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Supplementary Note 1: Step-by-step guide for for estimating h2
SNP from raw genotype data. This guide is also available at

www.ldak.org/protocol; we recommend you use the online version which will be kept up-to-date. This guide is divided into
four steps: quality control & imputation, merging cohorts, estimating h2SNP and advanced analyses. It is designed to be run as bash
scripts on a UNIX operating system, but should also work in Terminal on a MAC (LDAK is not compatible with Windows). In addition
to awk, it uses LDAK (version 5), PLINK (v. 1.9), SHAPEIT (v. 2.20) and IMPUTE2 (v. 2.3.2); see Web Resources for the software
homepages and links to files. This guide also requires a (phased) reference panel; we used 1000 Genomes Phase 3 (October 2014),
which we downloaded from the IMPUTE2 website. A backslash (\) at the end of a line indicates a command spans multiple lines. Many
of the commands can be run in parallel; access to a computer cluster is highly recommended when performing imputation and when
calculating SNP weightings for dense data.

Step 1 - Imputation. Suppose the genotypes for a cohort are stored in PLINK binary format: data.bed, data.bim, data.fam.
First, we performed quality control of samples (based on heterozygosity and missingness) and SNPs (MAF, call-rate, HWE). To identify
ancestry, we compared samples with HapMap data, stored in hapmap.bed, hapmap.bim, hapmap.fam.

#Sample quality control - we suggest using pruned, high-quality, autosomal SNPs

plink --bfile data --indep-pairwise 50 10 .2 --maf 0.01 --geno 0.05 --autosome --out autoQC

plink --bfile data --extract autoQC.prune.in --missing --out stats

plink --bfile data --extract autoQC.prune.in --het --out stats

#Based on stats.het and stats.imissing, identify outlying samples

#Save those to retain in the file keepqc.ind

#Check / determine sex (for human samples, this requires Chromosome 23 data)

plink --bfile data --indep-pairwise 50 10 .2 --maf 0.01 --geno 0.05 --chr 23 --out sexQC

plink --bfile data --extract sexQC.prune.in --check-sex --out sex

#Get (non-ambiguous) SNPs in common with HapMap, compute population axes and projections

#These scripts use awk, installed by default in unix - see www.dougspeed.com/awk for a brief guide

awk '(($5!="A"||$6!="T")&&($5!="T"||$6!="A")&&($5!="C"||$6!="G")&&($5!="G"||$6!="C")){print $4}' \

hapmap.bim > nonamb.snps

awk '(NR==FNR){arr[$1];next}($4 in arr && $1<23){print $2}' nonamb.snps data.bim > hapmap.snps

plink --bfile hapmap --indep-pairwise 50 10 .2 --maf 0.05 --extract hapmap.snps --out hapmap

ldak --calc-kins-direct hapmap --bfile hapmap --extract hapmap.prune.in --ignore-weights YES

--power -0.25

ldak --pca hapmap --grm hapmap --axes 5

ldak --calc-pca-loads hapmap --bfile hapmap --grm hapmap --pcastem hapmap

ldak --calc-scores hapmap --bfile data --scorefile hapmap.load --allow-flips YES --keep keepqc.ind

#Can compare Columns 5 & 7 of hapmap.profile with Columns 3 & 4 of hapmap.vect

#Save those to retain to keepqcpop.ind

#SNP quality control - will use only samples in keepqcpop.ind

plink --bfile data --keep keepqcpop.ind --freq --out statsb

plink --bfile data --keep keepqcpop.ind --missing --out statsb

plink --bfile data --keep keepqcpop.ind --hardy --out statsb

#Based on statsb.frq, statsb.lmissing and statsb.hwe, identify poor quality SNPs

#Commonly used thresholds are MAF>0.01, CR>0.95 & HWE P>1e-6

#Save those to retain in the file keep.snps

#Remake data retaining only good quality samples and SNPs, and updating sex

plink --bfile data --keep keepqcpop.ind --extract keep.snps --update-sex sex.sexcheck 2 \

--make-bed --out clean



Next, it is necessary to ensure SNP annotations are correct and consistent with those in the reference panel. We suggest the
following checks. (i) Update SNP names based on the file RsMergeArch, and exclude those reported as retired in the file SNPHistory
(see LiftOver website for an explanation of these two files). (ii) If necessary, convert genomic positions to the correct build (our reference
panel was Build 37 / hg 19). For this we obtained locations from Genome Browser. If a SNP name was not present in Genome Browser,
we would initially exclude, but would re-introduce if present in the reference panel). We would also exclude SNPs whose alleles did not
match those recorded in genome browser (allowing for strand flips). (iii) Check positions and alleles consistent with reference panel.
In our case, the 1000 Genomes annotations agreed very well with those in Genome Browser, so there were typically at most a handful
of SNPs with discordant positions or incompatible alleles. (iv) Decide whether to retain ambiguous SNPs (those with alleles A & T
or C & G). For a non-ambiguous SNP, if the alleles in the cohort match those in 1000 Genomes, then the strands must also match; for
ambiguous SNPs, this is not necessarily the case. Illumina genotyping arrays typically have very few (<5%) ambiguous SNPs, so we
decided to exclude these to be certain of consistency. Affymetrix arrays typically have a higher proportion (10-20%), so we preferred to
retain. In this case, we aligned SNPs to the forward strand (the alignment of 1000 Genomes) and checked the allele frequencies were
highly concordant and that there were no obvious inversions.

We performed the above checks manually in R. However, an alternative is to use the software provided on the LiftOver website.
Note these checks are required even if subsequently using an imputation server.

Next we phased data using SHAPEIT, then imputed using IMPUTE2. For this we divided the genome into 549 regions (518 auto-
somal) of approximate size 5Mb (regions provided in the file allreg.txt). Note that we include instructions for imputing Chromosome X,
however, for our analyses we considered only autosomal SNPs. Suppose the genotype data, with annotations updated, are stored in
updated.bed, updated.bim and updated.fam. We provide approximate times and memory requirements assuming the cohort
contains 5000 individuals.

#Divide data by chromosome

for i in {1..23}; do

plink --bfile updated --chr $i --make-bed --out split$i;

done

#Phase each chromosome using SHAPEIT

#genetic_map_chr${i}_combined_b37.txt contains genetic mappings for Chromosome i

#The option '--thread' controls the number of cores

#'--effective-size 11418' is recommended for Europeans (for other populations see SHAPEIT website)

for i in {1..23}; do

shapeit -B split$i -M genetic_map_chr${i}_combined_b37.txt --thread 8 \

--effective-size 11418 -O phase$i

done

#Phased data for Chromosome i will be stored in phase$i.haps and phase$i.sample

#Using 8 threads, the longest chromosomes would take 10-20 hours, and require <1Gb per thread

#Impute in regions of approximately 5Mb using IMPUTE2

#allreg.txt contains the chromosome, start and end bp for 549 regions

#Regions 1-518 are autosomes, 520-548 are Chromosome 23, 519 & 549 are pseudo-autosomal

#1000GP_Phase3_chr$i.hap.gz contains phased genotypes for 1000 Genomes individuals

#1000GP_Phase3_chr$i.legend.gz contains SNP annotations for these

#It is possible to exclude SNPs based on MAF using the option `-filt_rules_l' - excluding SNPs

showing no variation across European 1000 Genomes individuals substantially reduced memory

requirements

#See the IMPUTE2 website for explanation of other options

#For the 518 autosomal regions



for j in {1..518}; do

chr=`awk -v j=$j '(NR==j){print $1}' allreg.txt`

start=`awk -v j=$j '(NR==j){print $2}' allreg.txt`

end=`awk -v j=$j '(NR==j){print $3}' allreg.txt`

impute2 -m genetic_map_chr${chr}_combined_b37.txt \

-h 1000GP_Phase3_chr$i.hap.gz -l 1000GP_Phase3_chr$i.legend.gz \

-use_prephased_g -known_haps_g chr${chr}.haps -filt_rules_l 'EUR==0' \

-int $start $end -Ne 11418 -allow_large_reg -o_gz -o chunk$j

done

#For the Chromosome 23 regions, it is necessary to add -chrX (and edit the genetic map)

for j in {520..548}; do

start=`awk -v j=$j '(NR==j){print $2}' allreg.txt`

end=`awk -v j=$j '(NR==j){print $3}' allreg.txt`

impute2 -m genetic_map_chrX_nonPAR_combined_b37.txt

-h 1000GP_Phase3_chrX_NONPAR.hap.gz -l 1000GP_Phase3_chrX_NONPAR.legend.gz \

-use_prephased_g -known_haps_g chr23.haps -filt_rules_l 'EUR==0' \

-int $start $end -Ne 11418 -allow_large_reg -o_gz -o chunk$j -chrX

done

#For the pseudo-autosomal regions, it is necessary to add -chrX and -Xpar

#Note that imputation in these regions tends to be difficult as they tend to contain very few SNPs

j=519

start=`awk -v j=$j '(NR==j){print $2}' allreg.txt`

end=`awk -v j=$j '(NR==j){print $3}' allreg.txt`

impute2 -m genetic_map_chrX_PAR1_combined_b37.txt \

-h 1000GP_Phase3_chrX_PAR1.hap.gz -l 1000GP_Phase3_chrX_PAR1.legend.gz \

-use_prephased_g -known_haps_g chr23.haps -filt_rules_l 'EUR==0' \

-int $start $end -Ne 11418 -allow_large_reg -o_gz -o chunk$j -chrX -Xpar

j=549

start=`awk -v j=$j '(NR==j){print $2}' allreg.txt`

end=`awk -v j=$j '(NR==j){print $3}' allreg.txt`

impute2 -m genetic_map_chrX_PAR2_combined_b37.txt \

-h 1000GP_Phase3_chrX_PAR2.hap.gz -l 1000GP_Phase3_chrX_PAR2.legend.gz \

-use_prephased_g -known_haps_g chr23.haps -filt_rules_l 'EUR==0' \

-int $start $end -Ne 11418 -allow_large_reg -o_gz -o chunk$j -chrX -Xpar

#Imputed data for Region j will be stored in chunk$j.gz and chunk${j}_info

#Regions typically complete in 2-6 hours and require approximately 10Gb memory



Step 2 - Quality Control Having imputed each cohort separately, we next merged imputed cohort data to form datasets. We stored
data in “Speed Format,” a format which accommodates non-integer values and thus allows us to analyze expected allele counts. An
alternative is to convert data to hard genotypes and store in PLINK binary format, which will have negligible impact if using only
high-quality SNPs. This guide uses strict quality control, matching those we used for the main analyses. Specifically, we retained only
bialellic autosomal SNPs which in all cohorts satisfied (expected) MAF>0.01 and rj > 0.99 (if imputed) or r2 type0 > 0.99 (if
directly genotyped), where rj is our information score (Supplementary Figure 20) and r2 type0 is a metric computed by IMPUTE2.
Suppose we are combining three cohorts, stored in the folders cohortA, cohortB and cohortC.

These instructions are designed to process the output from IMPUTE2, however, they should be easily modifiable for other
imputation software (see www.ldak.org/file-formats for ways to incorporate different genotype formats). Always keep an eye
on the screen output from LDAK to understand how datasets are being processed and for suggested options.

#Create badgeno.snps, listing SNPs which in any cohort were directly genotyped and had r2_type0<0.99

#Column 9 of the the info file indicates imputed (0) or genotyped (2); Column 12 provides r2_type0

rm badgeno.A badgeno.B badgeno.C

for j in {1..518}; do

awk < cohortA/chunk${j}_info '($9==2 && $12<.99){print $2}' >> badgeno.A;

awk < cohortB/chunk${j}_info '($9==2 && $12<.99){print $2}' >> badgeno.B;

awk < cohortC/chunk${j}_info '($9==2 && $12<.99){print $2}' >> badgeno.C;

done

cat badgeno.A badgeno.B badgeno.C | sort | uniq > badgeno.snps

#Merge cohorts by region, excluding SNPs in badgeno.snps, and filtering based on MAF and r_j

#'--common-preds YES' restricts t variants present in all (three) cohorts

#'--exclude-odd YES' excludes variants with alleles other than A, C, G, T (i.e., none SNPs)

#'--exclude-dups YES' excludes variants with matching positions (i.e., none diallelic SNPs)

#'--pass-all YES' ensures SNPs must pass QC in all cohorts

#Replace --make-speed with --make-bed to save data in Binary PLINK format

for j in {1..518}; do

echo -e "cohortA/chunk$j cohortA/phase1.sample" > list$j

echo -e "cohortB/chunk$j cohortB/phase1.sample" >> list$j

echo -e "cohortC/chunk$j cohortC/phase1.sample" >> list$j

chr=`awk -v j=$j '(NR==j){print $1}' allreg.txt`

ldak --make-speed merge$j --mgen list$j --oxford-single-chr $chr

--exclude badgeno.snps --exclude-odd YES --exclude-dups YES

--min-maf 0.01 --min-info .99 --pass-all YES --common-preds YES

done

#Mergxed data for Region j will be stored in speed format with prefix merge${j}

#Combine across regions

#Speed format files can be combined using cat; for PLINK data files, use --merge-list in PLINK

cat merge{1..518}.speed > data.speed

cat merge{1..518}.bim > data.bim

cp merge1.fam data.fam

head -n 1 merge1.stats > data.stats

for j in {1..518}; do

tail -q -n +2 merge$j.stats >> data.stats

done

awk < data.stats '(NR>1){print $1, $6}' > data.infos

#The dataset is now saved in data.speed, data.bim and data.stats



#data.infos contains info scores (although these are not used for our main analysis)

#If hard genotypes are required, allele counts can be rounded to the nearest integer

ldak --make-bed hard --speed data --threshold 0.5

#Genotypes will be saved to hard.bed, hard.bim and hard.fam

To reliably estimate h2SNP, individuals must be unrelated, which we achieve by filtering based on alleleic correlations computed
from a pruned subset of SNPs. Next we make the covariate file covar.covar, which has 33 columns: two IDs and sex (Columns
1, 2, 5 of data.fam), 20 dataset principal axes (Columns 3 to 22 of prune.vect) and 10 population axes (Columns 5, 7, ..., 23)
of tg.profile. To obtain population axes, we use 1000 Genomes data; suppose these are stored in tg.bed, tg.bim and tg.fam. We
additionally perform single-SNP analysis; this used as a sanity check, and also to identify any highly-associated SNPs (P < 10−20)

which we subsequently include (after pruning) as additional fixed-effect covariates.

#Thin SNPs, then use these to compute allelic correlations

#We ensure no SNPs within 1Mb have correlation squared >0.2

#Could also exclude SNPs in high-LD regions (e.g., the MHC)

ldak --thin prune --speed data --window-kb 1000 --window-prune 0.2

ldak --calc-kins-direct prune --speed data --extract prune.in --ignore-weights YES --power -0.25

#The list of pruned SNPs are contained in prune.in; the kinship has stem prune

#Filter relatedness (for each cohort, then for all together), then obtain top 20 eigen-vectors

#By default, LDAK filters using the threshold c, where -c is smallest observed kinship

#To instead, filter based on a threshold of (say) 0.05, add --maxrel 0.05

ldak --filter keepA --grm prune --keep cohortA/phase1.sample

ldak --filter keepB --grm prune --keep cohortB/phase1.sample

ldak --filter keepC --grm prune --keep cohortC/phase1.sample

cat keepA.keep keepB.keep keepC.keep > keepABC.keep

ldak --filter prune --grm prune --keep keepABC.keep

ldak --pca prune --grm prune --axes 20 --keep prune.keep

#Compute 10 population axes from 1000 Genomes data

ldak --calc-kins-direct tg --bfile tg --extract prune.in --ignore-weights YES --power -0.25

ldak --pca tg --grm tg --axes 10

ldak --calc-pca-loads tg --bfile tg --grm tg --pcastem tg

ldak --calc-scores tg --speed data --scorefile tg.load --allow-flips YES --keep prune.keep

#Identify highly-associated SNPs from single-SNP analysis (we define as P<1e-20)

ldak --linear linear --speed data --covar covar.covar --keep prune.keep --pheno phen.pheno

awk '(NR>1&&$7<1e-20){print $2}' linear.assoc > top.snps #if using LDAK

#OR

plink --logistic hide-covar --out logistic --bfile hard --pheno phen.pheno \

--covar covar.covar --keep prune.keep

awk '(NR>1&&$9<1e-20){print $2}' logistic.assoc.logistic > top.snps #if using PLINK

#Prune these - we used a correlation-squared threshold of 0.5 and window of 10Mb

ldak --thin top --speed data --extract top.snps --keep prune.keep \

--window-prune 0.5 --window-kb 10000



Step 3 - Compute SNP weights, calculate kinships and estimate h2SNP. At this point, the dataset is stored in data.speed,
data.bim and data.fam, while prune.keep provides a list of unrelated (and population homogeneous) individuals and covar.covar
contains covariates. If any highly-associated SNPs were identified, these are listed in top.in. Suppose phenotypes are stored in
phen.pheno. Again, always keep an eye on the screen output from LDAK.

