in prevasculature tissue, cell-size-depen-

dent COOLAIR transcription represses sense expression. This

contributes to an overall decrease of sense FLC transcription

with cell size in these cells in contrast to the positive scaling

observed in outer layer cells. Interestingly, it is antisense tran-

scription that positively correlates with size in prevasculature

tissue, indicating that its expression could be prioritized over

sense transcription in these cells. The mechanistic basis for

such prioritization remains unclear, but is an intriguing question

for future investigation both at FLC and genome-wide. Our

previous whole plant studies showed that co-transcriptional

proximal COOLAIR processing contributes to FLC repression

(Marquardt et al., 2014; Wang et al., 2014), likely through a

repressed chromatin state at the locus (Liu et al., 2010;

Wu et al., 2016). Distally polyadenylated COOLAIR also influ-

ences transcription of the sense FLC strand (Li et al., 2015).

How nascent COOLAIR transcription in prevasculature cells

connects with these mechanisms remains to be addressed.

Nevertheless, given the widespread prevalence of antisense

expression in different organisms (Lenstra et al., 2015; Mayer

et al., 2015; Pelechano and Steinmetz, 2013), antisense tran-

scription could be a general mechanism to modulate size

scaling of transcription.

Overall, our precise quantification of the FLC RNA kinetics is a

vital step in the functional dissection of FLC regulation. In the

future it will be interesting to see how quantitative FLC kinetics

are modulated by temperature, ranging from the relatively high

temperatures (20�C) analyzed here to winter cold (4�C). In

the latter case the vernalization pathway is activated, which re-

presses FLC transcription at a single-cell level via the Polycomb

system in a digital and epigenetically stable manner (Angel et al.,

2011; Berry and Dean, 2015; Song et al., 2012). How quantitative

FLC regulation in the warm interfaces with digital vernalization is
a critical matter for future investigation. Such investigations are

expected to benefit from the single-cell kinetic quantification

methods developed in this study.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-DIG-fluorescein antibody Roche Cat#11207741910; RRID: AB_514498

Chemicals, Peptides, and Recombinant Proteins

Digoxigenin-dUTP Roche Cat#11745816910

Actinomycin D SigmaTM Cat# A4262-2MG

Glucose oxidase Sigma TM Cat# G0543

Bovine liver catalase Sigma TM Cat# C3155

Experimental Models: Organisms/Strains

Arabidopsis ColFRI: Col-0 ecotype with an introgressed

active FRIGIDA allele from the Spanish San Feliu 2 (Sf2)

accession.

Caroline Dean laboratory,

first described in (Lee et al., 1994).

N/A

Arabidopsis FLC-TEX: transformation of 12-kb FLC

genomic DNA fragment composed of the promoter

region, gene body, and replacement of the 30 region
by rbcs3B terminator into the flc-2 FRI genotype. flc-2

is a loss-of-function FLC genotype, which has a deletion/

rearrangement within the endogenous FLC gene.

A representative FLC-TEX line (no. 577) was selected.

Caroline Dean laboratory,

first described in (Wang et al., 2014)

N/A

Arabidopsis FLC-CTL: transformation of FLC genomic

construct (15 kb of the FLC locus, FLC-15) into flc-2 FRI

background.

Caroline Dean laboratory,

first described in (Csorba et al., 2014)

N/A

Oligonucleotides

smFISH probes, see Table S1 Biosearch Technologies N/A

Software and Algorithms

Cellular RNA count and Z-projected cell area script Duncan et al., 2016; Olsson

and Hartley, 2016

https://github.com/ri23/FISHmodel

Cell volume estimation script This study https://github.com/ri23/FISHmodel

Cellular mRNA production and degradation simulations This study https://github.com/ri23/FISHmodel

FLC transcription and RNA processing simulations This study https://github.com/ri23/FISHmodel

FISH-quant Mueller et al., 2013 https://code.google.com/archive/

p/fish-quant/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Howard (martin.howard@jic.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Species and Genotype of Experimental Models
Arabidopsis ColFRI, first described in (Lee et al., 1994): Col-0 ecotype with an introgressed active FRIGIDA allele from the Spanish

San Feliu 2 (Sf2) accession. Arabidopsis FLC-TEX, first described in (Wang et al., 2014): transformation of 12-kb FLC genomic DNA

fragment composed of the promoter region, gene body, and replacement of the 30 region by rbcs3B terminator into the flc-2/FRI

genotype. flc-2/FRI is a loss-of-function FLC genotype, which has a deletion/rearrangement within the endogenous FLC gene in a

ColFRI background (Michaels and Amasino, 1999). A representative FLC-TEX line (no. 577) was selected (Csorba et al., 2014;

Wang et al., 2014). Arabidopsis FLC-CTL, first described in (Csorba et al., 2014): transformation of FLC genomic construct (15 kb

of the FLC locus, FLC-15) into flc-2/FRI background.
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Plant Material and Growth Conditions
Seeds were surface sterilized in 5% v/v sodium hypochlorite for 5 min and rinsed three times in sterile distilled water. Seeds were

stratified for 3 days at 5�C before germination in a growth cabinet (Sanyo MLR-351H) in vertically oriented Petri dishes containing

MS media minus glucose (16 hours light, 100 mmol m�2 s�1, 22�C ± 1�C) for 1 week.

For Actinomycin D (ActD) experiments, plants were initially germinated in non-supplementedmedia for 6 days and then transferred

to new plates containing ActD. Before pouring into plates, molten media was supplemented with a stock solution of ActD (1mg/ml

dissolved in DMSO) to a final concentration of 20ug/ml. ActD was obtained from SigmaTM (catalogue # A4262-2MG).

METHOD DETAILS

smFISH Procedure on Root Squashes
Seedlings were removed from the media and root tips were cut using a razor blade and placed into glass wells containing 4% para-

formaldehyde and fixed for 30 min. Roots were then removed from the fixative and washed twice with nuclease free 1X PBS (Thermo

Scientific, Lutterworth, UK). Several roots were then arranged on a Poly-L-Lysine slide (Thermo Scientific, Lutterworth, UK) and

covered by a glass coverslip (Slaughter, Uppminster, UK). The meristems were then squashed by tapping the coverslips, before

each slide was submerged (together with the coverslips) for a few seconds in liquid nitrogen until frozen. The coverslips were

then flipped off the slides using a razor blade and the roots were left to dry at room temperature for 30 min.

Tissue permeabilization was achieved by immersing the samples in 70% ethanol for a minimum of one hour. The ethanol was then

left to evaporate at room temperature for 5 min before two washes were carried out with wash buffer (containing 10% formamide and

2x SSC). 100ml of hybridization solution (containing 10% dextran sulfate, 2x SSC and 10% formamide), with each probe set at a final

concentration of 250nM, was then added to each slide. Coverslips (Slaughter, Uppminster, UK) were carefully laid over the samples

to prevent evaporation of the buffer and the probes were left to hybridize at 37�C overnight in the dark.

