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SUMMARY

This study investigates the challenge of comprehen-
sively cataloging the complete human proteome
from a single-cell type using mass spectrometry
(MS)-based shotgun proteomics. We modify a clas-
sical two-dimensional high-resolution reversed-
phase peptide fractionation scheme and optimize a
protocol that provides sufficient peak capacity to
saturate the sequencing speed of modern MS instru-
ments. This strategy enables the deepest proteome
of a human single-cell type to date, with the HeLa
proteome sequenced to a depth of �584,000 unique
peptide sequences and �14,200 protein isoforms
(�12,200 protein-coding genes). This depth is com-
parable with next-generation RNA sequencing and
enables the identification of post-translational modi-
fications, including �7,000 N-acetylation sites and
�10,000 phosphorylation sites, without the need for
enrichment. We further demonstrate the general
applicability and clinical potential of this proteomics
strategy by comprehensively quantifying global pro-
teome expression in several different human cancer
cell lines and patient tissue samples.

INTRODUCTION

Comprehensive proteomics describes the mass spectrometric

analysis of essentially all endogenously expressed proteins in a

cell, tissue, or organism. This is the ultimate goal for proteomics

studies, as it enables routine systems biology analyses and

biomarker discoveries (Eriksson and Fenyo, 2007). Tremendous

efforts by the proteomics community have already enabled

essentially complete proteome analysis of simpler organisms,

such as Baker’s yeast, with the first comprehensive analysis of

the yeast proteome achieved 9 years ago (de Godoy et al.,
Cell Systems 4, 587–599, J
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2008). While it required a week of total mass spectrometry

(MS) instrument time to obtain this original data, the complete

yeast proteome can now be analyzed a hundred times faster,

in 1.8 hr (Hebert et al., 2014).

Efforts to map the complete human proteome have likewise

mainly been attempted by brute force analyses, where very

large-scale experiments have been carried out. This was, for

example, the case in the two recent initial drafts of the humanpro-

teome,where thousandsofMSanalysis runswerecombined (Kim

et al., 2014; Wilhelm et al., 2014). However, these datasets also

sparkedadebate in theproteomicscommunityabouthow tocon-

trol false discovery rates (FDRs) on the level of individual proteins;

that is estimating and minimizing error rates by correcting for

multi-hypothesis testing in large-scale datasets. Recent statisti-

cal developments and re-analysis of the data has since lowered

the original claims of proteome coverage (Ezkurdia et al., 2014;

Savitski et al., 2015; The et al., 2016).While these reanalyzed pro-

teome drafts demonstrate that comprehensive coverage of the

human proteome is possible even when FDR is controlled for,

they achieved these high protein numbers by combining analyses

of many different cell types, i.e., the proteome coverage of a sin-

gle-cell type was not extraordinary compared with other large-

scale studies (Iwasaki and Ishihama, 2014).

Deep proteome analysis of single human cell types has been

done by so-called ‘‘single’’-shot analysis where a single-dimen-

sion liquid chromatography (LC) is coupled to MS (LC-MS)

(Geiger et al., 2012). While ‘‘single’’-shot analysis is preferable

due to its simplicity and robustness, it will not achieve the

same depth compared with classic multidimensional fraction-

ation strategies where multiple fractionation schemes are used

in series such as LC/LC/MS and higher. This is due to the fact

that fractionation of peptides and proteins is a simple way to in-

crease peak capacity of the LC separation (Wolters et al., 2001).

In particular, offline peptide fractionation at high pH (HpH) prior

to low pH online in an LC/LC-MS setup has shown great promise

in recent years (Mertins et al., 2016; Wang et al., 2011). Another

emerging trend in deep proteome analysis has been tomake use

of ever longer online peptide separation gradients to boost iden-

tification numbers, but to benefit from this requires extreme
une 28, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 587
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Workflow Overview

(A) Conceptual strategy for improving the limit of detection through multiple

sample injections, increasing the peak capacity through multiple LC separa-

tions, maximizing ion flux and instrument time using short LC-MS gradients,

while keeping the MS in the fastest scanning mode.