#Prepare to compute SNP weightings

ldak --cut-weights sections --speed data --keep prune.keep

#The details of each section will be stored in sections/section.details

#Compute weightings for each section - for this example, suppose there are 200 sections

#The exact number of sections is provided in sections/section.number

#When data come from multiple cohorts (here 3), using Subset Options guards against genotype errors

#For this, we create the files keep1, keep2 & keep3, containing individuals from Cohorts A, B & C

awk '(NR==FNR){arr[$1];next}($1 in arr){print $1, $2}' prune.keep cohortA/phase1.sample > keep1

awk '(NR==FNR){arr[$1];next}($1 in arr){print $1, $2}' prune.keep cohortB/phase1.sample > keep2

awk '(NR==FNR){arr[$1];next}($1 in arr){print $1, $2}' prune.keep cohortC/phase1.sample > keep3

for j in {1..200}; do

ldak --calc-weights sections --speed data --subset-number 3 --subset-prefix keep --section $j

done

#Typically sections complete in under 2 hours (most within 10 minutes)

#Join weightings across sections

ldak --join-weights sections --speed data

#Weights will be stored in sections/weightsALL

We will compute kinships for each chromosome separately; this will allow us to incorporate a test for inflation of h2SNP due to
cryptic relatedness. It is normally not necessary here to include highly-associated SNPs as covariates, but if you do, make sure not to
double count their contribution. If the trait is quantitative and individuals span multiple cohorts, we can also test for inflation due to
genotyping errors.

#Get a list of SNPs on each chromosome

awk '{print $4 > "chr"$1""}' data.bim

#Compute kinships for each chromosome

ldak --cut-kins kinships --speed data --by-chr YES

for j in {1..22}; do

ldak --calc-kins kinships --speed data --partition $j --weights sections/weights.all --power -0.25

done

#Join to get genome-wide kinships

ldak --join-kins kinships

#Genome-wide kinships will be saved with prefix kinships/kinship.all

#Construct kinships for Chromosomes 1-3, 4-7, 8-11 & 12-22

rm listA; for j in {1..3}; do echo "kinships/kinships.$j" >> listA; done

rm listB; for j in {4..7}; do echo "kinships/kinships.$j" >> listB; done

rm listC; for j in {8..11}; do echo "kinships/kinships.$j" >> listC; done

rm listD; for j in {12..22}; do echo "kinships/kinships.$j" >> listD; done

for j in {A,B,C,D}; do

ldak --add-grm kins$j --mgrm list$j



done

#Test each quarter separately and combined

for j in {A,B,C,D}; do

ldak --reml quad$j --grm kins$j --pheno phen.pheno --covar covar.covar --keep prune.keep \

--top-preds top.in --speed data

done

echo -e "kinsA\nkinsB\nkinsC\nkinsD" > listABCD

ldak --reml quadALL --mgrm listABCD --pheno phen.pheno --covar covar.covar --keep prune.keep \

--top-preds top.in --speed data

#The results are stored in quadA.reml, quadB.reml, quadC.reml, quadD.reml and quadALL.reml

#The estimated inflation is (h2A + h2B + h2C + h2D - h2ALL)/3 - useful to view as a percentage

grep Her_K quad{A,B,C,D,ALL}.reml | awk '(NR<=4){sum+=$2}(NR>4){sum2+=$2}END{I=(sum-sum2)/3;print

"Inflation:", I, "=", I/sum2*100,"%"}'

#Test for inflation due to genotyping errors

ldak --he inflation --grm kinships/kinships.all --pheno phen.pheno --covar covar.covar \

--keep prune.keep --subset-number 3 --subset-prefix keep --top-preds top.in --speed data

#The results are stored in inflation.he and inflation.he.compare

If satisfied that there is minimal inflation due to cryptic relatedness (and genotyping error if tested), we are ready to estimate SNP
heritability

#Estimate SNP heritability

ldak --reml final --grm kinships/kinships.all --pheno phen.pheno --covar covar.covar \

--keep prune.keep --top-preds top.in --speed data



Step 4 - Advanced analyses: Here we provide sketch details for some of the other analyses performed in the main text, as well as some
additional features of LDAK. If including lower-quality SNPs, then simply add --infos when computing kinships. The genotype
scaling can be varied using the option --power. For example, to use the previous default scaling, use --power -1.

After performing REML, the .share file provides relative estimates. These are useful when interested in relative contributions
(e.g., of different SNP classes). The .reml file contains the null and alternative (log) likelihoods and a likelihood ratio test (LRT)
statistic (the null model corresponds to only covariates). To test significance, we typically computed the difference in LRT statistics
between results from partitioned and non-partitioned model (e.g., when comparing the GCTA and LDAK Models, we performed REML
using just the genome-wide kinship matrix, then using two kinships, one computed from low-LD SNPs, the other from high-LD SNPs.

To test the contribution of DNaseI hypersensitivity sites (DHS), we downloaded DHS annotations from hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.

gz. From these we created dhs.txt which had four columns, providing a unique identifier, chromosome, start and end basepairs for
each. Note that if two-way SNP partitioning results in a very uneven divide of SNPs, instead of computing both kinships from scratch,
it can be much quicker to first compute kinships for the small tranche, then subtract these from the (previously-computed) genome-wide
kinships using the option --sub-grm. We did this when testing DHS, as these contain less than 20% of the genome. A similar strategy
can be used when considering more than two partitions.

#To calculate enrichment of DHS, first compute kinships from DHS SNPs, then its complement (i.e.,

subtract from genome-wide kinships), then perform two-way REML

ldak --cut-genes dhs --speed data --genefile dhs.txt --ignore-weights YES

ldak --calc-kins-direct dhs --speed data --extract dhs/gene_preds.txt --weights

sections/weights.all --power -0.25

echo -e "kinships/kinshipALL\ndhs" > listsub

ldak --sub-grm not_dhs --mgrm listsub

echo -e "dhs\nnot_dhs" > listdhs

ldak --reml dhs --mgrm listdhs --pheno phen.pheno --covar covar.covar --keep prune.keep \

--top-preds top.in --speed data

#If including rare variants, then partition based on MAF

#Exact boundaries are not too important, but consider extra boundaries (say at 0.00025) if using

very rare SNPs

#Likely some of the rare variants will be low quality, so add '--infos'

awk < data.stats '(NR>1 && $3>0.1){print $1}' > maf1

awk < data.stats '(NR>1 && $3>0.01 && $3<=0.1){print $1}' > maf2

awk < data.stats '(NR>1 && $3>0.025 && $3<=0.01){print $1}' > maf3

awk < data.stats '(NR>1 && $3>0.001 && $3<=0.025){print $1}' > maf4

awk < data.stats '(NR>1 && $3<=0.001){print $1}' > maf5

ldak --cut-kins rare --partition-number 5 --partition-prefix maf

for j in {1..5}; do

ldak --calc-kins rare --speed data --partition $j --weights sections/weightsALL \

--power -0.25 --infos data.infos

done



Supplementary Note 2: List of analyses. This note summarizes our main analyses; red text reports the conclusions we drew from each.
Scripts are provided in Supplementary Note 1. Prior to these analyses, we performed extensive quality control which included testing
for inflation of h2SNP due to cryptic relatedness and genotyping errors (Supplementary Note 5).

(i) - Investigating the relationship between heritability and MAF: The parameter α, used when scaling genotypes, specifies a
relationship between heritability and MAF (see Main Text Figure 2A). We compare different α based on model likelihood; higher
likelihood indicates more accurate α. Across the 42 traits, and for a variety of SNP filterings, we deduce that α = −1, the scaling
most commonly used in human genetics and the previous default in SNP-based heritability analysis, provides sub-optimal model fit,
whereas −0.5 < α < 0 fit the data much better (Main Text Figure 2B, Supplementary Figures 1 & 2 and Supplementary Table 2). We
recommend α = −0.25 as the new default scaling.

(ii) - The impact of the assumed relationship between heritability and LD: The GCTA Model assumes that heritability contributions
are independent of LD; the LDAK Model defines a relationship where SNPs in low-LD regions are expected to contribute more than
those in high-LD regions. For each of the 42 traits, we compare estimates of h2SNP from GCTA with those from LDAK (Main Text
Figure 3A, Supplementary Figures 7, 8 & 9 and Supplementary Table 3). We additionally consider GCTA-MS (GCTA partitioned by
MAF), GCTA-LDMS (partitioned by MAF and LD) and LDSC, which can be viewed as an implementation of GCTA using summary
statistics. Estimates of h2SNP based on the LDAK Model tend to be substantially higher than those based on the GCTA Model.

(iii) - Comparing the GCTA and LDAK Models through simulation Yang et al. reported results from a simulation study in which
GCTA outperformed LDAK. However, the superiority of GCTA was to be expected, as when generating phenotypes, they sampled
causal SNP effect sizes under the GCTA Model. We repeat their study, showing that if effect sizes are instead sampled under the LDAK
Model, then LDAK is superior (Main Text Figure 3B and Supplementary Figures 10 & 11). It is difficult to fairly compare the GCTA
and LDAK Models through simulation, so we instead test them using real data.

(iv) - Testing the GCTA and LDAK Models on real data: Across the 42 traits we find that assuming the LDAK Model consistently
results in better model fit than assuming the GCTA Model (Supplementary Table 4). This is the case whether we use α = −1 or
α− 0.25, demonstrating that the dependence of heritability on LD is distinct from its dependence on MAF. To visually demonstrate the
improvement in model fit, we partition SNP into low-LD and high-LD, showing that the estimated contribution to h2SNP of each tranche
is much closer to that predicted by the LDAK Model (Main Text Figure 4 and Supplementary Figure 12). Across a wide-range of real
datasets, the LDAK Model is more realistic than the GCTA Model.

(v) - Testing the relationship between heritability and genotype certainty: Using the UCLEB traits, we demonstrate that when
lower-quality SNPs are included, model specification is improved by taking into account genotype certainty (Supplementary Table 5). If
lower-quality SNPs are included, the effect-size prior assumptions should be adjusted to incorporate genotype certainty.

(vi) - Final estimates of h2SNP: We analyze each trait using LDAK with α = −0.25 (Main Text Table 1 and Supplementary Table 1).
For many traits, we find that common SNPs tag substantially more heritability than previously appreciated.

(vii) - Enrichment of DNaseI hypersensitivity sites (DHS): By partitioning each dataset into SNPs inside and outside of DHS, we
estimate that across the 42 traits, DHS on average contribute 24% (SD 2) of h2SNP. This is higher than they are expected to contribute
under the LDAK Model (18%), but considerably lower than the estimate of 79% from Gusev et al.2 (Main Text Figure 5, Supplementary
Figure 14 and Supplementary Table 8). DHS are enriched for heritability, but to a much lesser extent than previously reported.

(viii) - Relaxing quality control for the UCLEB data: We first reduce the information score threshold, then the MAF threshold. We
find that across the 23 traits, including lower-quality (common) SNPs leads to significantly higher estimates of h2SNP, and to a large
extent makes up for the relatively low coverage of the Metabochip (Main Text Figure 6 and Supplementary Figures 5 & 18). Likewise,
we show that including rare SNPs results in a significant increase in h2SNP, and we estimate that common and rare variants contribute
to h2SNP in an approximate 2:1 ratio (Main Text Figure 6 and Supplementary Figure 6). Our improved heritability model allows us to
appreciate the causal variation tagged only by lower-quality and rare SNPs.



Supplementary Note 3: Prevalence of pulmonary tuberculosis. When analyzing diseases, it is preferable to report estimates of
h2SNP on the liability scale, as these are invariant to ascertainment and so can be compared across studies.3, 4 However, to do this
requires an estimate of (lifetime) prevalence. Where possible, we copied the prevalences used by previous heritability analyses. For
pulmonary tuberculosis, we are unable to find any reported estimates of h2SNP, so instead we use statistics provided by the World Health
Organization.5. Our estimate of its prevalence in Russia is 4%, which we obtain by multiplying the fraction of the population reported
(in 2014) to have developed either clinically diagnosed or bacterially confirmed tuberculosis (78 190/143 M = 0.00055) by an average
life span (70 years).5 Based on this value, our estimate of h2SNP is 0.26 (SD 0.03). If the true prevalence was in fact half as high, our
estimate would instead be 0.21 (SD 0.02); if twice as high, 0.32 (SD 0.03). For comparison, using data reported from a small twin
study,6 we estimate the total heritability to be 0.5 (SD 0.2), while the two loci identified so far through GWAS (near ASAP17 and within
the HLA8) together explain less than 0.01.

Supplementary Note 4: Additional cohort details. Supplementary Table 12 describes the 40 cohorts from which the GWAS and
UCLEB datasets were constructed. Details of Cohorts 1 to 19, which all come from WTCCC 1 or 2, are provided in the original
publication of the Wellcome Trust Case Control Consortium,9 on the consortium website (www.wtccc.org.uk) and on the Euro-
pean Genome-Phenome Archive (www.ebi.ac.uk/ega), from where we downloaded the data. Below we describe aspects of the
remaining 21 cohorts.

Cohorts 20 & 21 (celiac). These represent the two UK case/control collections described in Dubois et al.,10 and were provided by David
van Heel (Queen Mary University of London). Note that a raw Cohort 21 includes WTCCC 2 control samples. Celiac individuals were
diagnosed according to standard clinical, serological and histopathological criteria, including small intestinal biopsy (see van Heel et

al.11 for more details).

Cohorts 22 & 23 (multiple sclerosis). These are samples recruited by the International Multiple Sclerosis Genetics Consortium (www.
imsgenetics.org). Samples were recruited from 15 countries, although to reduce genetic heterogeneity, we exclude the 652
Finnish samples. To make imputation feasible we divided into Sweden, UK or US (Cohort 22) and Australia, Belgium, Denmark,
France, Germany, Italy, New Zealand, Northern Ireland, Norway, Poland or Spain (Cohort 23). Except for approximately 700 Swedish
controls, all individuals are cases, classified according to clinical and para-clinical criteria which establish that focal areas consistent
with inflammatory demyelination have occurred in more than one part of the brain and spinal cord and on more than one occasion, and
for which there is no better explanation than the diagnosis of multiple sclerosis.12–14

Cohorts 24 & 25 (partial epilepsy). These are from the Imperial-Liverpool-Melbourne collaboration used by the International League
Against Epilepsy (ILAE) meta-analysis consortium15. Patients were classified by clinicians as partial, generalized or unclassified, ac-
cording to ILAE guidelines16, 17 (unclassified essentially means there was insufficient evidence to classify as either partial or generalized).
We excluded generalized and unclassified patients.

Cohorts 26 & 27 (pulmonary tuberculosis). The dataset (post-quality-control) used by Curtis et al.7 Cases were recruited from two
Russian cities, St. Petersburg and Samara, were all HIV negative and had active pulmonary tuberculosis confirmed by culture of M.

tuberculosis from sputum; controls were healthy adults from Russia. To make imputation feasible, we divided samples (at random) into
two equal-size cohorts.

Cohort 28 (intraocular pressure). This study comprises individuals living within the Blue Mountains region (west of Sydney, Australia)
invited at random to attend an eye examination; those who consented had intraocular pressure measured using a Goldmann applanation
tonometer.18 As in the original analysis, we included age (in addition to sex) as a covariate.

Cohorts 29, 30 & 31 (wide-range achievement test). These were recruited by the Center for Applied Genomics (CAG) at the Children’s
Hospital of Philadelphia (CHOP) in collaboration with the Brain Behavior Laboratory at the University of Pennsylvania. Individuals
were aged 8-21 who had volunteered to participate in genomic studies of complex pediatric disorders. In total, the phenotype file reports
approximately 900 clinical variables; these include questions on eating disorders, anxieties, head injuries, vision problems, obsessive
compulsive issues and phobias, although most were sparsely recorded. Based on the number of measurements available and clarity of
phenotype definition, we picked Column 905, “Wide-Range Assessment Test (WRAT) Total Standard Score”. Of the 4 429 individuals



with measurements, we excluded 202 outliers (those with scores below 58 or above 143), leaving 4 227. As with intraocular pressure,
we included age as a covariate in all analyses.