The hybridization solution containing unbound probeswas pipetted off the followingmorning. Each sample was thenwashed twice

with wash buffer with the second wash left to incubate for 30min at 37�C. 100ml of the nuclear stain DAPI (100ng/mL) was then added

to each slide and left to incubate at 37�C for 30 minutes. The DAPI was removed and 100ml 2xSSC was added and then removed.

100ml GLOX buffer minus enzymes (0.4% glucose in 10mM Tris, 2X SSC) was added to the samples and left to equilibrate for 2 min.

This was removed and replaced with 100ml of GLOX buffer containing the enzymes glucose oxidase and catalase, where 1ml of each

enzyme (Glucose oxidase (#G0543 from Sigma) and catalase (#C3155 from Sigma)) was added to a total of 100ml of GLOX minus

enzymes. The samples were then covered by 22mm x 22mm No.1 coverslips (Slaughter, Uppminster, UK), sealed with nail varnish

and immediately imaged.

Synthesis of the Probes
The probes for FLC mRNA, full-length FLC intron 1 and COOLAIR were as described in (Duncan et al., 2016; Rosa et al., 2016). We

used the online program Stellaris Probe Designer version 2.0 from Biosearch Technologies to design probe sequences for the 50 half,
30 half and middle of FLC intron 1 (Table S1).

Image Acquisition
For imaging we used a Zeiss Elyra PS1 inverted microscope, with a x100 oil-immersion objective (1.46 NA) and cooled EM-CCD

Andor iXon 897 camera (512x512 QE>90%); or a Zeiss CellObserver HS system equipped with a PlanApo 1.4/100x objective, an

Axiocam MRm Rev. The following wavelengths were used for fluorescence detection: for probes labeled with Quasar570 an excita-

tion line of 561 nm was used and signal was detected at 570-640 nm; for probes labeled with Quasar670 an excitation line of 642 nm

was used and signal was detected at 655-710 nm; for DAPI an excitation line of 405 nm was used and signal was detected at

420-480 nm.

Maximum projections and analysis of 3D pictures were performed using Fiji (an implementation of ImageJ, a public domain pro-

gram by W. Rasband available from http://rsb.info.nih.gov/ij/).

Combined RNA-DNA FISH
For sequential RNA-DNA FISH, after imaging RNA by smFISH (protocol outlined above), coverslips were removed and washed three

times in 4X-SSC/0.2% Tween at 37�C. Slides were then re-fixed with 4% (w/v) paraformaldehyde (PFA) in 1XPBS buffer for 10 min

and washed again several times in 1X PBS. Afther that slides were treated with 100 mg/mL RNase for 1 h at 37�C and washed twice in

1X PBS. Samples were then digested in a mixture of 1% driselase, 0.5% cellulase, and 0.025% pectolyase for 10 min at 37�C. Slides
were then washed and re-fixed with 4% PFA for 10 min and transferred to a series of ethanol steps increasing to 70%, 85%

and 100%.

Probes were labeled with Digoxigenin-dUTP (#11745816910, Roche) by nick translation. Bacterial artificial chromosome (BAC)

clone JAtY71K18, which contains an insert of 75 kb, was used as a probe. The hybridization mixture (20 ng/mL labeled DNA,

50% formamide, 10%dextran sulfate, 2X SSC, 1mg/ml salmon sperm (D9156, Sigma)) was denatured at 85�C for 10min and applied

to the slides. Slides containing the hybridization mixture were denatured for 7 min at 75�C (in an omnislide), and hybridized overnight
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at 37�C. After hybridization, slides werewashed at 42�Conce in 2X SSC, twice in 20% formamide plus 0.1X SSC and twice in 2X SSC,

and finally twice in 2X SSC at room temperature and twice in 4X SSCplus 0.2%Tween-20. Then the slideswere blocked in TNB (0.1M

TrisHCl, 0.15M NaCl, 3% BSA) for 30 min at 37�C. Digoxigenin–dUTP probes were detected with anti-DIG-fluorescein antibody

(#11207741910, Roche) prepared in TNB buffer (1:100). Nuclei were counterstained with 1 mg/mL DAPI, and slides were mounted

in Vectashield (Vector Laboratories). In order to find the cells previously imaged for smFISH, we saved the stage positions of the cells

imaged and acquired large image tiles in order facilitate the identification of the cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

smFISH RNA Count Quantification
Cellular count quantification of FLC mRNA dots from the z projection of optical sections of outer layer cells consisted of two com-

ponents - segmentation and mRNA counting, as described in (Duncan et al., 2016). These two components were combined into an

overall workflow that resulted in an image where each cell was annotated with the number of probes located inside it. The image

analysis workflow operated on image collections where each image represented a unique channel/z-stack pair. To separate the

captured microscopy image into individual channel/z-stack pairs, Bioformats was used and the pipeline was implemented in the

Python programming language, available at https://github.com/JIC-CSB/FISHcount and https://github.com/ri23/FISHmodel. To

determine the counting error we also determined mRNA counts on the same data sets using FISHquant, as described in brief in

the last section below and also in (Mueller et al., 2013). Cellular levels of FLC intron 1 and COOLAIR (all probe sets) were determined

manually using ImageJ or ZEN (proprietary software from Zeiss).

Estimation of Cellular Volumes and Areas
Volume estimation for outer layer cells was performed using twomethods: the projectionmethod and 3D segmentationmethod (Dun-

can et al., 2016; Olsson and Hartley, 2016). In the first method, we determined the cell area in pixels from the z-stack projection image

that was also utilized to determine the cellular FLCmRNA counts (Duncan et al., 2016). This value was then multiplied by the average

number of images along the z direction that contained cells in focus. Lastly we multiplied by the voxel size 0.130.130.2 mm3 for im-

ages generated using the Zeiss Elyra, and 0.07530.07530.1 mm3 for images generated by the Zeiss CellObserver. The second

method determined the cell area in pixels for each z-plane using the same algorithm as described in (Duncan et al., 2016; Olsson

and Hartley, 2016) that was previously used for the z-projection area calculation. Cell volume was then estimated as the sum of

cell area pixels over all z-planes multiplied by the above voxel size. The two segmentation methods are implemented in the Python

programming language and are available at https://github.com/ri23/FISHmodel.