(B) Experimental workflow of all HeLa experiments.

(C) Quantitative reproducibility of the method.
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chromatographic performance using very long analytical col-

umns (Iwasaki et al., 2012; Nagaraj et al., 2012). We have previ-

ously argued against longer gradients as this increases the time

window within which a peptide elutes and thereby naturally di-

lutes its apex peak intensity or ion flux, shifting the MS analysis

optimum to slower scanning MSmethods (Kelstrup et al., 2012).

Here, we present a readily approachable, optimized method

for generating deep proteomes. This method takes full advan-

tage of the high resolution that offline HpH fractionation provides

and combines it with short gradients and a fast 20 Hz scanning

tandemMS (MS/MS)method for subsequent proteome analysis.

This combination solves the problems of lower sensitivity usually

associated with fast scanning MS/MS methods, and we demon-

strate that the concept of running many fractions on short

gradients is the sweet-spot in terms of best compromise be-

tween instrument time used and sequencing depth obtained.

To benchmark this workflow we analyzed the human proteome

of the HeLa cervix carcinoma cell line, which is the most

commonly usedmodel for studying human cell biology (Masters,

2002). HeLa cells are also the most widely used human cell line

applied in proteomics studies (von Stechow et al., 2015), making

it the ideal model system for a reference proteome. Collectively

we identify more than 14,000 unique protein groups covering

12,200 protein-coding genes and demonstrate that the HeLa

proteome can be comprehensively analyzed to a depth similar

to that of next-generation RNA-seq technology. This method is

generally applicable, in that it accurately quantifies the pro-

teomes of other human cell lines as well as patient tissue biopsy

samples with similar proteome depth. Finally, we demonstrate

that the massive peptide sequencing simultaneously yields

deep coverage of the major post-translational modifications

(PTMs) without specific enrichment.

RESULTS

A multi-shot proteomics strategy is known to increase the dy-

namic range and coverage compared with single-shot experi-

ments in human proteome investigations. We hypothesized

that a strategy based on high sample amounts and offline pep-

tide pre-fractionation collecting high numbers of fractions in

combination with short LC-MS/MS gradients and high peptide

sequencing speed would overcome many of the inherent dy-

namic range issues in proteomics without compromising the

overall analysis time required. We reasoned that optimization

and maximization of each of the four interconnected technical

parameters were needed (Figure 1A). First, we wanted to

improve the detection limit by increasing total peptide amounts

analyzed. Since the maximal loading capacity of our online

nano-scale LC-MS system, without significant loss in chromato-

graphic performance or peptide identifications (Kelstrup et al.,

2014), is around 1 mg on the column, the use ofmultiple injections

is a way to indirectly increase the loading capacity. Second, to

increase peak capacity and effectively separate milligrams of

complex peptide mixtures into multiple fractions we utilized

high-capacity offline HpH reversed-phase LCwith high resolving

power generating numerous (39–70) fractions containing large

peptide amounts and with minimum overlap between individual

fractions. Third, to decrease peak widths and increaseMS signal

intensity of analyzed peptides and simultaneously decrease
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Figure 2. Workflow Performance Charac-

teristics

(A) Visualization of peptide sequencing speed

analyzing HpH fraction 46.

(B) Cumulative number of proteins and protein-

coding genes through HpH fraction 46.

(C) Histogram illustrating LC peak width distribu-

tions for all multi-charged isotope patterns, tar-

geted precursors, and identified peptides.

(D) Heatmap representing the orthogonality of LC

separations through binning of both dimensions

by minutes.