Cohort 32 (Irish controls). The schizophrenia cases in WTCCC 2 (Cohort 14) were recruited at Trinity College Dublin, and are poorly
matched by the two WTCCC 2 UK population control cohorts. Therefore, we instead use Cohort 32 as controls. This cohort was also
recruited at Trinity College Dublin, comprises healthy young adult volunteers of Irish ancestry aged between 18 and 28 years at time of
collection,19, 20 and was previously used as Irish Controls by the International League Against Epilepsy Consortium.15

Cohorts 33 to 40 (UCLEB). These are eight studies participating in the UCL-LSHTM-Edinburgh-Bristol Consortium, described in
Shah et al.21 From the many hundreds of phenotypes reported in one or more cohorts, we reduce to 23 as follows. First, for each cohort,
we removed phenotypes recorded for less than 80% of individuals. Then, having matched up phenotypes across cohorts, we retain
only the 56 with values recorded for at least half of individuals (i.e., for >7 000 individuals). Finally, we exclude binary traits (e.g.,
smoking and alcohol) and derivatives of other traits (e.g., logarithms of lipid levels). For each of the 28 remaining traits, we divided
individuals by cohort and regressed on age. We then quantile-normalized: suppose n′ individuals within Cohort 32 have values recorded
for height; the tallest individual (after regressing out age), is assigned the new phenotype φ−1(1/(n′ + 1)), the next tallest is assigned
φ−1(2/(n′ + 1)), and so on, where φ−1 denotes the inverse cumulative density function of the standard Gaussian distribution. We
performed this transformation for each cohort in turn, and separately for males and females in the cohorts that include both sexes (36 to
40). Finally, using these normalized values, we tested for inflation due to genotyping errors (Supplementary Figure 13), leading us to
exclude five phenotypes, so that 23 remained.

Supplementary Note 5: Quality control and imputation. This note summarizes the steps we took to construct our 20 datasets, starting
from the 40 cohorts listed in Supplementary Table 12. See Supplementary Note 1 for detailed scripts.

(i) - Pre-imputation sample quality control: We excluded samples with extreme missingness or heterogeneity (computed from a pruned
set of high-quality, autosomal SNPs), and population outliers (inferred by comparison with HapMap22 samples). See Supplementary
Figure 23 for examples. We then used (high-quality, pruned) SNPs on Chromosome X to infer sex.

(ii) - Pre-imputation SNP quality control: We excluded SNPs with MAF< 0.01, call-rate <0.95 or Hardy-Weinberg P < 10−6. Next
we ensured SNP names (rs numbers) were up-to-date and that genomic positions were Build 37 (hg 19), then compared annotations with
those in 1000 Genomes (Phase 3). In general, we erred on the side of caution. Ideally, SNPs would match by name, genomic position
and alleles (allowing for strand flips). For a SNP which matched by name and alleles (but not position), we retained and updated the
position to 1000 Genomes; for a SNP which matched by position and alleles (but not name), we retained only if the position agreed
with Genome Browser. Notably, this strategy means we excluded SNPs with names and positions not present in 1000 Genomes, on the
basis that we could not guarantee that these were aligned, nor would the imputation process be able to assess their accuracy (a feature
we relied on for deciding which directly genotyped SNPs are reliably called). For most cohorts, this step resulted in relatively few SNPs
being excluded (<1%). However, for Metabochip it reduced the number of SNPs used for imputation from about 110 K to 60 K. For
Illumina cohorts, we additionally excluded ambiguous SNPs (alleles A & T or C & G); for Affymetrix cohorts, for which often over
10% of SNPs are ambiguous, we kept these but verified that their allele frequencies were highly concordant with those in 1000 Genomes
(which indicated strand alignment).

(iii) - Imputation: We first phased the data using SHAPEIT.23 We specified the effective population size as 11 418, the recommended
value for European individuals, but otherwise left all parameters at their default values. The phased data were then passed to IMPUTE2.
For this we provided window breakpoints approximately 5 Mb apart (where possible we placed breakpoints in SNP deserts, such as the
centromere, and we extended the window length in regions of low SNP density). We again specified the effective population size as
11 418, but otherwise used default settings.

(iv) - Merging imputed cohorts and post-imputation SNP quality control: Supplementary Table 11 indicates which cohorts were
combined to construct each dataset. For the GWAS datasets, we retained only autosomal SNPs which in all cohorts had (expected)
MAF>0.01 and rj >0.99. By definition, directly genotyped SNPs have rj = 1, and so for these we instead required r2 type0>0.99,
where r2 type0 is an information metric reported by IMPUTE224; we found that this dramatically reduced the number of directly
genotyped SNPs, on average from 840 K to 280 K. While compared to previous heritability analyses, our SNP quality control thresholds



might seem unnecessarily strict, we demonstrate in Supplementary Note 6 how easily estimates of h2SNP can be inflated due to genotyping
errors. When merging the UCLEB cohorts, we excluded non-autosomal SNPs, then computed MAF and rj across all samples (rather
than per-cohort); we required MAF>0.01 and rj >0.99, except for the analyses in which these thresholds are explicitly relaxed.

(v) - Post-imputation sample quality control: For each dataset, we pruned SNPs so that no pair had squared correlation > 0.2, then
computed unweighted allelic correlations. We used these for filtering out relatedness; first, we considered each cohort separately, then
all (remaining) samples together. For each filtering, we removed individuals so that no pair remained with allelic correlation >c, where
−c is the smallest correlation observed across the individuals being considered. The rationale is that the observed negative correlations
are from pairs of distantly-related individuals, and so positive correlations of greater magnitude indicate closer relatedness.25 The top 20
eigen-vectors computed from the remaining samples are included as covariates in subsequent regressions. Eigen-vectors represent the
most prominent axes of variation in the data. While these should implicitly capture population structure,26 to be explicit, we additionally
include as covariates projections onto ten population axes computed via principal component analysis of the 1000 Genomes data.

Supplementary Note 6: Control-control GWAS. We construct a dataset using the Illumina and Affymetrix versions of the WTCCC 2
controls (Cohorts 16-19 in Supplementary Table 12). We restrict ourselves to 4 572 unrelated individuals for whom we have both
Illumina and Affymetrix genotypes (we confirm that matching IDs correspond to the same individual by checking the corresponding
samples have genetic correlation >0.9). We consider only genotyped SNPs, excluding those which in any of the four cohorts have
(expected) MAF <0.01, Hardy-Weinberg P < 10−6 or call-rate <0.95 (these thresholds are typical of those used in GWAS27). We
also exclude ambiguous SNPs (alleles A & T or C & G) to ensure no strand mismatches when merging. At this point, 259 867 SNPs
remain. We construct a phenotype file where 1958 Birth Cohorts samples (Cohorts 16 & 17) are recorded as cases, while National Blood
Samples (Cohorts 18 & 19) are controls.

We first estimate h2SNP using only Illumina genotypes (Cohorts 16 & 18). As we are comparing two sets of UK population
controls, h2SNP should be close to zero. Instead our estimate of h2SNP is 0.22 (SD 0.08), significantly greater than zero (P=0.004). If we
use Affymetrix genotypes (Cohorts 17 & 19), our estimate is 0.37 (SD 0.09; P < 10−5). These estimates are unchanged if we repeat
including 20 principal components as covariates. Using the test described in Supplementary Figure 19, we estimate that population
inflation contributes minimally to these estimates of h2SNP (0.1% for Illumina, 0.9% for Affymetrix). These results suggest that the
inflated estimates of h2SNP are mainly due to genotyping errors. To test this hypothesis, we compute a kinship matrix K ′ using both
genotyping chips: ifXI andXA contain Illumina and Affymetrix genotypes, respectively, then the kinship for Individuals i and k is

K ′i,k =
1

2

m∑
j=1

wj
(XA

i,j − 2pj)(X
I
k,j − 2pj)

W
+

1

2

m∑
j=1

wj
(XI

i,j − 2pj)(X
A
k,j − 2pj)

W
,

where 2pj is the allele fraction for SNP j among all 9 144 individuals) genotypes, and W is the sum of SNP weights. In practice, K ′

can readily be constructed fromK, the matrix of allelic correlation calculated across all 9 144 individuals: if individuals are ordered by
cohort, then

K =


K16,16 K16,17 K16,18 K16,19

K17,16 K17,17 K17,18 K17,19

K18,16 K18,17 K18,18 K18,19

K19,16 K19,17 K19,18 K19,19

 and K ′ =
1

2

[
K18,16 K18,17

K19,16 K19,17

]
+

1

2

[
K16,18 K16,19

K17,18 K17,19

]
,

where the submatrix Ka,b contains allelic correlations between individuals in Cohort a and those in Cohort b. Genotyping errors are
problematic when they correlate with phenotype, and this is a particular risk for case-control studies where cases and controls have been
genotyped separately (as is the case for most of our GWAS datasets). For example, suppose in Cohort 16 (Illumina), there is a tendency
for individuals with allele count 1 for a particular SNP to be wrongly called as having count 2. This will cause pairs of individuals within
this cohort (phenotypically concordant) to have (slightly) higher genetic similarity than pairs where one individual is in Cohort 16 and
the other in Cohort 18 (phenotypically discordant). Thus for the Illumina GWAS (Cohort 16 vs Cohort 18), this SNP will show (artificial)
association with the phenotype and will contribute towards inflation of h2SNP. Using K ′ to estimate pairwise genetic similarities should
reduce this inflation, because we do not expect the Illumina and Affymetrix arrays to have the same patterns of miss-calls (i.e., it is



unlikely to also be the case in Cohort 17 that this SNP has allele counts 1 wrongly called as 2). When we instead useK ′, our estimate of
h2SNP is 0.14 (SD 0.08), only borderline significant (P=0.04), and lower than the previous estimates (0.22 and 0.37) indicating that the
inflation previously observed was largely due to genotyping errors. While there remains suggestive evidence for inflation, it should be
realized that estimates based onK ′ are not immune to confounding. In particular, when calculating kinship matrices, missing genotypes
are set to the mean, so that each SNP actually takes four values: 0, 1, 2 or 2pj . Therefore, if a group of individuals have similar patterns
of missingness, perhaps because there are SNPs which are difficult to genotype regardless of genotyping platform, these individuals will
appear more genetically similar, and potentially lead to inflation of h2SNP.

These analyses illustrate the importance of very strict quality control, and motivate our decision to use only the highest quality
SNPs (those with MAF>0.01 and information score rj >0.99). To verify that these thresholds suffice, we construct two additional
GWAS datasets (Dataset 20 combines Cohorts 16 & 18, while Dataset 21 combines Cohorts 17 & 19), again making a fake phenotype
file where individuals in Cohorts 16 and 17 are cases. This time we include imputed SNPs, and follow the quality control steps in
Supplementary Note 5. We confirm that the subsequent estimates of h2SNP, 0.11 (SD 0.07) and 0.08 (SD 0.08), are not significantly
greater than zero.

Supplementary Note 7: Simulation datasets. Simulation Dataset I, used in Supplementary Figures 18 & 22, combines the Illumina
WTCCC 2 Controls (Cohorts 16 & 18 in Supplementary Table 12). We process this dataset as described in Supplementary Note 5,
after which it contains 5 134 individuals, 4 710 536 SNPs, and has sum of SNP weights 136 407. For Simulation Dataset II, used in
Supplementary Figure 10, we also combine Cohorts 16 & 18, but now copy as closely as possible the quality control used by Yang
et al.1. First, to convert the imputed data to hard genotypes, we set allele counts based on the most likely state probability. Next, we
retain only diallelic SNPs with minor allele count > 3 (equivalent to MAF>0.0002) and Hardy-Weinberg P > 10−6. Finally, we filter
individuals so that no pair remains with allelic correlation>0.05. After these steps, the dataset contains 4 869 individuals and 16 172 209
SNPs (with sum of weights 3 085 873). By comparison, the dataset used by Yang et al. contained 3 642 individuals and 17.6 M SNPs.

Supplementary Note 8: UCLEB Consortium Members. Tina Shah,1 Jorgen Engmann,1 Amand Floriaan Schmidt,1 Chris Finan,1

Caroline Dale,2 Pimphen Charoen,2 Jon White,3 Stela McLachlan,4 Andrew Wong,5 Barbara Jefferis,6 Tom R. Gaunt,7 Fotios Drenos,8

Jackie Cooper,8 Antoinette Amuzu,2 Reecha Sofat,9 Ken Ong,5,10 Rebecca Hardy,5 Diana Kuh,5 Debbie A. Lawlor,7 George Davey
Smith,7 Nicholas Wareham,10 Goya Wannamethee,6 Philippa J. Talmud,8 Steve E. Humphries,8 Christine Power,11 Elina Hypponen,11

Claudia Langenberg,2,12 Mika Kivimaki,13 Meena Kumari,13,14 Yoav Ben-Shlomo,15 Richard Morris,15 Peter Whincup,16 Frank Dudbridge,17

Jacqueline Price,4 Juan P. Casas,2 Aroon D. Hingorani.1

1. Institute of Cardiovascular Science, University College London, London, UK. 2. Farr Institute of Health Informatics, Uni-
versity College London, London, UK. 3. University College London Genetics Institute, Department of Genetics, Environment and
Evolution, London, UK. 4. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK. 5. MRC Unit for Life-
long Health and Ageing, London, UK. 6. Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health
Care, University College London, London, UK. 7. MRC Integrative Epidemiology Unit, School of Social and Community Medicine,
University of Bristol, Bristol, UK. 8. Centre for Cardiovascular Genetics, Dept. of Medicine, British Heart Foundation Laboratories,
Rayne Building, Royal Free and University College Medical School, London, UK. 9. Centre for Clinical Pharmacology, University
College London, London, UK. 10. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
11. MRC Centre of Epidemiology for Child Health, Department of Population Health Sciences, UCL Institute of Child Health, Uni-
versity College London, London, UK. 12. MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of
Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK. 13. Department of Epidemiology & Public Health, UCL Institute
of Epidemiology & Health Care, University College London, London, UK. 14. Institute for Social and Economic Research, University
of Essex, Colchester, UK. 15. School of Social and Community Medicine, University of Bristol, Bristol, UK. 16. Population Health
Research Institute, St George’s, University of London, London, UK. 17. Department of Non-Communicable Disease Epidemiology,
London School of Hygiene and Tropical Medicine, London, UK.
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Supplementary Figure 1: Inferring the relationship between heritability and MAF for GWAS and UCLEB traits. The choice
of α when scaling genotypes determines the assumed relationship between heritability and MAF. Lines show how log likelihood varies
with α; values are reported relative to the highest observed for the corresponding trait. The top four plots report log likelihoods for the
19 GWAS traits (first using all SNPs, then only a pruned subset), then for the 23 UCLEB traits, (first using high quality common SNPs,
then all SNPs); line colors indicate trait categories, while the black lines report averages. The bottom plot reports averages across the
UCLEB traits for nine SNP filterings, determined by MAF and our information score rj .
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Supplementary Figure 2: Partitioning by MAF for GWAS and UCLEB traits. SNP partitioning allows us to estimate heritabilities
for different MAF tranches; we then divide these by the sums of SNP weights for each tranche to obtain estimates of (weight-adjusted)
per-SNP heritabilities. Grey bars report per-SNP heritabilities averaged across either the GWAS (left) or UCLEB traits (right); vertical
lines provide 95% confidence intervals. The assumed relationship between heritability and MAF is determined by α: the solid lines
show the relationship for α =-1, -0.25 and 0, while the dashed lines mark the expected per-SNP heritabilities for these three values.
blank The top pair of plots divides SNPs into MAF≤0.1 or MAF>0.1. There is a clear drop in heritability: for example, across the
GWAS traits, a SNP with MAF≤0.1 on average contributes 35% as much heritability as a SNP with MAF>0.1. For the second pair of
plots, we repeat this analysis using only a pruned subset of SNPs, showing that the decline in per-SNP heritability persists even when
SNPs are in (approximate) linkage equilibrium. For the third pair, we use all SNPs but now five MAF tranches. We note that across
both GWAS and UCLEB traits, the estimated per-SNP heritability for SNPs with MAF>0.4 is significantly below that predicted by
α = −0.25, suggesting that there is scope to improve the assumed relationship between heritability and MAF (although our sensitivity
analyses in Supplementary Figures 3 & 4 indicate that doing so is unlikely to have much impact on estimates of h2SNP). The bottom pair
of plots report the estimated contribution to h2SNP for each of five MAF tranches, averaged across traits. Although MAF≤0.1 SNPs have
lower-than-average per-SNP heritability, this tranche has highest sum of SNP weights, and as a result its total heritability contribution is
comparable with those of the other tranches.
blank These estimates are obtained using the LDAK Model with α = −0.25. Interestingly, if we instead use α = −1, the estimates for
MAF≤0.1 SNPs tend to decrease, despite this value assigning more weight to low-MAF SNPs. For example, across the GWAS traits,
when assuming α = −1, MAF≤0.1 SNPs are estimated to contribute 24% as much heritability as MAF>0.1 SNPs (rather than 40%),
indicating that misspecification of α results in SNP contributions being assigned to the wrong MAF tranches.
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Supplementary Figure 3: Estimates of h2
SNP using different values of α for GWAS traits. Each plot corresponds to a different

trait, while the final plot considers the (inverse variance weighted) average across all 19. Within each plot, the bars report estimates of
h2SNP obtained using LDAK with seven values of α; vertical lines provide 95% confidence intervals. For binary traits, values have been
converted to the liability scale. These estimates are based on common SNPs (MAF>0.01), and so in general, the impact of varying α is
limited, particularly for −0.75 ≤ α ≤ 0 (Bars 3-6 of each plot).
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Supplementary Figure 4: Estimates of h2
SNP using different values of α for UCLEB traits. Each plot corresponds to a different

trait, while the final plot considers the (inverse variance weighted) average across all 23 traits. Within each plot, the three blocks indicate
the SNP filtering (high-quality common SNPs, all common SNPs or all SNPs). Within each block, the bars report estimates of h2SNP
obtained using LDAK with seven values of α; vertical lines provide 95% confidence intervals. We see that when using only common
SNPs (Blocks 1 & 2), varying α has a limited impact on estimates of h2SNP, particularly for −0.75 ≤ α ≤ 0 (Bars 3-6 and 10-13 of each
plot). However, when rare SNPs are included, the impact can be large, so to obtain stable estimates, we partition rare SNPs based on
MAF (Supplementary Figure 6).
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Supplementary Figure 5: Average Estimates of h2
SNP using different values of α for UCLEB traits. Each block corresponds to a

different SNP filtering, defined by MAF and rj threshold: m = number of SNPs, W =
∑
j rjwj . Within each block, the bars report the