For prevasculature cells, manual inspection indicated that the above described computational algorithms (Duncan et al., 2016;

Olsson and Hartley, 2016) did not generate accurate segmentation results. This was because the prevasculature cells were more

tightly packed in the root squash such that the cell outlines were less pronounced. Instead, by using ImageJ (ROI manager plugin),

we manually segmented these cells to determine their cell area in pixels in one z-plane that was in focus with the DAPI signal. This

value was then multiplied by the pixel area (0.130.1 mm2 for Zeiss), resulting in the cell area. We confirmed that for outer layer cells,

manual and computational cell area segmentation methods generated similar results.

Calculation of Mean and Standard Error of Parameter Estimates Using Propagation of Errors
Throughout this study we utilized the theory of propagation of errors to estimate the mean and error (SEM) on a quantity (e.g. param-

eter values) that is generally a function f(X1,.., Xn) of n experimentally determined quantities X1.Xn with given means hX1i.hXni and
errors (SEM) dX1.dXn. Assuming statistical independence and relatively small errors:

Mean of quantity of interest: hf(X1,.., Xn)i = f(hX1i,.., hXni),

Error on quantity of interest: dfðX1; ::;XnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1

�
vf

vXi
dXi

�2
s

.

Poisson Process Describing FLC mRNA Degradation
To model cellular FLCmRNA levels after transcription inhibition, we consider a Poisson process with a constant probability per unit

time d for degradation of a single mRNA. The probability that a given mRNA does not degrade during a time t is therefore e�dt, while

the probability that it does is 1�e�dt. If the system is initialized with bmRNAmolecules, then the probability P(r,t) that r% b survive at

time t is therefore

�
b
r

�
ðe�dtÞrð1� e�dtÞb�r . Generalising to the case where the system is initialized with any number of mRNA b up to

a maximum of M, with probability P(b,0), then the probability P(r,t) is then given by Pðr; tÞ=PM
b= r

�
b
r

�
ðe�dtÞrð1� e�dtÞb�rPðb;0Þ, as

stated in the main text.
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More formally this result can also be derived as follows. The master equation for P(r,t) is given by (Gardiner, 2009):
v

vt
Pðr; tÞ=

dðr + 1ÞPðr + 1; tÞ � d rPðr; tÞ. First, we define the generating functionGðw; tÞ=PN
b= 0w

bPðb; tÞ (Gardiner, 2009; Shahrezaei and Swain,

2008). We then convert the master equation into a partial differential equation forG(w,t):
v

vt
Gðw; tÞ=dð1�wÞ v

vw
Gðw; tÞ. We solve this

equation analytically for G(w,t), given the Dirichlet boundary conditions Gðw;0Þ=PN
b= 0w

bPðb; 0Þ, using the method of characteristics

(Shahrezaei and Swain, 2008; Zwillinger, 1998). This results in the following expression: Gðw; tÞ= PN
b=0ðwe�dt + 1� e�dtÞbPðb;0Þ.

By the definition of the generating function we can make use of its Taylor series expansion to obtain Pðr; tÞ= 1

r!

v

vwr
Gðw; tÞ

����
w= 0

. We

then obtain the desired result: Pðr; tÞ=PM
b= r

�
b
r

��
e�dt

�ð1� e�dtÞb�rPðb;0Þ.

Mathematical Characterization of Variation Due to Cell Volume and Intrinsic Noise
To assess the relation between FLCmRNA and volume for the data shown in Figure 2H, we investigated the mean and variances as

follows. We took a bin size of DV = 0.5 pL and binned the data ranging from Vmin = 0.5 pL up to Vmax = 3.5 pL accordingly. We then

calculated for the data in each bin the mean (with errorbars: SEM) and variance (with error bars: standard error on the variance

SEVarðXÞ =
VarðXÞffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p , with n the number of relevant data points). Furthermore we compared these results with a model where the

FLC mRNA scales linearly with cell volume, as described previously (Padovan-Merhar et al., 2015). We also extended this analysis

to include the effects of our volume estimation error, as described below.

As described in themain text and supported by our experimental observations (Figure 2G), we consider the cellular mRNA levels as

a random variable R(V) such that its expectation conditioned on cell volume V is given by the observed linear relationship: E(RjV) = bV

(Padovan-Merhar et al., 2015). If the residual variation would be minimal, the conditional distribution would be Poissonian: P(RjV) =
Pois(l = bV). In this case, the variance as a function of volume is Var(RjV) = bV (Figure 2H, Poisson limit). To assess the mean and

variance of this Poisson model in the presence of our experimental volume measurement error of 3= 0.3pL (z20% of the average

cell volume, Figure S1D), we instead computed EðRð ~VÞ
��� ~V˛½V � 3;V + 3�Þ and VarðRð ~VÞ

��� ~V˛½V � 3;V + 3�Þ as follows.

First note that by definition we have

E
�
R
�
~V
	��� ~V˛½V � 3;V + 3�

	
=

Z N

0

rP
�
R
�
~V
	
= rj ~V˛½V � 3;V + 3�

	
dr :

The conditional probability can be computed by invoking Bayes’ rule:

P
�
R
�
~V
	
= rj ~V˛½V � 3;V + 3�

	
=

Z V + 3

V� 3

PðRðVÞ= rjVÞPðVÞdVZ V + 3

V� 3

PðVÞdV
:

We computed in a custom-written MATLAB script, the (non-normalized) probability density P(V) directly from our experimental

data by binning our volume estimates with bin size DV=0.02pL. Then by inserting the underlying Poisson distribution

PðRðVÞ= rjVÞ= ðbVÞr
r!

e�bV with our experimentally observed volume distribution we can approximate the conditional probability by

a sum:

P
�
R
�
~V
	
= rj ~V˛½V � 3;V + 3�

	
=

PV + 3

~V =V� 3

ðb ~VÞr
r!

e�b ~VP
�
~V
	

PV + 3

~V =V� 3
P
�
~V
	 :

With this expression we then approximated the conditional expectation and variance as sums:

E
�
R
�
~V
	��� ~V˛½V � 3;V + 3�

	
=
XRmax

r = 0

rP
�
R
�
~V
	
= rj ~V˛½V � 3;V + 3�

	

and

Var
�
R
�
~V
	��� ~V˛½V � 3;V + 3�

	
=

E


�
R
�
~V
	
� E

�
R
�
~V
	��� ~V˛½V � 3;V + 3�

		2��� ~V˛½V � 3;V + 3�
�

=
PRmax

r = 0

h
r � E

�
R
�
~V
	��� ~V˛½V � 3;V + 3�

	i2
P
�
R
�
~V
	
= rj ~V˛½V � 3;V + 3�

	

Here, Rmax indicates the maximal FLC mRNA number as observed in our data set.
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Lastly, to assess intrinsic variability in mRNA levels in the presence of external variability arising from cell volume, we computed the

volume-corrected noise measure, as previously described in Ref. (Padovan-Merhar et al., 2015): NR : =
VarðRÞ � VarðEðRjVÞÞ

EðRÞ2 . In our

case of the linear relation E(RjV) = bV the second variance term can be expressed as Var(E(RjV)) = Var(bV) = b2Var(V). Furthermore by

taking the expectation over E(RjV), we find that E(R) = bE(V). We use this result to find an expression for the covariance:Cov(R,V) =

E(RV)�E(R)E(V) = bE(V2)�bE(V)2 = bVar(V). We can now combine these results to obtain Var(E(RjV)) = bCov(R,V). Altogether, this leads

to (Padovan-Merhar et al., 2015): NR =
VarðRÞ
EðRÞ2 � CovðR;VÞ

EðRÞEðVÞ . Error bars were determined by bootstrapping as in (Padovan-Merhar

et al., 2015). For the Poisson limit model, we can instead calculate the volume-corrected noise measure directly from its definition.