(E) Visualization of peptide overlap between HpH

fractions.
overall MS analysis time, we optimized a short 30 min gradient

for online LC-MS, and minimized the loading, washing, column

equilibration, and other overheads between injections to

15 min. The 30 min gradient provided the best compromise be-

tween maximizing the number of unique peptides identified,

while maintaining high identification rates when benchmarked

against longer and shorter gradients (Figure S1). Fourth, to

cope with the fast chromatographic separations we made use

of the fastest scanning higher-energy collisional dissociation

(HCD) (Olsen et al., 2007) MS/MS with 20 Hz orbitrap acquisition

rates. This method leveraged the increased MS signal inten-

sities, thereby achieving overall peptide identification rates of

approximately 40% with high identification scores (Figure S2).

We initially optimized peptide fractionation and MS analysis

workflow with total cell lysates derived from the commonly
Ce
used HeLa cell line, testing different frac-

tionation schemes and proteases (Fig-

ure 1B). In brief, adherent HeLa cells

were efficiently lysed by boiling directly

in a GndCl buffer and extracted proteins

digested overnight. Aliquots of 1 mg of

the resulting peptides were fractionated

by offline HpH reversed-phase chroma-

tography (Batth et al., 2014) without

fraction concatenation, and each fraction

was analyzed by online LC-MS/MS using

a Q-Exactive HF orbitrap instrument in

the fastest HCD scanningmode (Kelstrup

et al., 2014) (Figure 1B). Analyzing 1 mg of

HeLa peptides on the column from each

of 46 HpH fractions with 30 min LC-MS/

MS gradients (45 min run-to-run), using

a total of 34.5 hr resulted in identification

of 166,620 unique peptide sequences

covering 11,292 protein groups or 10,284

protein-coding genes. No matter how the

sample was fractionated, reproducibility

in terms of measured absolute protein

abundances between experiments was

high with Pearson correlation coefficients

of around 0.9 (Figure 1C). To determine

the inter-sample variability, we compared

the two biological HeLa replicates, 46

and 70 fractions, respectively, and found
roughly half of the proteins to have coefficients of variation of

less than 20%.

A key aspect to achieve this deep proteome coverage was the

high peptide loads together with short gradients and a very fast

scanning speed of the instruments, with more than 1,000 MS/

MS per minute, of which more than 40% on average could be

identified (Figure 2A). If the utmost speed in analysis is required,

it is possible to identify more than 4,000 protein groups in a single

fraction (Figure 2B). The fast gradient together with high-resolu-

tion online chromatography enabled a median peak full width

half maximum of 3.64 s of identified precursors. Assuming a

roughly Gaussian peak shape and a classic definition of full

peak width equal to 4 SDs, the median peak full width is

on average 6.2 s and the resulting peak capacity for each

fraction can be estimated around 290 (Figure 2C). This is not
ll Systems 4, 587–599, June 28, 2017 589
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Figure 3. Comprehensive Analysis of the

HeLa Proteome

(A) Identifications based on replica digests and

alternative proteases for peptides, protein-coding

genes, and proteins, including isoforms.

(B) Comparison of sequence coverage achieved.

(C) Benchmarking this HeLa dataset against

other published datasets of deep single-cell pro-

teomes. Bar chart showing comparisons of unique

peptide sequences identified per minute of anal-

ysis time and peptides per protein.
extraordinarily impressive, but when 46 fractions are analyzed

together this translates into a very high peak capacity estimation

of 13,300. The lack of full orthogonality between separations in the

two LC dimensions lowers the actual peak capacity value (Fig-

ure 2D), but it is still one order of magnitude higher than the

best one-dimensional LC separations that may approach a peak

capacity of 1,000 on long columns/gradients (Shishkova et al.,

2016). The offline HpH fractionation was performed with high res-

olution, as 82%of peptide spectrummatches and 75%of peptide

sequences were unique to a single HpH fraction, and a further

17% of peptide sequences were only found in two fractions as
590 Cell Systems 4, 587–599, June 28, 2017
indicated by the gray scale in the graph-

ical representation (Figure 2E). When

increasing the number of fractions from

46 to 70, the peptide sequences unique

to one fraction dropped from 75% to

61%, and the corresponding peptide

and protein identifications are therefore

not vastly higher, but total analysis time

needed increased by 50% (Table S1).