(inverse variance weighted) average estimate of h2SNP across the 23 traits, obtained using LDAK with seven values of α. Top: Estimates
are obtained without partitioning. We see that when restricted to common SNPs (Blocks 1-6), estimates of h2SNP are largely insensitive to
the value of α, particularly for−0.75 ≤ α ≤ 0, the range in which best-fitting α is most likely to lie (Supplementary Figure 1). However,
when rare SNPs are included (Blocks 7, 8 & 9), varying α results in significantly different estimates of h2SNP Bottom: Now SNPs are
partitioned by MAF: for Blocks 1-6, there are two tranches (MAF ≤0.1 and MAF >0.1); for Blocks 7, 8 & 9, there are three, four and
five tranches, respectively, constructed by successively adding extra boundaries, at 0.01, 0.0025 and 0.001. We find that partitioning
SNPs by MAF produces estimates robust to choice of α.
blank The three horizontal lines (at heights 0.15, 0.22 and 0.29) mark the average estimate of h2SNP when using only high-quality
common SNPs (Block 1), all common SNPs (Block 6) and all SNPs (Block 9). We note that the heights of the bars under the partitioned
model are close to the heights of the purple bars when using the non-partitioned model, indirectly lending support to α = −0.25 being
the most appropriate value. These results may suggest it is always worthwhile to estimate h2SNP with SNPs partitioned by MAF. However,
partitioning typically results in less precise estimates (higher SDs), and there are computational advantages to using the non-partitioned
model, particularly if multiple phenotypes are recorded for the same individuals.
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Supplementary Figure 6: Including rare SNPs when estimating h2
SNP for UCLEB traits. For the UCLEB data, we sort the 17.3 M

SNPs by MAF, then partition these evenly into L tranches, where L ranges from 1 to 10. For each L, we analyze using LDAK for seven
values of α. Bars report the (inverse variance weighted) averages across the 23 traits; bar colors indicate the value of α used. Top:
We examine how estimates of h2SNP depend on L (vertical lines provide 95% confidence intervals). When L = 1 (the non-partitioned
model), varying α has a large impact on estimates of h2SNP. However, the impact reduces as L is increased. Bottom: For even L, the
central MAF boundary is at 0.0111 (the median MAF across all SNPs). For L = 2, we can estimate rare heritability as the heritability
assigned to Tranche 1, for L = 4, it is the heritability assigned to Tranches 1 or 2, for L = 6, it’s the heritability assigned to Tranches 1,
2 or 3, and so on (note that for this example only, we are defining rare as MAF≤0.011, whereas in general we use MAF≤0.01). We
now examine how the ability to divide h2SNP into common and rare depends on L (vertical lines provide 95% confidence intervals for the
common SNP contribution). Again, we see that as L increases, sensitivity to choice of α decreases. For reference, the horizontal line
in each plot reports the average estimate of h2SNP when using only common SNPs. For the main analysis, we used five tranches (two
common, three rare), which is closest to L = 6 here.
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Supplementary Figure 7: Relative estimates of h2SNP for GWAS traits. We report estimates of h2SNP from versions of LDAK and
GCTA, using either α = −1 (red-edged boxes) or α = −0.25 (black-edged). All estimates are relative to those from GCTA with
α = −1. Lines report individual trait estimates (colored by category), and the (inverse variance weighted) averages; gray boxes provide
95% confidence intervals for these averages. As well as the non-partitioned versions of LDAK and GCTA, we consider partitioning by
MAF (MS: 5 tranches), by LD (using either 2 or 4 tranches) and by both LD & MAF (LDMS: 20 tranches). We also report results from
LDSC, which assumes the GCTA Model with α = −1. Variance components are estimated using Average Information REML28–30. The
REML algorithm often fails to converge with large numbers of tranches (say,>10), particularly when the corresponding kinship matrices
are highly-correlated. For example, when running GCTA-LDMS, the REML solver in GCTA v.1.26 failed (with the error “information
matrix is not invertible”) for 7 of the 19 traits when α = −1 and for 4 traits when α = −0.25. When this happened, we then tried to
solve using the LDAK v.5 REML solver, but if this also failed, we substituted in results from GCTA-LD4 (as our analyses indicate that
GCTA-LD4 and GCTA-LDMS tend to give similar results).
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Supplementary Figure 8: Relative estimates of h2SNP for UCLEB traits. Details as for Supplementary Figure 7, except that we omit
GCTA-LDMS and LDAK-LDMS because it was not feasible to partition by both MAF and LD (e.g., GCTA-LDMS completed for less
than a quarter of the traits, possibly due to the sparse genotyping used for the UCLEB data).
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Supplementary Figure 9: Estimates of h2
SNP from versions of LDSC for GWAS traits. Colored lines report individual estimates of

h2SNP from LDSC using different settings, while gray boxes report (inverse variance weighted) averages. To run LD Score Regression, it
is necessary to provide “reference” LD Scores. These can be computed either using the GWAS SNPs or from an independent (typically
more dense) dataset. For our 23 GWAS traits, using LD Scores computed from 1000 Genomes data (provided on the LDSC website,
https://github.com/bulik/ldsc) tends to result in higher estimates of h2SNP (Boxes 3, 4, 7 & 8) than when using only the
GWAS SNPs (Boxes 1, 2, 5 & 6). A possible explanation is that in LDSC h2SNP represents the total phenotypic variance explained by all
(common) SNPs in the reference dataset, so will tend to increase when a dataset with higher coverage is used. We find that performing
the analysis with highly-associated SNPs (P < 10−20 from marginal testing) excluded has limited impact (Boxes 2, 4, 6 & 8). The
intercept term represents inflation due to confounders; when confident confounders are not an issue, LDSC suggests constraining the
intercept to one. We find this leads to considerably larger, and more precise,31 estimates of h2SNP (Boxes 5, 6, 7 & 8). In addition to
providing reference LD Scores, it is also necessary to specify “weighting” LD Scores, which are used to reduce heteroscedasticity and
account for local correlations in the regression. For these analyses, we use the same LD Scores for reference and weighting, the current
recommendations on the LDSC website). However, in the main text, we used the method outlined in the original paper,32 which advised
using 1000 Genomes data for reference LD Scores and the GWAS SNPs for weighting LD Scores (Box 9). The red and black horizontal
lines mark the average estimates of h2SNP from LDAK and GCTA. Note that in the main text, our conclusion that estimates of h2SNP from
LDSC are not significantly different to those from GCTA was based on the examining the ratio (LDSC divided by GCTA); based on the
absolute values, GCTA is higher. However, regardless of method of comparison, it remains that estimates from LDSC are typically no
higher than those from GCTA, and on average are always lower than those from LDAK.
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Supplementary Figure 10: Repeating the simulation study of Yang et al.1 Yang et al.1 compared versions of GCTA and LDAK
via simulation. We investigate the dependence of their conclusion that GCTA outperforms LDAK on their choice of simulation
model. For this we use Simulation Dataset II (n = 5 134 individuals; m = 16 172 209 SNPs (MAF >0.0002); sum of SNP weights∑
j wj = 3085 873; see Supplementary Note 7). Like Yang et al., we generate phenotypic values using the model Y =

∑
j∈J βjXj+e,

where the set J indicates which SNPs are causal, Xj denotes the genotypes for SNP j (centered and scaled to have variance one), βj de-
notes its effect size and e ∼ N(0, σ2

e) represents Gaussian-distributed noise. For all simulations, σ2
e is chosen to ensure that h2SNP = 0.8.

Again like Yang et al., we consider four ways of selecting causal variants (i.e., deciding J). Scenario I (random): 1 000 causal variants
randomly sampled from all SNPs. Scenario II (more common): 1 000 random and 500 additional common (MAF>0.01) causal
variants. Scenario III (rarer): 1 000 random and 500 additional rare (MAF<0.01) causal variants. Scenario IV (rarer and DHS):
1 000 random and 500 additional rare causal variants sampled from the DNaseI hypersensitive sites (based on annotations provided at
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.gz).
blankTop: We follow Yang et al. and sample βj from N(0, 1), which is the assumed distribution of effect sizes under the GCTA model.
The bars report mean estimates (across 200 repetitions) of h2SNP estimated using GCTA, GCTA-MS33 (SNPs partitioned by MAF) and
GCTA-LDMS1 (SNPs partitioned by MAF and LD), as well as from LDAK and LDAK-MS; the vertical lines mark 95% confidence
intervals for the means. Like Yang et al., we observe that overall, GCTA provides more accurate estimates of h2SNP than LDAK.
Bottom: Next we sample each effect size βj from N(0, wj), mimicking the LDAK Model. As expected, LDAK (greatly) outperforms
GCTA.
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Supplementary Figure 11: Additional simulations comparing the GCTA and LDAK Models We use genotypes from Simulation
Dataset II (n = 5 134 individuals; m = 16 172 209 SNPs (MAF>0.0002); sum of SNP weights

∑
j wj = 3085 873; see Supplementary

Note 7). We generate phenotypes with either 100, 1 000 or 10 000 randomly-chosen causal variants and h2SNP equal to 0.2, 0.5 or 0.8.
For the top plot, we sample effect sizes under the GCTA Model: βjN(0, 1). For the bottom plot we sample effect sizes under the LDAK
Model: βjN(0, wj). Green boxes report estimates of h2SNP using GCTA, blue boxes report estimates using LDAK, while red lines mark
true h2SNP. We see that regardless of the number of SNPs contributing heritability, or the total heritability they contribute, it remains that
when phenotypes are generated under the GCTA Model, estimates using GCTA are most accurate, while when phenotypes are generated
under the LDAK Model, LDAK performs best.
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Supplementary Figure 12: Partitioning by LD for GWAS and UCLEB traits. SNPs are divided into low- and high-LD, so that either
the low-LD tranche contains 50% or 25% of SNPs. The vertical lines report the point estimates and 95% confidence intervals for the
estimated contribution of the low-LD tranche; lines are colored according to trait category, while the black line provides the (inverse
variance weighted) average. We are interested in how close estimates are to the predicted contributions under the GCTA and LDAK
Models (red and black horizontal lines). The plot titles indicate which traits the results correspond to, and which model was assumed
when estimating heritabilities. In general we divided SNPs into low- and high-LD based on average LD Score of non-overlapping 100 kb
segments;1 but for the final two plots, we instead rank segments based on average LDAK SNP weight.
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Supplementary Figure 13: Testing for inflation due to genotyping errors for UCLEB traits. Haseman-Elston regression represents
an alternative way to estimate h2SNP. If we assume the standard mixed regression model Y ∼ N(0,Kσ2

g + Iσ2
e), where K and I

denote the kinship matrix and an identity matrix, respectively, while σ2
g and σ2

e are the genetic and environmental variances, then
Vi,k = (Yi − Yk)2 has expected value 2(σ2

g + σ2) − 2σ2
gKi,k. Haseman-Elston regression fits the linear model Vi,k = α + βKi,k,

then −β/α represents an estimate of h2SNP = σ2
g/(σ

2
g + σ2

e). Suppose the vectors VS and LS contain (Yi − Yk)2 and Ki,k for pairs of
individuals in the same cohort, while VD and LD refer to pairs of individuals in different cohorts. The essence of our test is to fit the
separate models VS = αS + LSβS and VD = αD + LDβD, then observe how similar −βS/αS and −βD/αD, the resulting estimates
of h2SNP. Genotyping errors will cause pairs of individuals within the same cohort to appear more similar compared to pairs in different
cohorts. If these errors are correlated with phenotype (i.e., if phenotypic similarity is higher within cohorts than across), then we would
expect to observe −βS/αS � −βD/αD
blank We can formally test for inflation by performing a likelihood ratio test (LRT). A general strategy is to measure the improvement
in fit of the alternative model, where αS , αD, βS and βD are free to vary, compared to the null model, where αS = αD and βS = βD;
a p-value can be obtained by comparing the LRT statistic with a χ2(2) distribution. However, for the UCLEB data, phenotypes were
quantile normalized prior to analysis (Supplementary Note 4), which ensures αS = αD; therefore, for our alternative model, we allow
βS and βD to vary but set αS = αD, and we instead compare the LRT statistic with a χ2(1) distribution. The figure reports − log10(P )

from this test for the original 28 UCLEB traits, computed using high-quality common SNPs (MAF>0.01; rj > 0.99), all common SNPs
(MAF>0.01) or all SNPs (MAF>0.0005). For subsequent analyses, we use only the 23 traits which when computed from high-quality
common SNPs have P >0.05/28 (traits where the circle is below the horizontal line). This test is performed in LDAK by adding the
options --subset-prefix and --subset-number when performing Haseman-Elston regression. For example, if data comprise
two cohorts, with IDs in list1 and list2, then one should add --subset-prefix list --subset-number 2 when using
the command --he.
blank Note that when covariates are provided, we first regress their contribution from the phenotype, then test using the residuals. We
anticipate that a more advanced test could be developed which accommodates covariates directly,34 although for our application we
expect this to have minimal impact. Additionally, our test is currently valid only for quantitative phenotypes, but we are working on a
version suitable for case-control studies, where genotyping errors are typically more of a concern.
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Supplementary Figure 14: Estimating enrichment of DHS for GWAS traits Annotations of DNaseI hypersensitive sites are from
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.gz.
Using the LDAK Model with α = −0.25, vertical lines report estimates of the contribution to h2SNP of DHS for each of the 19 GWAS
traits, then the (inverse variance weighted) average, first using all SNPs (on average 5.1 M), then only directly genotyped (235 K).
Although the expected contribution (horizontal lines) varies as SNP density is reduced, we find that the enrichment (estimated divided
by expected) remains constant (at 1.4-fold), contrasting the results of Gusev et al.2 who found that enrichment dropped from 5.1-fold to
1.6-fold. See Supplementary Table 8 for numerical values.
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Supplementary Figure 15: Estimating enrichment of DHS for UCLEB traits. Annotations of DNaseI hypersensitive sites are from
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.gz.
Using the LDAK Model with α = −0.25, we estimate the contribution to h2SNP of DHS for each of the 23 UCLEB traits, then the
(inverse variance weighted) average, first using only the 353 K high-quality common SNPs, then all 17.3 M SNPs. We estimate that the
average contributions are 33% (SD 2) and 36% (SD 4), which compared to the expected contributions (24% and 19%; horizontal lines)
represent enrichment of 1.4-fold (SD 0.1) and 1.9-fold (SD 0.2).
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Supplementary Figure 16: Estimating enrichment for 52 SNP classes for GWAS traits. We consider the 52 SNP classes exam-
ined by Finucane et al.,35 downloadable at https://data.broadinstitute.org/alkesgroup/LDSCORE (annotations are contained in the file
baseline bedfiles.tgz). For comparison, we also include “Genic” SNPs (those inside or within 2 kb of exons) and DHS SNPs
(as defined by Gusev et al.2). Assuming the LDAK Model with α = −0.25, red lines provide point estimates and 95% confidence inter-
vals for the fraction of h2SNP contributed by each SNP class, averaged across the 19 GWAS traits, while black lines mark the expected
fractions. Although many SNP classes show significant enrichment (green labels indicate classes with P < 0.001, while numbers report
− log(P ) for these classes), we note that overall, our estimated enrichments are much more modest than those computed by Finucane
et al. using LDSC; for example, our highest enrichment is 2.5-fold as opposed to 13-fold. It may appear concerning that significant
positive enrichment is observed for 35 out of 52 classes, however, it should be noted that SNP classes are highly-correlated; in particular,
there is very significant overlap between all 35 of these classes and genic SNPs (P < 10−100 from a hypergeometric test).