First we note that from the law of total probability (Shahrezaei and Swain, 2008; Sherman et al., 2015), we have Var(R) = E(Var(RjV))+
Var(E(RjV)). This expression then leads to the final result: NR =

EðVarðRjVÞÞ
EðRÞ2 =

EðbVÞ
EðRÞ2 =

1

EðRÞ.

Time Averaging of FLC Gene Copy Number throughout the Cell Cycle
We used Arabidopsis cell cycle stage time period estimates determined by (Hayashi et al., 2013; Yin et al., 2014) to approximate the

average FLC gene copy numberNloci. The cell cycle for meristematic root cells (as analysed in our smFISH assay) is, on average, 17h

(Hayashi et al., 2013; Yin et al., 2014). In these cells FLC gene copy number increases from 2 in G1 to 4 by the end of S phase. During

mitosis, transcription seems not to occur so that the copy number is effectively zero (Duncan et al., 2016; Rosa et al., 2016). If Nloci(t)

represents the gene copy number throughout the cell cycle for 0%t%17h, then the copy number changes over time as follows:

NlociðtÞ=

8>><
>>:

2 if 0%t%7h
3 if 7h%t%8h
4 if 8h%t%14:5h
0 if 14:5h%t%17h

The time average of Nloci(t) throughout the cell cycles is then Nloci = 2.5. As described, the cell cycle averaged production rate per

locus F then equals: F =
hRid
Nloci

, with hRi the average cellular FLC mRNA level and d the mRNA degradation rate. We also varied the

above dynamics such that the time points whereNloci(t) changed (i.e. at 7h, 8h and 14.5h), could deviate by at most 1 hour from these

values. Such alterations resulted in a maximal average loci value of Nloci = 2.8 and a minimum of Nloci = 2.4.

In the scenario where the production rate per locus F(t) dynamically changes to counteract changes in gene copy number Nloci(t)

throughout the cell cycle time t, we would have the following situation: C = Nloci(t)F(t), with C a constant that is not dependent on the

cell cycle time (except during mitosis where F(t)=0). As explained in the main text, integrating over the cell cycle is equivalent to aver-

aging over the observed cell population: hRi= 1

d

1

17h

Z 17h

0

NlociðtÞFðtÞdt. This results in C=
17

14:5
hRid. The time averaged production

rate per locus (F) is then obtained again by integrating over the cell cycle: F =
1

17h

Z 17h

0

FðtÞdt = hRid
2:7

. This shows that this scenario is

effectively equivalent to having the cell-cycle averaged copy number Nloci = 2.7.

Determination of Cellular FLC Intron 1 and Exonic Foci Count Scaling with Cell Size
In order to determine how the cellular intron foci counts for the various probe sets scale with cell size (either volume or cell area), as

shown in Figures 3E, 3F, and 3H, 4C–4F, S2E, S3B, and S3C, wewrote a customMATLAB script that first ordered the cells according

to their cell size. For volumes, this procedure generated the sequence V1%V2 ..%VN, where N is the total number of cells. We then

calculated the range of attained sizes hVki= 1

k

Xk

i = 1
Vi for k = 1. N and hVN+ ki= 1

N� k

XN

i =1+ k
Vi for k=1. N-1, which are thus av-

erages over the relevant cell subpopulations. Note that by construction, the hVji aremonotonically increasing with j = 1. (2N� 1) and

range from the minimal size hV1i = V1 to the maximal size hV2N�1i = VN. Then, with the given cell order above, we calculate the cor-

responding (average) cellular intron foci counts for a given volume hVji: SðhVkiÞ= 1

k

Xk

i = 1
SðViÞ for k = 1. N, and

SðhVN+ kiÞ= 1

N� k

XN

i = 1+ k
SðViÞ for k = 1. N-1. Error bars of these estimates are the standard error on the mean:

SESðhVk iÞ =
1ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k � 1

Xk

i =1
ðSðViÞ � SðhVkiÞÞ2

r
for k = 1. N, and SESðhVN+ kiÞ =

1ffiffiffiffiffiffiffiffiffiffiffiffi
N� k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� k � 1

XN

i = 1+ k
ðSðViÞ � SðhVN+ kiÞÞ2

r
for

k = 1. N-1. To ensure precise estimates, we have only included averages calculated from at least 10 experimentally observed cells

in all plots shown.
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Inference of Pol II Elongation, FLC Intron 1 Processing and Lariat Degradation Rates
For the estimation of the Pol II elongation rate (v), intron processing (s) and lariat degradation rates, respectively 50 to 30 (k53) and 30 to
50 (k53), we investigated the levels observed from four different intron 1 smFISH probe sets (Figure 3). One covered the full intron 1, the

second covered the 50 half, the third covered themiddle of the intron symmetrically, also with a length of half the intron, and the fourth

covered the 30 half. We denote their respective RNA levels at an FLC locus as If, I50, Im and I30 (Figure 3B). The gene length covered by

the 50, mid and 30 probe sets is Lp=1.8 kb (Table S1), i.e. half the intron length, with a covered gene length of 2Lp for the full-length

intron probe set (Duncan et al., 2016; Rosa et al., 2016). We, and others have found that having only two thirds of the probe set bound

could already be sufficient to generate a detectable focus signal (Duncan et al., 2016; Raj et al., 2008; Rosa et al., 2016). Conse-

quently, intronic RNA with a ‘‘missing length fraction’’ fLp of up to one-third of the probe set length could in principle still be detected.