Utilizing alternative proteases to trypsin

has previously been demonstrated as a

means to reveal an undetected part of

the proteome and increase proteome

coverage (Giansanti et al., 2015, 2016;

Guo et al., 2014; Low et al., 2013; Swaney

et al., 2010). Therefore, we tested the

benefits of using Glu-C, Lys-C, and

chymotrypsin as alternative proteases to

trypsin using the multi-shot proteomics

workflow. For a single sample, trypsin

identified the highest number of both

peptides and proteins (Figure S3). This

is not surprising as trypsin is historically

the preferred protease used in most

shotgun proteomics studies due to its

properties of generating peptides with

predictable cleavage patterns (Olsen

et al., 2004) that fragment very well in

MS. When combining the analyses of all

six tryptic digests, we identify 361,000

unique tryptic peptide sequences map-

ping to 11,900 unique protein-coding

genes and 13,600 unique proteins. Add-

ing the additional 223,000 unique pep-

tides from the three other proteases
results in a total of 584,000 unique peptide sequences from

HeLa cells (Table S2), which is more than those presented in

the recent organ-wide drafts of the human proteome (Kim et al.,

2014; Wilhelm et al., 2014) (Table S1). The unique peptides from

the additional proteases increased the total number of covered

protein-coding genes by 300 to a total of 12,200 and they pro-

vided increased coverage of protein isoforms by twice as much

to a total of 14,200 (Figures 3A and S3). Another way to evaluate

proteome coverage is by calculating the average amino acid

coverage per protein achieved. Adding the 223,000 unique pep-

tide sequences from the alternative protease datasets increases
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Figure 4. Functional Analysis of the HeLa

Proteome

(A) Comparison of protein-coding gene abun-

dances in HeLa identified in this dataset with the

largest existing HeLa proteome published so far.

(B) Comparison of protein-coding genes identified

in HeLa in this dataset with previously published

proteome and next-generation RNA-seq data of

HeLa cells.

(C) CORUM protein complex coverage of the

identified proteins in this dataset.

(D) Abundance of BRCA1/RNA polymerase II

complex members in HeLa cells visualized ac-

cording to their individual protein intensities.

(E) Abundance of proteasomal proteins in HeLa

visualized according to their individual protein

intensities.

(F) Scatterplot of HeLa protein copy-number

estimation from this dataset with previously pub-

lished copy numbers.
the average sequence coverage to 52% (Figure 3B). A simple

amino acid count of the 584,000 unique peptides relative to the

count of sequences from the identified protein-coding genes re-

sults in a ratio of 1.44, also highlighting that a significant overlap

is observed among the peptide sequences.

Previously published studies (Arabi et al., 2012; Beck et al.,

2011; Boisvert et al., 2012; Branca et al., 2014; Guo et al., 2014;

Iwasaki et al., 2012; Nagaraj et al., 2011; Spicer et al., 2016; Tha-

kur et al., 2011; Ting et al., 2011; VanHoof et al., 2009;Wisniewski

et al., 2009; Yamana et al., 2013) have also provided deep prote-

ome coverage of single human cell types with high peptide

coverage. However, this has typically been done at the expense

of pro-longed acquisition time, whereas studies focusing on

high protein coverage using shorterMSanalysis timegenerally re-
Ce
sults in low overall peptide coverage.

Conversely, our study demonstrates that

this analytical strategy makes it possible

to achieve high protein coverage with

short MS analysis time (Figure 3C).

The combined deep HeLa proteome

presented here expands the previous re-

cord by a third, as more than 3,000 low

abundant protein-coding genes are now

identified of which many are receptors

and transcription factors (Figure 4A

and Table S3). Furthermore, our HeLa

dataset of 12,200 protein-coding genes

have comparable coverage with next-

generation RNA-seq data of the HeLa

cells (Figure 4B) (Nagaraj et al., 2011).