Height
0.

0
0.

2
0.

4
0.

6
0.

8 Weight

0.
0

0.
2

0.
4

0.
6

0.
8 Body Mass Index

0.
0

0.
2

0.
4

0.
6

0.
8 Waist Circumference

0.
0

0.
2

0.
4

0.
6

0.
8

Forced Vital Capacity

0.
0

0.
2

0.
4

0.
6

0.
8 FV Capacity One Sec

0.
0

0.
2

0.
4

0.
6

0.
8 Systolic BP Adj

0.
0

0.
2

0.
4

0.
6

0.
8 Diastolic BP Adj

0.
0

0.
2

0.
4

0.
6

0.
8

PR Interval

0.
0

0.
2

0.
4

0.
6

0.
8 QT Interval

0.
0

0.
2

0.
4

0.
6

0.
8 QT Interval Corrected

0.
0

0.
2

0.
4

0.
6

0.
8 QRS Voltage Product

0.
0

0.
2

0.
4

0.
6

0.
8

Sokolow Lyon

0.
0

0.
2

0.
4

0.
6

0.
8 Glucose

0.
0

0.
2

0.
4

0.
6

0.
8 Insulin

0.
0

0.
2

0.
4

0.
6

0.
8 Total Cholesterol Adj

0.
0

0.
2

0.
4

0.
6

0.
8

LDL Cholesterol Adj

0.
0

0.
2

0.
4

0.
6

0.
8 Triglyceride Adj

0.
0

0.
2

0.
4

0.
6

0.
8 Viscosity

0.
0

0.
2

0.
4

0.
6

0.
8 Fibrinogen

0.
0

0.
2

0.
4

0.
6

0.
8

Interleukin 6

0.
0

0.
2

0.
4

0.
6

0.
8 C−Reactive Protein

0.
0

0.
2

0.
4

0.
6

0.
8 Haemoglobin

0.
0

0.
2

0.
4

0.
6

0.
8 Average

0.
0

0.
1

0.
2

0.
3

0.
4

r j>
0.

99
r j>

0.
95

r j>
0.

9
r j>

0.
6

r j>
0.

3
r j>

0

M
A

F
>

0.
00

25
M

A
F

>
0.

00
1

M
A

F
>

0.
00

05
1:

2 r j>
0.

99
r j>

0.
95

r j>
0.

9
r j>

0.
6

r j>
0.

3
r j>

0

M
A

F
>

0.
00

25
M

A
F

>
0.

00
1

M
A

F
>

0.
00

05
1:

2 r j>
0.

99
r j>

0.
95

r j>
0.

9
r j>

0.
6

r j>
0.

3
r j>

0

M
A

F
>

0.
00

25
M

A
F

>
0.

00
1

M
A

F
>

0.
00

05
1:

2 r j>
0.

99
r j>

0.
95

r j>
0.

9
r j>

0.
6

r j>
0.

3
r j>

0

M
A

F
>

0.
00

25
M

A
F

>
0.

00
1

M
A

F
>

0.
00

05

Supplementary Figure 17: Estimates of h2
SNP for different SNP filterings for UCLEB traits. Each plot corresponds to a different

trait, while the final plot considers the (inverse variance weighted) average across all 23 traits. Within each plot, the bars report estimates
of h2SNP for each of nine SNP filterings, determined by MAF and rj threshold (vertical lines provide 95% confidence intervals). All
estimates are obtained using LDAK with α = −0.25. For filterings which consider only common SNPs (red bars), these are based on
the non-partitioned model; for filterings including also rare SNPs (green bars), h2SNP is estimated using a partitioned model, with SNPs
divided by MAF. We see that in general reducing the rj threshold initially has little impact on estimates of h2SNP, however, admitting
low-quality SNPs (0 ≤ rj ≤ 0.6) results in a significant increase, as does including rare SNPs.
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Supplementary Figure 18: Estimating h2
SNP from sparse genotyping, proof of principal. For this analysis, we use Simulation

Dataset I (see Supplementary Note 7). In order to increase precision of h2SNP estimates, we restrict to Chromosomes 1 & 2 (711 164
SNPs). We generate phenotypes each with 200 causal SNPs and effect sizes sampled under the LDAK Model, with h2SNP = 0.1 or 0.5
(we refer to this as true h2SNP). For three different starting subsets of SNPs, we investigate how much of true h2SNP can be recovered
via imputation. First we reduce to the 57 822 SNPs present on the Metabochip (of which 9 218 are on Chromosomes 1 or 2). Boxes
report estimates of h2SNP for 100 simulated phenotypes with true h2SNP 0.1 (red borders) or 0.5 (green borders); numbers above boxes
report the average fraction of true h2SNP recovered. When we use only the 9 218 starting SNPs, we recover approximately half of h2SNP.
If we impute, but retain only the 49 668 high-quality (rj > .99) common SNPs, the fraction increases by only 2-3%. However, if we
impute and retain all 1 611 157 common SNPs (allowing for genotype certainty), the fraction of h2SNP recovered is close to four-fifths
(an increase of 49% or 58% compared to using only high-quality SNPs). For comparison, when we instead start with the 142 048
SNPs inside or within 100 basepairs of exons (of which 23 951 are on Chromosomes 1 or 2), the fraction of true h2SNP recovered after
imputation is about four-fifths, indicating that the coverage of the Metabochip is approximately equivalent to that of exome sequencing.
We also perform the analysis starting with 9 218 SNPs picked at random, showing that were the Metabochip SNPs evenly spread (rather
than predominantly gene-centric), then with imputation we could expect to recover almost all of h2SNP.
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Supplementary Figure 19: Testing for inflation due to cryptic relatedness for GWAS and UCLEB traits. Accurate estimation of
h2SNP relies on individuals being “unrelated” (only distantly related) and population homogeneous. Otherwise, estimates will reflect
not only the variance explained by the GWAS SNPs (and variants in local LD with these), but also that of other genetic factors tagged
through long-range LD and of environmental contributions which correlate with familial relatedness. The fundamental premise of our
test36 is that genetic similarities due to population structure and residual relatedness should be approximately uniform across the genome.
For example, we would expect the allelic correlation for a pair of full-sibs to be close to 0.5 whether we consider all SNPs or just those
on Chromosome 1. Therefore, inflation of h2SNP due to these phenomena should also be approximately uniform; i.e., an estimate of h2SNP
computed from all SNPs should be as inflated as an estimate from only Chromosome 1 SNPs. For each dataset, we partition SNPs into
(approximate) quarters (Chromosomes 1-3, 4-7, 8-11 & 12-23). First we analyze all SNPs together (using the partitioned model), from
which we estimate A = h21 + h22 + h23 + h24 + h2C , where h2j is the variance explained by SNPs in Quarter j and h2C is inflation due to
cryptic relatedness. Next we analyze each quarter separately, which provides estimates of Bj = h2j + h2C . Therefore, an estimate of h2C
is (B1 + B2 + B3 + B4 − A)/3. In this figure, colored bars report estimates of h2SNP for the 19 GWAS and 23 UCLEB trait: within
each, the black bar indicates the estimated inflation; numbers above bars express the inflation as a percent of h2SNP.
blank Recently, Kumar et al.37 estimated h2SNP = 0.26 (SD 0.05) for systolic blood pressure, based on a dataset containing 49 214
SNPs in approximate linkage equilibrium. Next they repeatedly analyzed a random 10% of the genome (5 000 SNPs), noticing that
the resulting estimate was almost always higher than 0.26/10. They presented this as evidence that the estimation process is flawed.
We would argue that it instead shows their dataset is wholly unsuitable for estimation of h2SNP. We would expect their first analysis to
provide an estimate of A = h2SNP + h2C , and their second to estimate B = 0.1h2SNP + h2C , and so an estimate of h2C is (10B − A)/9.
Although numerical values are not reported, Figure 4 of their paper suggests the average estimate of B was at least 0.1, which indicates
that h2C is at least 0.08, and their estimate of 0.26 is inflated by at least a third.



Supplementary Figure 20: Information score rj . Our information score rj is designed to approximate the squared correlation
between Sj , the genotypes used for SNP j in the analysis, and its true genotypes. To test the accuracy of rj , we consider 50 000 imputed
SNPs from the middle of Chromosome 1: 71-76 Mb. We use the Blue Mountains Eye Study data, as this is our smallest dataset (n=2 635),
so inaccuracies are likely to be most apparent. For each SNP, we sample a set of genotypes from the IMPUTE2 genotype probabilities,
then compute the squared-correlation between these and the dosages. We repeat this ten times to obtain average squared-correlation.
Plot 1 shows very high concordance between rj and empirical squared-correlation, although it does decline with MAF (point colors).
We note that rj is very similar in design to the information score reported by Beagle,38 and we find it correlates very highly with that
from IMPUTE224 (Plot 2). This suggests that when adjusting effect-size prior variance for genotype certainty, other information scores
can be used in place of rj . Plot 3 reports the distribution of rj for all 17.3 M SNPs (black bars) used in the UCLEB data, and for the
7.8 M of those with MAF >0.01 (red bars).
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Supplementary Figure 21: Including highly-associated SNPs as covariates for GWAS traits. For reasons explained in Supple-
mentary Figure 22, for all GCTA and LDAK analyses, we include as covariates SNPs with P < 10−20 from marginal analysis (but
include their contribution to phenotypic variance within σ2

g when computing h2SNP = σ2
g/(σ

2
g+σ

2
e)). Our definition of highly-associated

is somewhat arbitrary; however, we confirm estimates of h2SNP are largely unchanged if instead we use P < 5 × 8−8, the conventional
GWAS significance threshold (i.e., the triangles are close to the diagonal). By contrast, large inaccuracies can result if h2SNP is estimated
without allowing for large effect loci (the diamonds are noticeably above the diagonal for rheumatoid arthritis, type 1 diabetes, psoriasis,
celiac disease and multiple sclerosis, five autoimmune traits with a substantial contribution from the major histocompatibility complex).
Points marked by a cross have no SNPs with P < 5× 10−8 so are not affected for either threshold.
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Supplementary Figure 22: Accommodating very large effect loci. Before estimating h2SNP, we recommend performing a single-SNP
association analysis to identify highly-associated SNPs (P < 10−20), pruning these, then including those which remain as fixed-
effect covariates in subsequent regressions. The pruning is mainly for logistical reasons, to reduce computational demands and avoid
colinearity, so we suggest using a reasonably high correlation squared threshold (say 0.5 or 0.8). Main Text Equation (1) becomes
Y ∼ N(Zθ+ Tφ,Kσ2

g + Iσ
2
e), where columns of the matrix T contain the genotypes of the (pruned) highly-associated SNPs (i.e., T

is a submatrix of the full genotype matrix S). The final estimate of h2SNP will be (σ2
g +σ2

T )/(σ
2
g +σ2

T +σ2
e), where σ2

T = (Tφ)T (Tφ),
the variance explained by the highly-associated SNPs. For example, suppose the total variance of a phenotype is 10, of which fixed-
effect covariates explain 2 and all SNPs explain 4. When using conventional covariates (e.g., age and sex), these are treated as nuisance
variables, so the variance they explain is ignored and the estimate of h2SNP would be 4/(10− 2) = 0.5. By contrast, when the covariates
are highly-associated SNPs, their contributions are included, and so the estimate of h2SNP is (4 + 2)/10 = 0.6. In LDAK, highly-
associated SNPs are included as covariates by adding the option --top-snps when performing REML using the command --reml.
blank The first plot demonstrates the problem caused by individual loci with very large effect. Using Simulation Dataset I (n = 5 134
individuals;m = 4 710 536 common SNPs; sum of SNP weights

∑
j wj = 136 407; see Supplementary Note 7), we generate phenotypes

with h2SNP = 0.55, 0.6 or 0.75. For each phenotype, 1000 causal SNPs explain 50% of phenotypic variance, with the remainder of h2SNP
(0.05, 0.1 or 0.25) explained by a single locus picked from either a region of low LD (average LD-score <68.0; red boxes), median
LD (96.8-133.7; green boxes) or high LD (>200.2; blue boxes); these boundaries represent the 20th, 40th, 60th and 80th percentiles
of average LD-Score (computed using non-overlapping 100 kb segments1). First, we sample the effect sizes of causal SNPs in line
with the the GCTA Model, βj ∼ N(0, 1). Gray boxes represent the “gold standard,” where the large-effect locus and its effect size is
known, so its contribution to the phenotype can be excluded. Hatched boxes report estimates of h2SNP when no allowance is made for
highly-associated SNPs; we see that estimates of h2SNP are deflated when the large-effect SNP is in a low-LD region (red boxes), but
inflated when in a high-LD region (blue boxes), and in all cases, precision is lower than the gold standard. Solid boxes report estimates of
h2SNP when highly-associated SNPs are included as fixed effects using the protocol described above (SNPs with P < 10−20 from single-
SNP regression are pruned then included as covariates). We see that estimates now appear to be unbiased and precision is comparable
with the gold standard. The second plot shows that conclusions are similar if instead effect sizes are sampled under the LDAK Model,
βj ∼ N(0, wj).



Supplementary Figure 23: Sample quality control for GWAS traits. Supplementary Note 1 describes our quality control steps; here
we provide some examples. Plot 1: For each cohort in turn (the plot demonstrates for Cohort 1; see Supplementary Table 12), we
exclude outliers based on sample missingness and heterozygosity rate. These two metrics tend to be correlated, so we find it useful to
consider them jointly when deciding suitable exclusion thresholds (red lines). Plot 2: We then project each cohort onto population axes
computed from HapMap data, excluding samples (red points) which stray from the Caucasian cluster. Plot 3: Having imputed cohorts,
then combined these to form datasets, we filter out relatedness based on (unweighted) allelic correlations computed from a pruned set
of SNPs. Specifically, we exclude individuals until no pair remains with genetic correlation higher than c, where −c is the smallest
correlation observed (achieved using the command --filter in LDAK). We first perform this filtering for each cohort in turn, then
for all samples at once. The plot corresponds to Dataset 1 (see Supplementary Table 11, showing which samples were excluded when
considering the bipolar (red points), 1958 Birth Cohort (green) and National Blood Service (dark blue) samples separately, then when
considering the remaining samples together (light blue). Plot 4-16: Having filtered relatedness, we performed principal component
analysis. We plot the leading two axes for a selection of traits (to save space, we exclude six of the well-studied WTCCC 1 cases,
coronary artery disease, Crohn’s Disease, hypertension, rheumatoid arthritis, type 1 diabetes and type 2 diabetes, for which the plots
closely resemble that for bipolar disorder). Blue points indicate cases, green controls (for the two quantitative GWAS traits, we treat
individuals with phenotype above the median as cases). For most datasets, cases and controls appear to be well-mixed for the leading
axes. The least satisfactory dataset is multiple sclerosis (Plot 7), where (even after excluding Finnish samples), the cases, (recruited from
14 countries), were more heterogeneous than the controls (mainly from UK, with some from Sweden). However, our test for inflation
of h2SNP due to cryptic relatedness (Supplementary Figure 19) indicates this heterogeneity is not a serious problem. For all heritability
analyses, we included the top 20 principal components as covariates (in addition to 10 population axes derived from 1000 Genomes data,
and for some traits, sex and age; see Supplementary Figure 24).
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Supplementary Figure 24: Phenotypic variance explained by covariates for GWAS traits. For all analyses we include a minimum
of 30 covariates: 20 “Dataset Axes” (eigen-vectors of the allelic correlation matrix computed from pruned SNPs) and 10 “Population
Axes” (obtained by projecting our dataset onto principal components from 1000 Genomes.39. For the GWAS traits, we additionally
included sex, and for intraocular pressure and wide-range achievement test also age. The plots report, for each trait, the proportion of
phenotypic variance explained by each covariate. We individually report for sex, age, and the first 5 dataset and population axes, then
for the remaining 15+5 dataset and population axes combined.
blank The apparent sex effects may be caused by ascertainment (different sampling of males and females between cases and controls).
The population axes appear largely redundant. For the traits where the dataset axes explain substantial phenotypic variance, notably
schizophrenia, ischaemic stroke, psoriasis, and multiple sclerosis, this appears localized to the top two axes — in particular, the final 20
axes (“Rest”) at most explain 2% of variance — indicating that possible confounders are well taken care of in our analyses (consistent
with the results of Supplementary Figure 19).