Full-length intron 1 has, by the definition of s (Figure 3A), a lifetime of Tf =
1

s
. However, detected intron 1 RNA with a missing length

2LpfLp could arise from two sources: partially complete transcripts where Pol II has not yet transcribed this missing length or a pre-

viously full-length lariat RNA that is already partly degraded. Therefore, we find the expectation value: EðIf Þ=F

s
+
2FLpfLp

v
+
2FLpfLp
k53 + k35

,

where F is the population averaged FLC transcription initiation rate per locus. Effectively, the lifetime in the presence of a missing

length is then Tf =
1

s
+
2LpfLp

v
+

2LpfLp
k53 + k35

.

I50 is constituted by full-length intron 1, but also Pol II elongating in the 30 half of the intron. Then by taking into account again

the missing length fraction arising from the same two sources: not yet fully transcribed RNA and lariat degradation intermediates,

we obtain: T50 =
1

s
+
Lp
v
+
LpfLp
v

+min

�
LpfLp
k53

;
Lpð1+ fLpÞ
k53 + k35

�
.

I30 is constituted by full-length intron 1, but with similar missing length fraction contributions as for

I50: T30 =
1

s
+
LpfLp
v

+min

�
LpfLp
k35

;
Lpð1+ fLpÞ
k53 + k35

�
.

Lastly, Im is constituted of full-length intron 1, Pol II elongating in the 30 quarter of intron 1 and the missing length fractions:

Tm =
1

s
+
0:5Lp

v
+
LpfLp
v

+min

�
Lpð0:5+ fLpÞ

k53
;
Lpð0:5+ fLpÞ

k35
;
Lpð1+ fLpÞ
k53 + k35

�

.

Our observed quantities are the respective average FLC intron 1 foci numbers per cell: hSf i; hS50 i; hSmi and hS30 i. We next assume

that the variables Ij (subscript j˛ff ; 50;m; 30g ) are Poisson distributed with mean production rate F and degradation rate T�1
j . Given

our average FLC copy number Nloci, the hSji can then be modelled by: EðSjÞ=NlociPðIj>0Þ=Nlocið1� PðIj = 0ÞÞ=Nlocið1� expð�FTjÞÞ.
To estimate the four unknown kinetic parameters (v, s, k35 and k53) from our average cellular foci numbers hSji, we wrote a custom

MATLAB script that performed a systematic parameter sweep for all parameter combinations lying in the range: v=0.1-20 bp/s,

k53=0.1-20 bp/s and k35=0.1-20 bp/s, and s=3x10�4 – 20x10�4 s�1, while we varied the missing length fraction fLp˛
�
0;
1

9
;
2

9
;
1

3



.

We then calculated our chi-square statistic:c2 =
X

j˛ff ;50 ;m;30g

 
hSji � EðSjÞ

SEhSji

!2

. Assuming normally distributed standard errors on our es-

timates SEhSji, c
2 then follows a chi-square distribution with four degrees of freedom. For all resulting c2 statistics, we determined

their probabilities P(c2) and accepted the statistic as a good fit when P(c2) R 0.1. This resulted in a set of consistent parameter

sets for which the marginal distribution are shown in Figures S2A–S2D and, for fLp =
1

3
, in Figure 3D (boxplot: median, Q1, Q3 and

min/max). Similar results were also obtained using P(c2) R 0.05. Note that for fLp = 0, the mathematical expressions for If and I3
are equal. As a consequence, k53 and k35 remain undetermined with this missing length fraction (Figures S2C and S2D). We also per-

formed the same procedure for a wide range of parameter values outside the above described regions, but we could not find any

further good fits according to the criteria above. Lastly, we repeated the above described parameter fitting procedure to the average

intron foci numbersSj(hVki) (Figures 3E and 3F) for small (hVki = 0.9pL) and large cells (hVki = 2.8pL), using the lower and upper bounds

Nloci = 2 and Nloci = 4 in the expression FðhVkiÞ= bhVkid
Nloci

for the per locus transcription initiation probability per unit time.

Stochastic Simulations of Cellular FLC mRNA Production and Degradation
To investigate the potential consistency of transcriptional bursting with the observed cellular FLC mRNA levels (Figure 2C), we

simulated stochastic cellular FLC mRNA production and degradation in root outer layer cells (see Figure S1E for a graphical repre-

sentation) by implementing a Gillespie algorithm (Slepoy et al., 2008) in C++ (https://github.com/ri23/FISHmodel).
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Cellular FLCmRNA production occurred with probability per unit time (propensity): pt = bVd. This reaction resulted in a sense FLC

mRNA: sFLC. This mature transcript could then be degraded with probability per unit time d. Here, b = 31pL�1 indicates the slope of

the linear FLCmRNA scaling with cell volume V (Figure 2G). Furthermore, d = 3.33 10�5s�1 indicates the experimentally determined

FLC mRNA degradation rate.

For the ON/OFF transcription model (see Figure S1E for a graphical representation) we include reactions for the Boolean STATE

variable to transition from an active (inactive) into an inactive (active) state with probability per unit time pt = koff STATE (pt = kon(1�
STATE)). Production can occur with propensity: pt =

�
pon if STATE = 1
0 if STATE = 0

. The production probability per unit time in the ON state pon

is related to the burst size bs=
pon

koff
, where bs is defined as themean number of transcripts produced per ON-OFF cycle. In order to be

considered bursty transcription, two conditions have to be met (Dar et al., 2012; Shahrezaei and Swain, 2008): koff[kon with a burst

size bs [ 1. To investigate whether FLC production could be bursty, we set the off rate sufficiently fast, koff = 0.1 s�1, which effec-

tively ensured that the first condition was met (see below). The total production rate (per locus) has to be equal to the time-averaged

transcription rate (per locus), leading to: FðVÞ= bVd

Nloci
=
pon

koff

1

1+
kon
koff

kon =bs
1

1+
kon
koff

kon. Here Nloci represents the number of FLC loci in

each cell. In the main text we first described a cellular ON/OFF production model: in this case Nloci equals 1. We then also simulated

the more realistic cases where ON/OFF transcription occurs from Nloci = 2 or 4 (independent) loci. These considerations lead to two

distinct scenarios:

1) Burst size scales with volume, as proposed for mammalian genes (Padovan-Merhar et al., 2015), with burst frequency kon
independent of volume:
bsðVÞ= hbsi V

hVi and kon =
koffbhVid

koffNlocihbsi � bhVid :

Here hbsi is a chosen constant, the burst size in a cell of average volume hVi = 1.8pL.

2) Burst size bs is a chosen constant and burst frequency scales with volume: kon =
koffbVd

koffNlocibs� bVd
.

To investigate how large the burst sizes could be, bs (and in scenario 2: hbsi) was then systematically varied from 1 upwards.

Through the expressions above for each scenario, setting these burst size parameters then fully determined both the burst frequency

kon and pon.