RNA-seq provided evidence for expres-

sion of close to 90% of the HeLa proteins

detected by MS and vice versa. As ex-

pected, the unique subsets of both data-

sets are biased toward low abundance.

Although these analyses suggest that

our coverage of the HeLa proteome is

quite complete, an alternative way to
assess the completeness of a proteome is to quantify the

coverage of known macromolecular protein complexes. Most

macromolecular complexes were completely covered in our

HeLa proteome, and typically more than 90% of the members

of low-abundance cellular machineries were quantified, as esti-

mated by the detection of known protein complexes described

in the CORUM database (Ruepp et al., 2008) (Figure 4C and

Table S4). The complexes listed within CORUM that are not pre-

sent in HeLa cells, which were originally taken from cancerous

cervix, are largely cell-type-specific complexes encompassing

neuronal and immune specific proteins. Combining the protein

abundance estimates for proteins with information about the

macromolecular complex they belong to can be quite informa-

tive as this indirectly reveals the stoichiometry of individual
ll Systems 4, 587–599, June 28, 2017 591



complex components. This is exemplified by the BRCA1/RNA

polymerase II complex (Figure 4D) and the broad abundance dis-

tribution of proteins belonging to the different proteasome types

(Figure 4E). For example, the three specific subunits of the immu-

noproteasome are orders of magnitude lower in expression

compared with their counterparts in the constitutive proteasome

(Figure 4E). Consequently, the immunoproteasome must be at

least a 100-fold less abundant than the constitutive proteasome

in HeLa cells. Moreover, there is a significant abundance differ-

ence between the individual immunoproteasomal subunits as

PSBM8 (b5i) is 10-fold more abundant than the two other sub-

units, PSBM9 (b1i) and PSBM10 (b2i). This supports the pres-

ence of multiple intermediary immunoproteasomal units as

previously suggested (Guillaume et al., 2010). Based on these

comparative analyses of mRNA data and protein complexes,

we conclude that the expressed HeLa proteome analyzed here

is essentially complete.

Such quantitative analysis enables absolute quantitation of

protein copy numbers. The intensity-based absolute quantita-

tion (iBAQ) of proteins analyzed by shotgun proteomics data

has been shown to provide a reasonably accurate estimate of

protein copy numbers (Schwanhausser et al., 2011). The iBAQ

values are calculated by summing all peptide intensities for a

protein and dividing this by the number of theoretical tryptic

peptides between 6 and 30 amino acids in length to correct for

protein size. Moreover, precise copy numbers for a small set of

proteins in HeLa cells spanning the entire expression range

have been established (Hanke et al., 2008; Wisniewski et al.,

2014; Zeiler et al., 2012). Comparing the protein iBAQ values

calculated for our complete HeLa dataset with the previously es-

tablished HeLa protein copy numbers in log-space, we find a

strong linear correlation with Pearson correlation coefficient of

0.95 (Figure 4F). Accordingly, from this we can determine the

copy number of all 12,000 quantified proteins in HeLa cells sim-

ply by subtracting a log10 value of roughly 3.3 from our log10-

transformed iBAQ values.

Deep PTM Analysis without Enrichment
This comprehensive proteome also facilitates observation of

PTMs, including specific proteolytic cleavage, phosphorylation,

and N-acetylation. For example, the N terminus of proteins is

usually the most accessible part and this is often post-transla-

tionally processed by proteolytic cleavage of a signal peptide

ormodified by acetylation. Determining the sequence and nature

of protein N termini therefore provides important functional

annotation of proteins. We identified the peptide covering the

N termini of more than half of the proteins and the absence of

detection of N termini peptides from approximately 2,000 pro-

teins can readily be explained by known proteolytic processing

events such as removal of signal peptides and transit peptides

(Figure S4).