Supplementary Figure 25: Single-SNP association testing for GWAS traits. Plots report, for a selection of traits, −log10(P ) from
single-SNP association analysis, including as covariates sex, 20 principal component axes from the dataset, and projections of the data
onto 10 principal axes from 1000 Genomes;39 for intraocular pressure and wide-range achievement test, we also included age as a
covariate. Green points mark SNPs with P < 5 × 10−8, red those with P < 10−20; the latter are the SNPs which, after pruning, are
included as covariates when estimating h2SNP. We report the genomic inflation factor (GIF), and for traits with highly-associated SNPs,
the proportion of phenotypic variance these SNPs explain, and their number pre- and post-pruning. To save space, we exclude bipolar
disorder, coronary artery disease, Crohn’s disease, hypertension and type 2 diabetes, five of the well-studied WTCCC 1 traits,9 none of
which had highly-associated SNPs.



Estimates of h2
SNP (SD) for Different SNP filterings

High-Quality SNPs All Common SNPs All SNPs
Trait n m=353 090, W=38 818 m=8 819 943, W=277 469 m=17 260 213, W=998 445

Height 10 965 0.33 (0.02) 0.48 (0.05) 0.58 (0.11)
Weight 11 005 0.15 (0.02) 0.23 (0.05) 0.39 (0.11)
Body Mass Index 10 933 0.15 (0.02) 0.18 (0.05) 0.32 (0.11)
Waist Circumference 10 956 0.14 (0.02) 0.15 (0.05) 0.31 (0.11)

Forced Vital Capacity 7 871 0.13 (0.03) 0.16 (0.07) 0.33 (0.15)
FV Capacity One Sec 7 871 0.18 (0.03) 0.15 (0.06) 0.26 (0.15)
Systolic BP Adj 7 906 0.10 (0.03) 0.20 (0.07) 0.21 (0.15)
Diastolic BP Adj 7 906 0.09 (0.03) 0.14 (0.06) 0.08 (0.15)

PR Interval 6 460 0.16 (0.04) 0.29 (0.08) 0.27 (0.18)
QT Interval 6 647 0.13 (0.04) 0.29 (0.08) 0.45 (0.18)
QT Interval Corrected 6 647 0.16 (0.04) 0.26 (0.08) 0.44 (0.18)
QRS Voltage Product 6 458 0.14 (0.04) 0.22 (0.08) 0.54 (0.18)
Sokolow Lyon 6 460 0.11 (0.04) 0.23 (0.08) 0.21 (0.18)

Glucose 8 421 0.10 (0.03) 0.09 (0.06) 0.09 (0.14)
Insulin 7 457 0.11 (0.03) 0.13 (0.07) 0.05 (0.16)
Total Cholesterol Adj 8 678 0.23 (0.03) 0.30 (0.06) 0.37 (0.13)
LDL Cholesterol Adj 9 177 0.19 (0.03) 0.28 (0.06) 0.44 (0.13)
Triglyceride Adj 7 341 0.16 (0.03) 0.32 (0.07) 0.13 (0.16)

Viscosity 6 647 0.09 (0.04) 0.17 (0.08) -0.08 (0.17)
Fibrinogen 8 543 0.11 (0.03) 0.10 (0.06) 0.16 (0.14)
Interleukin 6 6 753 0.09 (0.03) 0.24 (0.08) 0.22 (0.17)
C-Reactive Protein 8 581 0.11 (0.03) 0.17 (0.06) -0.01 (0.13)
Haemoglobin 8 852 0.09 (0.03) 0.29 (0.06) 0.55 (0.14)

Average 8 197 0.15 (0.01) 0.22 (0.01) 0.29 (0.03)
Relative - - - 1 ( - - - ) 1.45 (0.08) 1.91 (0.18)
Relative - - - 0.64 (0.02) 1 ( - - - ) 1.29 (0.12)

Supplementary Table 1: Estimates of h2
SNP for UCLEB traits. n = sample size, m = number of SNPs, W =

∑
j rjwj , where rj and

wj denote the information scores and SNP weights, respectively. For high-quality common SNPs (rj >0.99 and MAF>0.01) and all
common SNPs (MAF>0.01), we estimate h2SNP using the (non-partitioned) LDAK Model with α = −0.25; for all SNPs (MAF>0.0005)
we use the LDAK Model with α = −0.25 and SNPs divided by MAF (with boundaries at 0.001, 0.0025, 0.01 and 0.1).



Trait α = −1.25 α = −1.0 α = −0.75 α = −0.5 α = −0.25 α = 0 α = 0.25

Bipolar Disorder -3188 -3176 -3166 -3161 -3158 -3158 -3158

Coronary Artery Disease -3114 -3109 -3105 -3102 -3100 -3099 -3098
Crohn’s Disease -3071 -3061 -3055 -3051 -3049 -3049 -3049

Hypertension -3318 -3310 -3304 -3300 -3297 -3296 -3296
Rheumatoid Arthritis -2864 -2861 -2859 -2858 -2858 -2858 -2859

Type 1 Diabetes -2311 -2308 -2306 -2304 -2304 -2304 -2305

Type 2 Diabetes -3305 -3298 -3293 -3290 -3288 -3287 -3287

Barrett’s Oesophagus -3840 -3832 -3826 -3823 -3820 -3819 -3819
Ischaemic Stroke -5537 -5527 -5521 -5520 -5520 -5522 -5525

Parkinson’s Disease -3866 -3860 -3855 -3851 -3849 -3848 -3847
Psoriasis -4025 -4014 -4007 -4004 -4003 -4004 -4006

Schizophrenia -3197 -3189 -3183 -3180 -3180 -3180 -3181

Ulcerative Colitis -5113 -5095 -5083 -5077 -5075 -5075 -5076

Celiac Disease -4519 -4517 -4515 -4514 -4513 -4513 -4513
Multiple Sclerosis -7938 -7906 -7887 -7880 -7880 -7884 -7891

Partial Epilepsy -2940 -2937 -2935 -2935 -2936 -2938 -2939

Tuberculosis -7323 -7318 -7315 -7315 -7316 -7318 -7320

Intraocular Pressure -5381 -5380 -5380 -5379 -5379 -5379 -5379

Wide-range Achievement Test -14787 -14787 -14786 -14786 -14786 -14786 -14786

Average -4718 -4710 -4704 -4702 -4701 -4701 -4702

Supplementary Table 2: Inferring the relationship between heritability and MAF for GWAS traits. This is a numerical version of
the first plot in Figure 1. Values report log likelihoods from the LDAK Model for seven α. Higher likelihoods indicate better-fitting α;
the highest value for each trait is marked in bold.

Trait LDSC GCTA GCTA-MS GCTA-LDMS LDAK

Bipolar Disorder 2.50 (0.48) 1 1.04 (0.11) 1.27 (0.13) 1.69 (0.15)

Coronary Artery Disease 1.31 (0.96) 1 1.03 (0.20) 1.47 (0.24) 1.88 (0.29)

Crohn’s Disease 1.72 (0.73) 1 0.97 (0.12) 1.30 (0.14) 1.69 (0.18)

Hypertension 3.61 (0.71) 1 1.00 (0.17) 1.20 (0.19) 1.91 (0.23)

Rheumatoid Arthritis 1.42 (0.63) 1 1.00 (0.12) 1.01 (0.14) 1.36 (0.18)

Type 1 Diabetes 1.55 (0.45) 1 1.02 (0.06) 0.98 (0.07) 1.21 (0.09)

Type 2 Diabetes 1.76 (0.79) 1 1.04 (0.15) 1.38 (0.18) 1.77 (0.22)

Barrett’s Oesophagus 1.38 (0.55) 1 0.96 (0.18) 1.34 (0.20) 1.96 (0.25)

Ischaemic Stroke 0.86 (0.36) 1 1.06 (0.12) 1.43 (0.14) 2.03 (0.16)

Parkinson’s Disease 1.17 (0.58) 1 1.00 (0.19) 1.13 (0.21) 1.82 (0.27)

Psoriasis 1.02 (0.36) 1 1.06 (0.08) 1.33 (0.09) 1.65 (0.11)

Schizophrenia 0.89 (0.82) 1 1.08 (0.21) 1.24 (0.23) 2.12 (0.29)

Ulcerative Colitis 1.11 (0.33) 1 1.02 (0.10) 1.20 (0.10) 1.79 (0.13)

Celiac Disease 2.02 (1.22) 1 1.00 (0.03) 1.07 (0.04) 1.15 (0.05)

Multiple Sclerosis 0.81 (0.16) 1 1.04 (0.04) 1.10 (0.04) 1.43 (0.05)

Partial Epilepsy -0.86 (0.67) 1 1.12 (0.21) 1.39 (0.24) 2.16 (0.30)

Pulmonary Tuberculosis 1.00 (0.50) 1 1.07 (0.15) 1.33 (0.16) 1.96 (0.21)

Intraocular Pressure 0.20 (1.56) 1 0.90 (0.49) 1.53 (0.70) 1.97 (0.88)

Wide-range Achievement Test 6.40 (4.01) 1 0.73 (0.71) 1.58 (0.89) 2.73 (1.19)

Average 1.10 (0.10) 1 1.02 (0.02) 1.14 (0.02) 1.45 (0.03)

Supplementary Table 3: Relative estimates of h2
SNP for GWAS traits. This is a numerical version of Figure 3a in the main text.

Values report estimates of h2SNP (with SDs in brackets) from LDSC, GCTA-MS (partitioned by MAF), GCTA-LDMS (partitioned by
MAF and LD) and LDAK, relative to those from GCTA; the final row provides (inverse variance weighted) averages.



P < 10−20 SNPs included as fixed effects No allowance for highly-associated SNPs
α = −0.25 α = −1.0 α = −0.25 α = −1.0

Trait GCTA LDAK GCTA LDAK GCTA LDAK GCTA LDAK

Bipolar Disorder -3176 -3158 -3179 -3176 -3176 -3158 -3179 -3176
Coronary Artery Disease -3107 -3100 -3108 -3109 -3107 -3100 -3108 -3109
Crohn’s Disease -3055 -3049 -3062 -3061 -3055 -3049 -3062 -3061
Hypertension -3311 -3297 -3313 -3310 -3311 -3297 -3313 -3310
Rheumatoid Arthritis -2859 -2858 -2860 -2861 -3064 -3114 -3072 -3122
Type 1 Diabetes -2313 -2304 -2311 -2308 -3147 -3230 -3145 -3230
Type 2 Diabetes -3296 -3288 -3298 -3298 -3296 -3288 -3298 -3298
Barrett’s Oesophagus -3832 -3820 -3835 -3832 -3832 -3820 -3835 -3832
Ischaemic Stroke -5565 -5520 -5565 -5527 -5565 -5520 -5565 -5527
Parkinson’s Disease -3852 -3849 -3854 -3860 -3852 -3849 -3854 -3860
Psoriasis -4035 -4003 -4034 -4014 -4081 -4163 -4086 -4164
Schizophrenia -3192 -3180 -3195 -3189 -3192 -3180 -3195 -3189
Ulcerative Colitis -5107 -5075 -5113 -5095 -5144 -5114 -5151 -5138
Celiac Disease -4519 -4513 -4519 -4517 -4252 -4638 -4268 -4664
Multiple Sclerosis -7977 -7880 -7968 -7906 -7894 -7978 -7903 -8029
Partial Epilepsy -2951 -2936 -2950 -2937 -2951 -2936 -2950 -2937
Tuberculosis -7335 -7316 -7331 -7318 -7335 -7316 -7331 -7318
Intraocular Pressure -5380 -5379 -5380 -5380 -5380 -5379 -5380 -5380
Wide-range Achievement Test -14788 -14786 -14788 -14787 -14788 -14786 -14788 -14787
Average -4718 -4701 -4719 -4710 -4759 -4785 -4762 -4796

Height -15298 -15297 -15316 -15309 -15298 -15297 -15316 -15309
Weight -15474 -15474 -15475 -15474 -15474 -15474 -15475 -15474
Body Mass Index -15398 -15387 -15399 -15389 -15398 -15387 -15399 -15389
Waist Circumference -15446 -15431 -15445 -15430 -15446 -15431 -15445 -15430
Forced Vital Capacity -11074 -11067 -11074 -11069 -11074 -11067 -11074 -11069
FV Capacity One Sec -11078 -11068 -11079 -11071 -11078 -11068 -11079 -11071
Systolic BP Adj -11114 -11113 -11113 -11113 -11114 -11113 -11113 -11113
Diastolic BP Adj -11110 -11109 -11111 -11108 -11110 -11109 -11111 -11108
PR Interval -9031 -9028 -9032 -9029 -9076 -9072 -9077 -9073
QT Interval -9334 -9332 -9336 -9331 -9334 -9332 -9336 -9331
QT Interval Corrected -9329 -9326 -9331 -9327 -9329 -9326 -9331 -9327
QRS Voltage Product -9063 -9057 -9063 -9058 -9063 -9057 -9063 -9058
Sokolow Lyon -9071 -9068 -9071 -9067 -9071 -9068 -9071 -9067
Glucose -11839 -11837 -11839 -11838 -11839 -11837 -11839 -11838
Insulin -10500 -10494 -10500 -10495 -10500 -10494 -10500 -10495
Total Cholesterol Adj -12004 -12016 -12007 -12015 -12132 -12140 -12132 -12135
LDL Cholesterol Adj -12620 -12626 -12621 -12623 -12853 -12853 -12852 -12846
Triglyceride Adj -10211 -10224 -10214 -10223 -10257 -10272 -10259 -10270
Viscosity -9343 -9344 -9344 -9344 -9343 -9344 -9344 -9344
Fibrinogen -12028 -12027 -12029 -12028 -12028 -12027 -12029 -12028
Interleukin 6 -9484 -9483 -9484 -9483 -9484 -9483 -9484 -9483
C-Reactive Protein -12026 -12025 -12026 -12023 -12073 -12072 -12073 -12069
Haemoglobin -12411 -12415 -12412 -12413 -12411 -12415 -12412 -12413

Average -11491 -11489 -11492 -11490 -11512 -11510 -11514 -11510

Supplementary Table 4: Comparing the GCTA and LDAK Models for GWAS and UCLEB traits. Values report log likelihoods
and are presented in pairs; the highest of each pair is marked in bold. When α = −0.25, our recommended value, the LDAK Model
fits better than the GCTA Model for all 19 GWAS traits and for 17 of the 23 UCLEB traits (first pair of columns). The LDAK remains
superior when α = −1, albeit the average improvement in log likelihood is reduced (second pair). This reduction is because the GCTA
Model implicitly gives more weight to high-MAF SNPs than the LDAK Model (high-MAF SNPs tend to be in regions of higher-LD),
which partially makes up for using α too high.
Blank Estimates of h2SNP are based on an infinitesimal model, which is violated when there are loci of very large effect. For this reason,
we advocate including highly-associated SNPs as fixed effects (Supplementary Figures 21 & 22). For the final four columns, these SNPs
are no longer given special consideration (traits with highly-associated SNPs are marked in red). For 5 of the 6 affected GWAS traits,
model fit is now higher under the GCTA Model. This is because for these traits, almost all the large effect loci are located in the major
histocompatibility complex (MHC), a region of very high LD, which is implicitly given higher weighting under the GCTA Model.



Trait Including rj Excluding rj Trait Including rj Excluding rj
Height -15365 -15373 Sokolow Lyon -9068 -9069
Weight -15488 -15489 Glucose -11842 -11842
Body Mass Index -15404 -15404 Insulin -10499 -10499
Waist Circumference -15446 -15447 Total Cholesterol Adj -12037 -12040
Forced Vital Capacity -11073 -11073 LDL Cholesterol Adj -12716 -12718
FV Capacity One Sec -11082 -11082 Triglyceride Adj -10225 -10226
Systolic BP Adj -11114 -11115 Viscosity -9344 -9345
Diastolic BP Adj -11111 -11112 Fibrinogen -12034 -12034
PR Interval -9030 -9032 Interleukin 6 -9482 -9483
QT Interval -9331 -9331 C-Reactive Protein -12019 -12020
QT Interval Corrected -9330 -9329 Haemoglobin -12407 -12410
QRS Voltage Product -9060 -9059 Average -11500 -11501

Supplementary Table 5: Examining the relationship between heritability and genotype certainty for UCLEB traits. The LDAK
Model allows for genotype certainty by scaling effect-size prior variance by rj , our information score. Here we consider all common
SNPs. Values report log likelihoods for each trait, with and without allowance for genotype certainty. Including rj in the heritability
model provides a modest overall improvement in model fit, and results in higher likelihood for 18 of the 23 traits.