As a model input parameter, we provided to each simulation an experimentally observed cell volume V (Figure S1F). To obtain

robust model distributions of the simulated mRNA levels, we repeated the procedures described above over 50 simulations for

each cellular volume as observed from the full-length FLC intron 1 data set (Figure S1F). We then repeated this procedure for Nloci

batches, resulting in 10000 simulations per batch. Simulations started at time t = 0 and ran until (simulated) time t, updated according

to the Gillespie algorithm, exceeded a predefined time of 10 days, to allow the system to reach steady state. We then output

the cellular volume and simulation FLC mRNA levels (Figure S1G). For the simulations with Nloci = 2 and 4, we summed the 10000

simulations from the first batch with the other batches to generate 10000 simulated cells with associated cellular mRNA levels, in

accordance with the observed cellular volume distribution. We then compared the experimentally observed cellular mRNA distribu-

tion (n = 209, Figure 2C) with the 10000 simulated cells using a Levene’s test, a Brown-Forsythe test and a Kolmogorov-Smirnov test.

The former two test for equal variance by using the mean or median in their test statistics, while the latter tests for equal distributions.

When the resulting p values were smaller than 0.05, we considered the chosen burst size incompatible with our experimental results.

Maximal consistent burst sizes were, respectively:

Scenario 1, burst size scales with volume:

Levene’s test: 3 (Nloci=1: p=0.10, Nloci=2: p=0.07, Nloci=4: p=0.05);

Brown-Forsythe test: 5 (Nloci=1: p=0.07, Nloci=2: p=0.05) and 6 (Nloci=4: p=0.05);

Kolmogorov-Smirnov test: 8 (Nloci=1: p=0.05) and 7 (Nloci=2: p=0.07, Nloci=4: p=0.06).

Scenario 2, burst frequency scales with volume:

Levene’s test: 3 (Nloci=1: p=0.05, Nloci=2: p=0.06, Nloci=4: p=0.06);

Brown-Forsythe test: 4 (Nloci=1: p=0.06, Nloci=2: p=0.09, Nloci=4: p=0.06);

Kolmogorov-Smirnov test: 5 (Nloci=1: p=0.06, Nloci=2: p=0.07, Nloci=4: p=0.08).

Stochastic Simulations of Spatiotemporal FLC Transcriptional Dynamics
To quantify mRNA release from the FLC locus (Figure 3A), we simulated stochastic FLC transcription and RNA dynamics in root outer

layer cells by implementing a spatiotemporal Gillespie algorithm (Slepoy et al., 2008) in C++ (https://github.com/ri23/FISHmodel).

The reactions included are described below and illustrated in Figure S3A.
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The FLC locus (� 6 kb) was divided into L=209 sites of length Nbp= 30 bp (see Figure S3A for a graphical representation). The sites

are numbered 0...(L-1). The sense / antisense Transcription Start Sites (TSSs) are represented by site 4 and 208 respectively. Each

site can be occupied by at most one Pol II. If a TSS site is unoccupied, a Pol II can bind to that TSS. We refer to this process as

transcription initiation. Since outer layer cells exhibit very low antisense expression (Figures 4B and 4C), we set the antisense tran-

scription initiation rate to zero. Once a Pol II has bound to a sense TSS we assume it is competent to elongate in the sense direction.

Of course, transcription initiation, subsequent formation of a transcription elongation complex and possibly promoter proximal

pausing are themselves complex processes. Nevertheless, within our minimal modelling approach we account for these processes

within a single ‘‘coarse-grained’’ transcriptional initiation probability. Incorporating these processes in more detail would not quali-

tatively alter our conclusions on FLC regulation. If the TSS site is unoccupied, sense initiation can occur with probability per unit time

(propensity): pt =
bVd

Nloci
.

Based on previously published Pol ChIP expression in ColFRI (Li et al., 2015) and consistent with previous modelling of FLC

regulation (Wu et al., 2016), we assume the magnitude of the elongation rate is independent of position along the FLC gene. Further-

more, within our minimal modelling approach we do not explicitly incorporate Pol II pausing, backtracking or arrest. Including these

processes in more detail would not qualitatively alter our conclusions. In case of sense transcription, a Pol II at site i (Pi = 1) can elon-

gate to a neighbouring site i+1, if that neighbouring site is unoccupied, with propensity: pt =
v

Nbp
Pi

Here, v = 3 bp/s represents the elongation rate, consistent with the range determined through our parameter inference procedure

(Figure 3D).

Consistent with previous findings (Wu et al., 2016), we assume that there is no early termination, only termination of a transcribing

Pol II as a consequence of cleavage/polyadenylation of the RNA transcript. We used the annotated RNA 30 ends to determine where

Pol II could drop off the template after elongation. We assume that Pol II ceases to elongate soon after it transcribes its canonical pA

sequence (Wu et al., 2016): when a sense Pol II reaches the Transcription End Site (TES), site 204, it can terminate with probability per

unit time of kpA = 0.02s�1, resulting in a free Pol II and a 30 processed sense transcript that remains at the locus (Figure S3A). The exact

value of kpA has little influence on our results as long it is shorter than the mRNA release rate kx, as is the case in our choice of pa-

rameters (see below).

The creation of sense RNA is modelled as follows (Figure S3A). A sense Pol II at site i (Pi) has produced unspliced RNA correspond-

ing to the sites TSS.i-1. Splicing of sense FLC intron 1 is explicitly modelled: as soon as Pol II elongates past the intron 1 acceptor

site I1A=131, Pol II can continue to elongate and, in addition, splicing of intron 1 can occur with a probability per unit time s = 1.5 3

10�3s�1, consistent with the range determined through our parameter inference method (Figure 3D). This reaction results in a Pol II

with nascent, spliced RNA attached: Ps
i . This Pol II species can elongate with the same dynamics as for Pol II with unspliced nascent

RNA (Pi). After splicing, lariat degradation is assumed here to occur immediately (see below). In the main text, the s�1 timescale was

defined slightly differently as the time from when intron 1 is completely transcribed to the moment of splicing, plus the extra waiting

time until lariat degradation begins. However, our results (Figure 3) do not depend on thismodel simplification because our simulation

output, i.e. all the RNA species that were measured experimentally (described below in detail), are unaffected by this detail. There-

fore, despite this simplification, we can directly compare the simulation output with our experimental observations.

A splicing reaction results in cleaved intronic (lariat) RNA with the 50 end at site I1D=14 and 30 end at site I1A-1. We term this RNA

species INI1D,I1A�1, with the first index indicating the 50 end and the second index the 30 end. This RNA and in general INi, j can then be

degraded from 50 to 30 in a first order reaction with rate k53 and propensity pt =
k53
Nbp

INi; j. As a result of this reaction, INi+1, j is formed,

corresponding to intronic RNAwith a 50 end at site i+1 (and 30 end at j>i+1). In the case of the last step of intron RNA degradation such

that i+1=j, this reaction occurs without a reaction product. Similar to 50 to 30 degradation, we also allowed 30 to 50 lariat degradation

with propensity pt =
k35
Nbp

INi; j resulting in reaction product, INi, j�1. The k53 and k35 estimates were both set to 2 bp/s consistent with our

experimental estimates.