Trait Keyword # SNPs h2
GWAS Trait Keyword # SNPs h2

GWAS Trait Keyword # SNPs h2
GWAS

Bipolar disorder 24 0.02 Coronary artery disease 13 0.03 Crohn’s disease 151 0.21

Hypertension 8 <0.01 Rheumatoid arthritis 122 0.19 Type 1 diabetes 65 0.27

Type 2 diabetes 83 0.08 Barrett’s esophagus 2 <0.01 Ischemic stroke 6 <0.01

Parkinson’s disease 57 0.03 Psoriasis 56 0.21 Schizophrenia 146 0.07

Ulcerative colitis 91 0.12 Celiac disease 36 0.29 Multiple sclerosis 82 0.17

Epilepsy 5 <0.01 Pulmonary Tuberculosis 7 <0.01 Intraocular pressure 16 0.02

Supplementary Table 6: Proportion of phenotypic variance explained by genome-wide significant SNPs for the GWAS traits.
For each trait, we searched the most recent version (August 2016) of the GWAS Catalog40 (www.ebi.ac.uk/gwas/docs/downloads)
for SNPs reported as genome-wide significant (P < 5 × 10−8). We restrict to SNPs present in 1000 Genomes39 and where the
corresponding GWAS was described as European, Canadian or Ashkenazi Jews, or if the SNP was discovered through a global meta-
analysis consortium, where individuals were primarily of Caucasian ancestry. The table lists for each trait the (case-sensitive) keyword
we used, how many SNPs this returned, and h2GWAS, the proportion of phenotypic variance these SNPs explained in our data (calculated
using ordinary least squares regression). For disease traits, h2GWAS has been transformed to the liability scale.3, 4 Note that by using the
keyword “Epilepsy”, we did not restrict to SNPs specifically associated with partial epilepsy.15 We were unable to find any P < 5×10−8

SNPs for wide-range achievement test, even when we consider related keywords such as “Cognitive.”



Estimates of h2
SNP (SD) from Different Methods

Trait (Prevalence) h2
GWAS Previous LDSC GCTA GCTA-MS GCTA-LDMS LDAKα-1 LDAKα-0.25

Bipolar Disorder (0.5) 0.02 0.24 (0.04)2 0.53 (0.10) 0.22 (0.02) 0.21 (0.02) 0.26 (0.03) 0.33 (0.03) 0.35 (0.03)

Coronary Artery Disease (6) 0.03 0.25 (0.06)2 0.28 (0.21) 0.22 (0.04) 0.22 (0.04) 0.31 (0.05) 0.32 (0.07) 0.40 (0.06)

Crohn’s Disease (0.5) 0.21 0.26 (0.01)41 0.33 (0.14) 0.19 (0.02) 0.18 (0.02) 0.24 (0.03) 0.30 (0.04) 0.32 (0.03)

Hypertension (5) <0.01 0.33 (0.06)2 0.86 (0.17) 0.24 (0.04) 0.23 (0.04) 0.29 (0.05) 0.39 (0.06) 0.46 (0.06)

Rheumatoid Arthritis (0.5) 0.19 0.09 (0.03)2 0.22 (0.10) 0.15 (0.02) 0.14 (0.02) 0.15 (0.02) 0.19 (0.03) 0.21 (0.03)

Type 1 Diabetes (0.5) 0.27 0.13 (0.03)2 0.38 (0.11) 0.26 (0.01) 0.26 (0.01) 0.27 (0.02) 0.31 (0.02) 0.31 (0.02)

Type 2 Diabetes (8) 0.08 0.42 (0.07)2 0.54 (0.24) 0.30 (0.05) 0.30 (0.05) 0.40 (0.05) 0.47 (0.07) 0.54 (0.07)

Barrett’s Oesophagus (1.6) <0.01 0.25 (0.05)42 0.23 (0.09) 0.17 (0.03) 0.15 (0.03) 0.22 (0.04) 0.27 (0.04) 0.32 (0.04)

Ischaemic Stroke (2) <0.01 0.25 (0.03)43 0.15 (0.06) 0.18 (0.02) 0.18 (0.02) 0.25 (0.02) 0.35 (0.03) 0.34 (0.03)

Parkinson’s Disease (0.2) 0.03 0.27 (0.05)44 0.13 (0.06) 0.11 (0.02) 0.10 (0.02) 0.11 (0.02) 0.15 (0.03) 0.20 (0.03)

Psoriasis (0.5) 0.21 0.35 (0.06)45 0.21 (0.07) 0.21 (0.02) 0.21 (0.02) 0.27 (0.02) 0.32 (0.02) 0.34 (0.02)

Schizophrenia (1) 0.07 0.23 (0.01)46 0.12 (0.11) 0.15 (0.03) 0.14 (0.03) 0.16 (0.04) 0.27 (0.04) 0.30 (0.04)

Ulcerative Colitis (0.2) 0.12 0.19 (0.01)41 0.17 (0.05) 0.16 (0.02) 0.15 (0.02) 0.20 (0.02) 0.27 (0.02) 0.28 (0.02)

Celiac Disease (1) 0.29 0.33 (0.04)47 0.65 (0.39) 0.30 (0.01) 0.30 (0.01) 0.33 (0.01) 0.35 (0.02) 0.35 (0.02)

Multiple Sclerosis (0.1) 0.17 0.17 (0.01)2 0.13 (0.03) 0.17 (0.01) 0.17 (0.01) 0.19 (0.01) 0.24 (0.01) 0.24 (0.01)

Partial Epilepsy (0.3) <0.01 0.33 (0.05)36 -0.11 (0.08) 0.14 (0.03) 0.14 (0.03) 0.19 (0.03) 0.28 (0.04) 0.27 (0.04)

Pulmonary Tuberculosis (4) <0.01 None Found 0.13 (0.07) 0.15 (0.02) 0.15 (0.02) 0.19 (0.02) 0.27 (0.03) 0.26 (0.03)

Intraocular Pressure 0.02 None Found 0.04 (0.30) 0.19 (0.11) 0.14 (0.10) 0.26 (0.14) 0.31 (0.18) 0.38 (0.17)

Wide-Range Achievement Test <0.01 0.43 (0.10)48 0.49 (0.31) 0.07 (0.06) 0.05 (0.06) 0.10 (0.07) 0.22 (0.10) 0.21 (0.09)

Average - - - - - - - - - 0.17 (0.02) 0.19 (0.00) 0.19 (0.00) 0.22 (0.00) 0.27 (0.01) 0.28 (0.01)
Relative - - - - - - - - - 1.05 (0.10) 1 ( - - - ) 0.99 (0.02) 1.15 (0.02) 1.39 (0.03) 1.43 (0.03)
Relative - - - - - - - - - 0.86 (0.08) 0.87 (0.02) 0.86 (0.02) 1 ( - - - ) 1.22 (0.02) 1.25 (0.02)

Supplementary Table 7: Estimates of h2
SNP for GWAS traits. We report estimates from LDSC32 (LD Score Regression), GCTA,

GCTA-MS33 (GCTA stratified by MAF) and GCTA-LDMS1 (stratified by MAF and LD); all of these methods use α = −1 when scaling
genotypes. The final two columns provide estimates from LDAK, first using α = −1, then using α = −0.25 (our recommended value).
For disease traits, estimates have been converted to the liability scale based on the assumed prevalence.3, 4 For comparison, we include
previous estimates of h2SNP; where possible, these are based on Caucasian samples, but for psoriasis, the only available estimate used
Han Chinese individuals. We also report h2GWAS, the proportion of phenotypic variance explained by SNPs reported as genome-wide
significant (see Supplementary Table 6)



Contribution to h2

SNP (SD) ‖ Predicted Contribution ‖ Enrichment (SD)
Trait DHS Exonic Genic Inter-Genic DHS - Genotyped DHS - GCTA
Bipolar Disorder 15 (5) 17.5 0.8 (0.3) 4.1 (2) 1.9 2.1 (1.1) 19 (5) 17.6 1.1 (0.3) 16 (4) 18.7 0.8 (0.2) 13 (6) 18.9 0.7 (0.3) 36 (13) 12.7 2.8 (1.1)
Coronary Artery Disease 31 (9) 17.5 1.8 (0.5) 7 (4) 1.9 3.7 (1.9) 35 (9) 17.5 2.0 (0.5) 6 (7) 18.7 0.3 (0.4) 38 (10) 18.8 2.0 (0.5) 78 (20) 12.7 6.2 (1.6)
Crohn’s Disease 29 (7) 17.5 1.7 (0.4) 2.7 (2) 1.9 1.5 (1.3) 31 (6) 17.6 1.7 (0.3) 10 (5) 18.7 0.5 (0.3) 35 (7) 18.8 1.9 (0.4) 110 (16) 12.7 8.7 (1.3)
Hypertension 23 (8) 17.5 1.3 (0.4) 3.6 (3) 1.9 1.9 (1.5) 32 (7) 17.6 1.8 (0.4) 12 (6) 18.7 0.6 (0.3) 25 (8) 18.9 1.3 (0.4) 77 (20) 12.7 6.1 (1.6)
Rheumatoid Arthritis 8 (12) 17.5 0.5 (0.7) 7.8 (5) 1.9 4.1 (2.5) 43 (12) 17.6 2.4 (0.7) 6 (9) 18.7 0.3 (0.5) -8 (15) 18.9 -0.4 (0.8) 95 (28) 12.7 7.5 (2.2)
Type 1 Diabetes 31 (10) 17.5 1.8 (0.6) 10.3 (4) 1.9 5.5 (2.1) 28 (9) 17.5 1.6 (0.5) 5 (7) 18.7 0.3 (0.4) 9 (15) 18.9 0.5 (0.8) 126 (21) 12.7 9.9 (1.7)
Type 2 Diabetes 22 (8) 17.6 1.3 (0.4) 4.2 (3) 1.9 2.2 (1.5) 28 (7) 17.6 1.6 (0.4) 6 (6) 18.7 0.3 (0.3) 20 (8) 18.8 1.1 (0.4) 69 (18) 12.7 5.5 (1.4)
Barrett’s Oesophagus 13 (8) 18.3 0.7 (0.5) 3.3 (3) 1.9 1.8 (1.7) 27 (8) 18.1 1.5 (0.4) 17 (6) 17.4 1.0 (0.3) 20 (8) 20.7 1.0 (0.4) 63 (20) 13.4 4.7 (1.5)
Ischaemic Stroke 14 (5) 18.3 0.8 (0.3) -0.3 (2) 1.9 -0.1 (1.0) 14 (5) 18.1 0.7 (0.3) 15 (4) 17.4 0.9 (0.2) 28 (6) 20.5 1.4 (0.3) 59 (13) 13.3 4.5 (1.0)
Parkinson’s Disease 30 (10) 18.4 1.6 (0.5) 8.5 (4) 1.9 4.6 (2.0) 24 (9) 18.1 1.3 (0.5) 10 (6) 17.4 0.6 (0.4) 33 (11) 20.6 1.6 (0.5) 74 (20) 13.4 5.5 (1.5)
Psoriasis 30 (6) 18.2 1.6 (0.3) 5.4 (2) 1.8 3.0 (1.3) 29 (6) 18.1 1.6 (0.3) 7 (4) 17.4 0.4 (0.2) 27 (8) 20.7 1.3 (0.4) 105 (15) 13.4 7.9 (1.1)
Schizophrenia 16 (9) 17.4 0.9 (0.5) 3.5 (3) 1.7 2.1 (1.9) 15 (8) 17.8 0.9 (0.5) 14 (6) 18.0 0.8 (0.4) 22 (10) 20.8 1.1 (0.5) 39 (24) 12.8 3.1 (1.9)
Ulcerative Colitis 28 (5) 18.4 1.5 (0.3) 4.4 (2) 2.0 2.2 (1.0) 27 (5) 17.6 1.5 (0.3) 6 (4) 17.8 0.3 (0.2) 32 (6) 20.1 1.6 (0.3) 112 (11) 13.6 8.3 (0.8)
Celiac Disease 26 (10) 18.0 1.4 (0.5) 8.2 (4) 2.1 3.9 (1.9) 38 (9) 18.7 2.0 (0.5) -1 (7) 17.9 -0.0 (0.4) 15 (12) 19.5 0.8 (0.6) 74 (21) 13.0 5.7 (1.6)
Multiple Sclerosis 29 (3) 18.2 1.6 (0.2) 4.5 (1) 1.8 2.5 (0.6) 33 (3) 18.0 1.8 (0.2) 11 (2) 17.4 0.6 (0.1) 33 (3) 20.5 1.6 (0.2) 88 (6) 13.3 6.6 (0.5)
Partial Epilepsy 33 (9) 18.0 1.8 (0.5) -3.7 (3) 1.8 -2.1 (1.8) 9 (8) 18.1 0.5 (0.5) 16 (6) 17.5 0.9 (0.4) 30 (10) 20.2 1.5 (0.5) 64 (22) 13.1 4.9 (1.7)
Pulmonary Tuberculosis 22 (7) 18.1 1.2 (0.4) 5.2 (2) 1.9 2.8 (1.3) 26 (6) 17.7 1.5 (0.3) 7 (5) 18.1 0.4 (0.3) 29 (8) 20.1 1.5 (0.4) 75 (15) 13.5 5.6 (1.1)
Intraocular Pressure 31 (29) 18.8 1.6 (1.6) 0.1 (10) 2.1 0.0 (4.9) -21 (29) 18.6 -1.1 (1.5) 17 (19) 17.4 1.0 (1.1) 24 (28) 20.8 1.2 (1.4) 6 (70) 13.9 0.4 (5.0)
Wide-range Achievement Test 29 (25) 17.5 1.6 (1.4) 8.9 (10) 1.8 5.0 (5.5) 4 (24) 18.1 0.2 (1.4) -6 (19) 18.0 -0.3 (1.1) 86 (89) 19.7 4.4 (4.5) 129 (87) 12.6 10.2 (6.9)
Average 24 (2) 18.0 1.4 (0.1) 4.0 (1) 1.9 2.1 (0.3) 27 (1) 17.9 1.5 (0.1) 10 (1) 17.8 0.6 (0.1) 27 (2) 20.0 1.4 (0.1) 82 (4) 13.1 6.3 (0.3)

Supplementary Table 8: Enrichment of DHS and other SNP classes for GWAS traits. Triplets report the estimated con-
tribution to h2SNP, the predicted contribution, and the enrichment (estimated contribution divided by predicted) for DHS,
exonic, genic and inter-genic SNPs. Except for the final block of results (see below), estimates and predictions are calcu-
lated assuming the LDAK Model with α = −0.25. For DHS (DNaseI hypersensitive sites), we use annotations provided at
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.gz.
Exonic SNPs are those within exons according to RefSeq gene annotations.49 Genic SNPs are defined (here) as those inside or within
2 kb of exons, while inter-genic are those further than 125 kb from exons (we chose these thresholds to ensure that DHS, genic and
inter-genic SNPs are predicted to contribute equally to h2SNP). In general, results are based on imputed data (on average 5.1 M SNPs
per trait); for DHS, we also perform the analysis using only directly genotyped SNPs (on average 235 K SNPs), noting that enrichment
remains 1.4-fold, despite the reduction in SNP density.
Blank Gusev et al.2 performed a similar analysis, but instead assumed the GCTA Model with α = −1; across 11 traits (10 of which are
included in our 19), they estimated that DHS contribute on average 79% (SD 8) of h2SNP. For the final block, we copy their approach,
obtaining a comparable estimate of 82% (SD 4); as DHS on average contain 13% of SNPs, this corresponds to 6.3-fold enrichment (note
that Gusev et al.2 reported enrichment as 5.1-fold, as they instead compared 79% to an estimate of the effective size of DHS). There are
three main reasons why the GCTA and LDAK Models result in such different conclusions. Firstly, their contrasting estimates of h2SNP:
16.2% (SD 0.4) vs 25.0% (SD 0.6). Secondly, their contrasting estimates of the (absolute) heritability of DHS: 13.6% (SD 0.6) vs 6.3%
(SD 0.4). Thirdly, their contrasting estimates of the predicted contributions of DHS: 18.0% vs 13.1% (a difference mainly due to DHS
tending to have lower-than-average LD).