We only explicitly modelled splicing reactions of sense intron 1 in the simulations. Incorporating splicing of additional sense introns

in the model would not affect our results provided that each splicing reaction is independent of the others. Splicing can also occur

after sense Pol II has terminated (Figure S3A). If Pol II has terminated with intron 1 spliced out, s1FLC is created, a cleaved full-length

RNA at the locus with intron 1 spliced out. If Pol II has terminated prior to splicing of intron 1, a full-length, unspliced RNA termed

unsFLC is produced. unsFLC can be spliced in intron 1 with probability per unit time s resulting in s1FLC and INI1D,I1A�1. The lariat

can then be degraded as described above. s1FLC can be released from the locus with probability per unit time: pt = kxs1FLC, i.e. we

performed simulations with a constant export rate kx = 5 3 10�4s�1 in the presence of missing length fraction fLp=1/3, see below.

Lastly, FLC mRNA release from the locus leads to a mature (spliced) sense FLC mRNA: sFLC. This mature transcript can then be

degraded with probability per unit time d.
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We output the cell volume, simulation RNA levels corresponding to FLC mRNA, the number of RNAs corresponding to the four

intron 1 probe sets (If,I50 Im and I30) and the number of exonic RNAs (Rloc, only considered in further analyses when If > 0), whilst taking

into consideration a missing length fraction fLp=1/3, as follows:

If = unsFLC+
XL�1

i = I1D+
2
3
ðI1A�I1DÞPi +

XI1D+
1
3
ðI1A�I1DÞ�1

i = I1D

XI1A�1

j = i +
2
3
ðI1A�I1DÞINi;j;

Im = unsFLC+
XL�1

i = I1D+
7
12

ðI1A�I1DÞPi +
XI1D+

1
4
ðI1A�I1DÞ�1

i = I1D

XI1A�1

j = I1D+
7
12

ðI1A�I1DÞINi;j +
XI1D+

5
12

ðI1A�I1DÞ�1

i = I1D+
1
4
ðI1A�I1DÞ

XI1A�1

j = i +
1
3
ðI1A�I1DÞINi;j;

I50 = unsFLC+
XL�1

i = I1D+
1
3
ðI1A�I1DÞPi +

XI1D+
1
6
ðI1A�I1DÞ�1

i = I1D

�XI1D+
1
2
ðI1A�I1DÞ�1

j = i +
1
3
ðI1A�I1DÞ

INi;j +
XI1A�1

j = I1D+
1
2
ðI1A�I1DÞINi;j

�
;

I30 = unsFLC+
XL�1

i = I1D+
5
6
ðI1A�I1DÞPi +

XI1D+
1
2
ðI1A�I1DÞ�1

i = I1D

XI1A�1

j = I1D+
5
6
ðI1A�I1DÞINi;j +

XI1D+
2
3
ðI1A�I1DÞ�1

i = I1D+
1
2
ðI1A�I1DÞ

XI1A�1

j = i +
1
3
ðI1A�I1DÞINi;j;

Rloc = unsFLC+ s1FLC+
XsTES

i = sTES�11

�
Pi +Ps

i

�
:

The number of cellular FLCmRNA equals:Nloci3 sFLC. The number of intron foci per cell were then for each simulation calculated

as Sj = NlociIJ with j˛{f,50,m,30}. Simulated time and number of simulations were as described for the cellular FLC mRNA dynamics

simulations. Calculations of population average and averages for various attained volumes were performed in the same manner

as described above for the experimental data points.

Quantification of FLC mRNA Release from the Locus
To determine the amount of exonic FLC RNA at the locus given the presence of FLC full-length intron 1, we utilized FISH-quant, a

MATLAB software suite (Mueller et al., 2013). We followed the quantification procedures as detailed in the manual available from

http://dev.mri.cnrs.fr/documents/95 . This method requires abundant mRNA smFISH signal as well as a method to indicate the

locations of loci: in our case FLC full-length intron 1 smFISH signal as this co-localizes exclusively with FLC loci (Figure S1A). Cell

area outlines (using an overlay of mRNA and DAPI signal) and loci (using the intron 1 focus signal) were segmented manually.

FISH-quant then determined computationally for each cell the (predominantly cytoplasmic) mRNA foci locations and background

intensity profile. The resulting foci were manually inspected to confirm the accuracy of the algorithm. Cell areas and corresponding

mRNA counts were then output to a text file. Cell areas were then converted into cell volumes using the projection method described

above. As part of the mature mRNA quantification procedure, an overall average mRNA spatial intensity focus profile (point spread

function, PSF) was then calculated from all determinedmRNA foci. This background corrected intensity profile represents onemRNA

molecule. The next step was to quantitatively compare themRNA signal at the indicated loci with the PSF. Here, we considered three

different algorithms that have been shown to be accurate for intensity quantification in the regime of relatively low RNA copy number

with a spatially confined transcription site (Mueller et al., 2013):

1. Comparison of integrated intensity of the transcription site and individual mRNA molecules (Int).

2. Superimposition of PSFs to reconstruct an image of the transcription site (PSF).

3. Comparison of the estimated amplitude of the transcription site and individual mRNA molecules (Amp).

The results which indicated the number of molecules for each transcription site were then output. Lastly, we manually included

the appropriate cell area as obtained from the mature mRNA output in the nascent RNA output list in order to relate cell area and

exonic RNA number. The resulting three distributions were relatively similar, albeit with means varying from 1.9 up to 2.5 exonic

RNA molecules (Figure 3H).

DATA AND SOFTWARE AVAILABILITY

Cell volume and area estimation and RNA foci count code, aswell as code for stochastic simulations of (1) FLCmRNAproduction and

degradation and (2) FLC transcription and RNA processing kinetics, all as described above, are available on https://github.com/ri23/

FISHmodel. FISH-quant software, used to estimate the number of exonic FLC RNA at the locus, is available on https://code.google.

com/archive/p/fish-quant/.
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Supplemental Information  

Figure legends 

Figure S1. Related to Figure 2 

Characterization of cellular FLC expression, mRNA degradation variation and cellular 

volume 

(A) Fluorescence localization of FLC DNA as assayed by DNA-FISH, full length FLC intron 

1 RNA as assayed by smFISH (red), and an overlay containing both the above and DAPI 

stain (blue) in representative ColFRI outer layer root cells. Scale bar: 5µm. Data previously 

published in (Rosa et al., 2016).  