GCTA (2) GCTA-LD4 (5) GCTA-LDMS (21) LDAK (2) LDAK-LD4 (5) LDAK-LDMS (21)
Trait logL LRT ∆ AIC logL LRT ∆ AIC logL LRT ∆ AIC logL LRT ∆ AIC logL LRT ∆ AIC logL LRT ∆ AIC
Bipolar Disorder -3176 101.4 99.4 -3167 120.3 112.3 -3161 131.5 91.5 -3158 136.8 134.8 -3157 138.8 130.8 -3151 131.5 111.9
Coronary Artery Disease -3107 29.5 27.5 -3098 48.3 40.3 -3092 59.7 19.7 -3100 43.9 41.9 -3097 50.2 42.2 -3089 59.7 26.4
Crohn’s Disease -3055 83.6 81.6 -3046 102.5 94.5 -3035 125.1 85.1 -3049 96.0 94.0 -3049 96.8 88.8 -3041 125.1 71.8
Hypertension -3311 43.0 41.0 -3305 55.9 47.9 -3296 73.6 33.6 -3297 70.6 68.6 -3294 76.2 68.2 -3284 73.6 56.6
Rheumatoid Arthritis -2859 20.7 18.7 -2858 24.0 16.0 -2850 40.0 0.0 -2858 23.5 21.5 -2857 24.4 16.4 -2850 40.0 -1.0
Type 1 Diabetes -2313 19.0 17.0 -2310 24.9 16.9 -2304 35.4 -4.6 -2304 35.6 33.6 -2303 38.2 30.2 -2299 35.4 6.8
Type 2 Diabetes -3296 53.6 51.6 -3288 68.5 60.5 -3280 85.6 45.6 -3288 69.2 67.2 -3285 74.2 66.2 -3281 85.6 43.2
Barrett’s Oesophagus -3832 44.6 42.6 -3826 56.5 48.5 -3819 71.4 31.4 -3820 67.5 65.5 -3820 69.4 61.4 -3813 71.4 42.9
Ischaemic Stroke -5565 84.6 82.6 -5547 121.1 113.1 -5547 121.1 81.1 -5520 174.4 172.4 -5515 185.4 177.4 -5515 121.1 145.4
Parkinson’s Disease -3852 41.5 39.5 -3851 42.8 34.8 -3843 59.2 19.2 -3849 47.7 45.7 -3848 50.5 42.5 -3835 59.2 35.9
Psoriasis -4035 45.6 43.6 -4021 73.2 65.2 -4012 90.8 50.8 -4003 108.8 106.8 -4000 115.5 107.5 -3989 90.8 96.4
Schizophrenia -3192 34.0 32.0 -3190 38.8 30.8 -3185 49.0 9.0 -3180 59.4 57.4 -3179 61.7 53.7 -3170 49.0 38.3
Ulcerative Colitis -5107 124.2 122.2 -5095 149.0 141.0 -5095 149.0 109.0 -5075 189.8 187.8 -5073 192.3 184.3 -5073 149.0 152.3
Celiac Disease -4519 29.7 27.7 -4513 41.4 33.4 -4506 54.7 14.7 -4513 40.5 38.5 -4513 42.4 34.4 -4506 54.7 15.2
Multiple Sclerosis -7977 430.0 428.0 -7941 502.1 494.1 -7941 502.1 462.1 -7880 624.0 622.0 -7877 629.7 621.7 -7877 502.1 589.7
Partial Epilepsy -2951 28.3 26.3 -2945 40.6 32.6 -2945 40.6 0.6 -2936 57.5 55.5 -2934 61.3 53.3 -2934 40.6 21.3
Pulmonary Tuberculosis -7335 60.4 58.4 -7327 75.9 67.9 -7310 110.9 70.9 -7316 97.6 95.6 -7315 101.1 93.1 -7300 110.9 89.6
Intraocular Pressure -5380 3.9 1.9 -5377 8.4 0.4 -5367 29.2 -10.8 -5379 5.1 3.1 -5379 5.3 -2.7 -5370 29.2 -16.1
Wide-Range Achievement -14788 2.5 0.5 -14787 3.8 -4.2 -14784 10.2 -29.8 -14786 5.4 3.4 -14784 9.7 1.7 -14776 10.2 -14.6

Mean -4718 67.4 65.4 -4710 84.1 76.1 -4704 96.8 56.8 -4701 102.8 100.8 -4699 106.5 98.5 -4692 96.8 79.6
Median -3832 43.0 41.0 -3826 55.9 47.9 -3819 71.4 31.4 -3820 67.5 65.5 -3820 69.4 61.4 -3813 71.4 42.9

Supplementary Table 9: Is it beneficial to partition by LD? As well as the non-partitioned versions of LDAK and GCTA, we consider
partitioning by LD (4 tranches) and by both LD & MAF (LDMS: 20 tranches); for all methods we use α = −0.25. Triplets of values
report the log likelihood, the likelihood ratio test statistic (twice the improvement in log likelihood compared to the null model) and the
change in Akaike information criterion (explained below), for each of the 19 GWAS traits.
Blank Yang et al. claimed that GCTA-LDMS is superior to LDAK, however we have shown the evidence they provided to support
this claim is invalid, as it relied on a simulation study which by design favored the GCTA Model (Supplementary Figures 10 & 11).
Comparing models of different complexity is not straightforward. If two heritability models are of equal complexity (i.e., use the same
number of SNP tranches), then we can compare simply by model likelihood. Therefore, we can conclude from the above values that
LDAK tends to outperform GCTA, LDAK-LD4 tends to outperform GCTA-LD4, and LDAK-LDMS tends to outperform GCTA-LDMS.
To compare models of different complexity, it is necessary to introduce penalization, to allow for the fact that model fit is expected to
increase with complexity. The AIC is defined as twice the number of parameters minus twice the log likelihood; we report change
in AIC, obtained by subtracting the AIC of the null model. We see that for all except one trait, the improvement in model fit from
partitioning by LD or by LD & MAF, is not sufficient to justify the increase in complexity, and that based on AIC, LDAK performs
approximately twice as well as GCTA-LDMS.



No weighting Exon weighting
Trait logL h2

GWAS logL h2
GWAS

Bipolar Disorder -3158 0.71 (0.06) -3159 0.70 (0.06)

Coronary Artery Disease -3100 0.43 (0.07) -3099 0.43 (0.06)

Crohn’s Disease -3049 0.64 (0.07) -3045 0.65 (0.06)

Hypertension -3297 0.52 (0.06) -3297 0.52 (0.06)

Rheumatoid Arthritis -2858 0.41 (0.06) -2858 0.41 (0.06)

Type 1 Diabetes -2304 0.64 (0.04) -2304 0.63 (0.04)

Type 2 Diabetes -3288 0.53 (0.06) -3285 0.54 (0.06)

Barrett’s Oesophagus -3820 0.40 (0.05) -3821 0.39 (0.05)

Ischaemic Stroke -5520 0.51 (0.04) -5522 0.50 (0.04)

Parkinson’s Disease -3849 0.37 (0.05) -3848 0.37 (0.05)

Psoriasis -4003 0.60 (0.04) -4001 0.60 (0.04)

Schizophrenia -3180 0.53 (0.07) -3181 0.52 (0.07)

Ulcerative Colitis -5075 0.60 (0.04) -5068 0.61 (0.04)

Celiac Disease -4513 0.48 (0.02) -4510 0.49 (0.02)

Multiple Sclerosis -7880 0.65 (0.02) -7871 0.65 (0.02)

Partial Epilepsy -2936 0.39 (0.05) -2937 0.39 (0.05)

Tuberculosis -7316 0.32 (0.03) -7315 0.32 (0.03)

Intraocular Pressure -5379 0.38 (0.17) -5379 0.37 (0.17)

Wide-range Achievement Test -14786 0.21 (0.09) -14786 0.22 (0.09)

Average -4701 0.52 (0.01) -4699 0.52 (0.01)

Supplementary Table 10: Incorporating distance from exons for GWAS traits. The LDAK Model assumes E[h2j ] ∝ [fj(1 −
fj)]

1+α × wj × rj . Here, we consider also E[h2j ] ∝ [fj(1 − fj)]1+α × wj × rj × exp(
−(Dj+50)

500 ), where Dj is the distance (in kb)
between SNP j and the nearest exon. This model is designed so that genic SNPs are expected to have approximately twice the heritability
of inter-genic SNPs. This table reports, for each of the GWAS traits, the log likelihood and estimate of h2SNP (with SD in brackets) under
the standard and exon-weighted LDAK Models. We see that weighting SNPs based on distance from exons typically improves model fit,
to be expected considering that genic SNPs tend to have higher heritability than inter-genic SNPs (Supplementary Table 8). However,
overall, the improvement in likelihood is slight, and there is negligible effect on estimates of h2SNP.

Trait Cohorts m W Trait Cohorts m W

Bipolar Disorder 1,8,9 2 729 104 79 491 Barrett’s Oesophagus 10,16,18 3 830 533 116 165

Coronary Artery Disease 2,8,9 2 738 568 79 671 Ischaemic Stroke 11,16,18 3 797 362 115 334

Crohn’s Disease 3,8,9 2 723 516 79 331 Parkinson’s Disease 12,16,18 3 819 831 116 270

Hypertension 4,8,9 2 739 910 79 673 Psoriasis 13,16,18 3 814 818 115 935

Rheumatoid Arthritis 5,8,9 2 735 531 79 567 Schizophrenia 14,32 3 481 050 110 868

Type 1 Diabetes 6,8,9 2 731 788 79 609 Ulcerative Colitis 15,17,19 4 061 726 114 724

Type 2 Diabetes 7,8,9 2 735 552 79 643 Pulmonary Tuberculosis 26,27 2 987 383 102 256

Celiac Disease 20,21 2 681 987 88 382 Intraocular Pressure 28 4 149 456 124 792

Multiple Sclerosis 16,18,22,23 3 702 284 113 154 Wide-range Achievement Test 29,30,31 2 593 016 87 823

Partial Epilepsy 16,18,24,25 3 399 056 108 134 UCLEB Traits 33-40 353 090 38 892

Illumina Control-Control 16,18 4 710 536 136 407 Affymetrix Control-Control 17,19 4 179 761 119 137

Supplementary Table 11: Construction of Datasets. m = number of SNPs, W =
∑
j wj = sum of SNP weights. Cohort numbers are

explained in Supplementary Table 12. For UCLEB, m and W refer to our main analysis, which considers only high-quality common
SNPs (MAF>0.01, rj >0.99). We use the two control-control datasets (bottom row) to examine the adequacy of our quality control (see
Supplementary Note 6).



Quality Control 1 QC 2
Cohort (Assession Code) Genotyping Platform n m m

1 WTCCC 1: Bipolar Disease (EGAD00000000003) Affymetrix 500 K 1 963 399 943 3 015 567

2 WTCCC 1: Coronary Artery Disease (EGAD00000000004) Affymetrix 500 K 1 956 401 194 3 034 574

3 WTCCC 1: Crohn’s Disease (EGAD00000000005) Affymetrix 500 K 1 916 404 644 3 005 015

4 WTCCC 1: Hypertension (EGAD00000000006) Affymetrix 500 K 1 969 402 326 3 041 849

5 WTCCC 1: Rheumatoid ArthritisEGAD00000000007) Affymetrix 500 K 1 932 402 817 3 033 111

6 WTCCC 1: Type 1 Diabetes (EGAD00000000008) Affymetrix 500 K 1 980 402 621 3 020 006

7 WTCCC 1: Type 2 Diabetes (EGAD00000000009) Affymetrix 500 K 1 957 401 226 3 020 679

8 WTCCC 1: 1958 Birth Cohort∗ (EGAD00000000001) Affymetrix 500 K 1 493 406 566 3 048 680

9 WTCCC 1: National Blood Service∗ (EGAD00000000002) Affymetrix 500 K 1 480 401 357 3 028 805

10 WTCCC 2: Barrett’s Oesophagus (EGAD00010000506) Illumina 670 K 1 901 529 702 4 191 898

11 WTCCC 2: Ischaemic Stroke (EGAD00010000264) Illumina 670 K 3 972 530 785 4 124 693

12 WTCCC 2: Parkinson’s Disease (EGAD00000000057) Illumina 610 K 1 705 531 134 4 180 706

13 WTCCC 2: Psoriasis (EGAD00010000124) Illumina 670 K 2 519 530 376 4 162 924

14 WTCCC 2: Schizophrenia† (EGAD00010000262) Affymetrix 6.0 3 016 741 463 4 376 041

15 WTCCC 2: Ulcerative Colitis (EGAD00000000025) Affymetrix 6.0 2 775 901 267 4 300 826

16 WTCCC 2: 1958 Birth Cohort‡ Illumina 1.2 M 2 699 741 574 4 897 381

17 (EGAD00000000022 & EGAD00000000021) Affymetrix 6.0 2 706 901 662 4 374 316

18 WTCCC 2: National Blood Service‡ Illumina 1.2 M 2 501 738 972 4 895 769

19 (EGAD00000000024 & EGAD00000000023) Affymetrix 6.0 2 674 741 483 4 344 699

20 Celiac Collection 1 from Dubois et al.10 Illumina Hap300v1 & Hap550v3 3 293 289 333 2 783 302

21 Celiac Collection 2§ from Dubois et al.10 Illumina 670 K & 1.2 M 6 772 515 664 4 132 558

22 International Multiple Sclerosis Genetics Consortium (IMSGC)¶50

Illumina 610 K
4 473 529 485 4 182 239

23 (EGAD00000000120) 4 948 529 485 4 089 368

24 Imperial & Liverpool Samples from ILAE Consortium15 Illumina 660 K 1 349 532 173 4 185 985

25 Melbourne Samples from ILAE Consortium15 Illumina 660 K 348 525 777 3 954 127

26
Russian Pulmonary Tuberculosis (RPTB)¶ from Curtis et al.7 Affymetrix 6.0

5 569 687 789 3 077 219

27 5 569 687 789 3 085 649

28 Blue Mountains Eye Study (EGAD00010000584) Illumina 670 K 2 635 529 786 4 149 456

29

Children’s Hospital of Philadelphia (CHOP) (phs000607.v1.p1)

Illumina 610 K 2 127 458 182 3 228 597

30 Illumina OmniExpressv2 1 337 644 856 4 278 434

31 Illumina Hap550v3 1 029 483 412 3 478 209

32 Trinity College Dublin from ILAE Consortium15 Illumina OmniQuad 2 232 732 310 4 802 327

33 British Regional Heart Study51 Metabochip 2 255 63 318 303 687

34 British Women’s Heart and Health Study52 Metabochip 1 953 64 400 310 846

35 Caerphilly Prospective Study53 Metabochip 1 329 64 775 317 876

36 Edinburgh Artery Study54 Metabochip 0 749 63 385 305 564

37 English Longitudinal Study of Ageing55 Metabochip 1 868 64 703 312 027

38 Edinburgh Type 2 Diabetes Study56 Metabochip 0 990 65 181 316 859

39 MRC National Survey of Health57 Metabochip 2 421 64 630 310 176

40 Whitehall II Study58 Metabochip 3 046 65 119 309 585

Supplementary Table 12: List of Cohorts. n = sample size, m = number of SNPs. Quality Control 1 (performed just prior to
imputation) filters samples based on missingness and heterozygosity, and excludes SNPs with MAF< 0.01, call-rate <0.95 or Hardy-
Weinberg P < 10−6. Quality Control 2 (performed just after imputation) excludes SNPs based on MAF and information score. Well-
come Trust Case Control Consortium (WTCCC), IMSGC and Blue Mountains Eye Study data were downloaded from the European
Genome-Phenome Archive (www.ebi.ac.uk/ega); CHOP data were downloaded from dbGaP (www.ncbi.nlm.nih.gov/gap); Cohort 33-
40 are available upon application from the UCLEB Consortium.21 The remaining datasets were obtained directly from the authors cited.
∗WTCCC 1 controls are subsets of the WTCCC 2 controls. † Unlike the other WTCCC 2 cohorts, the Schizophrenia cases are of
Irish origin (recruited at Trinity College Dublin). ‡WTCCC 2 Controls were genotyped twice, on Illumina and Affymetrix SNP arrays.
§Celiac Collection 2 uses WTCCC 2 Controls. ¶For both IMSGC and RPTB data, to make imputation feasible, we divided the samples
into two cohorts.
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