(B) Histogram of pooled cellular FLC mRNA distributions after treatment with DMSO 

(mock) for 4 h and 6 h (N=202 cells from 3 biological replicates). 

(C) Histogram of cellular FLC mRNA counts after 6 h of ActD treatment (blue) and Poisson 

decay process prediction (red) with distribution of mRNA after 4 h ActD treatment (shown in 

Fig. 2E) as the initial distribution. Right panel: Cumulative distribution functions (CDFs) of 

the FLC mRNA count and model prediction.  

(D) Scatter plot comparing two volume estimation methods: 3D segmentation vs projection 

method in ColFRI outer layer root cells from where FLC mRNA counts were recorded 

(N=209 cells from 8 biological replicates, Fig. 2C). Also shown is line with unit slope 

(black). 

(E) Schematic of reactions implemented in stochastic Gillespie simulations of cellular FLC 

mRNA production, with either Poisson or ON/OFF dynamics, and degradation. 

(F) Histogram of cell volume distribution (N=200 cells from 3 biological replicates) from 

root outer layer cells from where full length intron 1 foci counts were recorded (Fig. 3B,C). 

These cell volumes were used as an input into the stochastic simulations described in (E) to 

account for the variation in cell size affecting FLC transcription. 



(G) Histograms of cellular mRNA model predictions from stochastic simulations described in 

(E) given the experimentally observed volume distribution described in (F). ON/OFF 

simulations had a burst size of 3 transcription events per ON/OFF cycle with either the burst 

frequency (kon) or burst size (bs) scaling with cell volume. Right panel: cumulative 

distribution functions (CDFs) of FLC mRNA (from Fig. 2C) and model predictions.  
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Figure S2. Related to Figure 3 

Estimation of Pol II elongation, FLC intron 1 processing and lariat degradation rates 

using a range of missing probe length fractions 

 (A) Marginal distributions for intron processing rate that generate good fits to the data shown 

in Fig. 3C according to a χ
2
 test (degrees of freedom k=4, acceptance probability p≥0.1) with 

missing probe length fractions ranging from 0 to 1/3. Boxplots indicate: minimum, 25% 

quantile, median, 75% quantile and maximal values. 

(B) As in (A) but for elongation rate.   

(C) As in (A) but for 5’ to 3’ lariat degradation rate.   

(D) As in (A) but for 3’ to 5’ lariat degradation rate. 

(E) Volume dependence of replicates measuring cellular smFISH foci counts per cell in outer 

layer cells for four different FLC intron 1 probe sets: full length (full), middle (mid), 5’ end 

and 3’ end. Full length: two separate experiments were performed using respectively 4 and 3 

biological replicates, respectively. Experiment 1: data as in Fig. 2B and 4C, experiment 2: 

data as in Fig. 3C. For the other probe sets (mid, 5’ end and 3’ end) replicates are shown as 

pooled data from two biological replicates each; for these, all biological replicates pooled 

together are shown in Fig. 3E,F. Error lines: s.e.m. as function of volume.   
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Figure S3. Related to Figure 3 

Spatiotemporal Gillespie simulations of FLC transcription to quantify FLC mRNA 

release from the locus 

 (A) Schematic of spatially discretized FLC gene and reactions as implemented in 

spatiotemporal stochastic Gillespie simulations of FLC transcription and RNA degradation 

dynamics. Sense (black) and antisense (grey) transcripts are indicated. Since antisense 

transcription is very low in root outer layer cells, we did not include antisense transcription in 

our simulations. 

(B) Volume dependence of cellular smFISH foci counts per cell in outer layer cells for FLC 

intron 1 as in Fig 3E,F. In left panel: full length (full) and 5’ end; in right panel: middle (mid) 

and 3’ end. Also shown are spatiotemporal Gillespie simulation fits (black, grey). Error lines: 

s.e.m. as function of volume.   

(C) Volume dependence of average locus associated exonic FLC RNA levels from two 

separate experiments (with 2 biological replicates per experiment). Three different 

quantification methods shown as in Fig. 3H, which shows the pooled data. Error lines: s.e.m. 

as a function of volume. 

  



S3A.

0 4 14

sT
SS

as
TSS

se
ns

e T
ES

dis
ta

l a
s T

ES

I1
A

I1
D

13
1

20
4

20
8

Site number

sense elongation

sense

TES

i ≥ I1A

P

INI1D,I1A-1 

Ps

co-transcriptional 

sense intron 1 splicing

i i+1

X X

X

Sense full length RNA*

sense termination

X =
P  Pol II with unspliced intron 1

Ps Pol II with spliced intron 1

Different forms of sense transcribing Pol II:

* sense full length RNA forms:
unsFLC: unspliced intron 1, resulting from P termination
s1FLC: intron 1 spliced, resulting from Ps termination

post-transcriptional 

sense intron 1 splicing

at the locus

unsFLC s1FLC + INI1D,I1A-1 

sense FLC mRNA

release from the locus

mRNA degradation sFLC

s1FLC sFLC 

Psense initiation

sTSS

5’ to 3’ intronic RNA degradation INi,j

INi+1,j 

3’ to 5’ intronic RNA degradation INi,j

INi,j-1 

i and j indicate locations corresponding 

respectively to 5’ and 3’ end of intron

if i+1 < j

if i+1 = j

if i+1 < j

if i+1 = j

B.

Cell volume (pL)
Cell volume (pL)

In
tr

on
 fo

ci
co

un
t (

ce
ll-1

) 

In
tr

on
 fo

ci
co

un
t (

ce
ll-1

) 

Cell volume (pL) Cell volume (pL)

 E
xo

ni
c 

F
LC

 a
t l

oc
us

 
(g

iv
en

 F
LC

 in
tr

on
 1

)

 E
xo

ni
c 

F
LC

 a
t l

oc
us

 
(g

iv
en

 F
LC

 in
tr

on
 1

)

Experiment 1 Experiment 2C.



Figure S4. Related to Figure 4. 

Characterization of anticorrelation between FLC sense and antisense transcription 

(A) Fluorescence localization of full length sense intron 1 (red) and antisense (COOLAIR) 5’ 

end distal intron (green) overlaid with DAPI stain (blue) in representative ColFRI 

prevasculature root cell. Scale bar: 5µm. Data previously published in (Rosa et al., 2016).  

(B) Frequency of loci containing FLC full length intron 1, when COOLAIR 5’ end distal 

intron is not present (S) or present (S if AS) at the same locus in root prevasculature cells. 

N=254 cells from 6 biological replicates. Error bars: s.e.m. **** p-value < 10
-4

.  Data 

previously published in (Rosa et al., 2016). 
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