Although global analysis of any PTM by MS/MS usually re-

quires specific enrichment of the PTM-bearing peptides from to-

tal cell digests, we speculated that large-scale identification of

PTMs without specific enrichment should be possible. To test

this hypothesis, we searched our HeLa dataset for the major

intra-cellular PTMs, including site-specific phosphorylation,

acetylation, and methylation. From this analysis we identified

18,237 unique PTM sites (Table S5), including more than
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10,000 phosphorylation sites and more than 5,000 N-acetylation

sites. For protein N-acetylation, the coverage of sites is at the

same level as focused enrichment-based investigations (Kleifeld

et al., 2010), and for phosphorylation the coverage is high

enough to use system level analysis tools. For example, the en-

zymes that catalyze the addition or removal of PTMs often

achieve their cellular selectivity by having specificity toward

linear sequence motifs in substrate proteins (Puntervoll et al.,

2003). To identify enriched sequence motifs among the individ-

ual PTM sites identified we used the iceLogo software tool (Co-

laert et al., 2009). This analysis revealed strong overrepresenta-

tion of proline-directed phosphorylation of serine/threonine sites

and N-terminal protein acetylation of methionine, alanine, and

serine residues (Figure 5A). These observations are in line with

previous large-scale proteomics studies of these PTMs reflect-

ing well-known biology, for example the generally high cellular

activity and abundance of proline-directed kinases, such as

CDKs and MAPKs (Huttlin et al., 2010; Lundby et al., 2012).

Since phosphorylation was themost abundant PTM identified,

we determined the completeness of theHeLa phosphoproteome

that we achieved without specific enrichment. For comparison,

we performed HpH fractionation of a tryptic HeLa digest and en-

riched phosphopeptides from concatenated fractions using TiO2

(Batth et al., 2014). From three replicates we identified 30,304

unique phosphorylation sites. This phosphoproteome coverage

is close to the deepest analysis of the HeLa phosphoproteome

to date, where 38,203 sites were identified by multiple treat-

ments and enrichment strategies (Sharma et al., 2014). Merging

these datasets results in a fairly low overlap where the combined

HeLa phosphoproteome can be said to contain at least 51,291

phosphorylation sites (Figure S5). Importantly, this indicates

that even with enrichment, phosphoproteomics is not close to

completeness yet.

Despite the incomplete phosphoproteome coverage without

the use of specific phosphopeptide enrichment, quantitative re-

lationships can be derived directly from these data. For example,

we calculated the fractional stoichiometry of the individual iden-

tified phosphorylation sites by comparing them with their corre-

sponding non-phosphorylated counterpart peptides (Olsen

et al., 2010; Sharma et al., 2014). Given the general high

sequence coverage we could estimate the stoichiometry for

the majority of the phosphorylation sites identified without spe-

cific enrichment. The fractional stoichiometry of the sites we

identify without specific enrichment were found to be inversely

proportional to the abundance of the corresponding protein (Fig-

ure 5B). This verifies that we have an abundance bias as sites of

low stoichiometry can only be detected on proteins of high abun-

dance and vice versa. Despite this bias, interesting interpreta-

tions could bemade, and these allowed us to determine if protein

kinases have any preferences with regard to the cellular abun-

dance of their substrates. Unsupervised clustering of the HeLa

phosphorylation site stoichiometries and their corresponding

protein iBAQ values resulted in four main clusters (Figure 5C).

Kinase motif analysis of each of the four clusters revealed signif-

icant overrepresentation of casein kinase 2 (CK2) substrates in

the cluster representing high abundance proteins with high

site stoichiometry. This reflects the well-known biology of CK2

that is a ubiquitous, highly pleiotropic, and constitutively active

enzyme (Meggio and Pinna, 2003), and therefore phosphorylates
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(A) Sequence logo plots of major PTMs identified in HeLa without specific enrichment.

(B) Correlation between protein abundance and phosphorylation site stoichiometry.

(C) Kinasemotif enrichment analysis of four sub-clusters found by comparison of phosphorylation site stoichiometry and their corresponding protein abundance.

(D) Boxplot analysis of citations associated with phosphorylation sites in the four sub-clusters.
its substrates to full site stoichiometry. Conversely, kinase motif

analysis of the cluster presenting proteins of high abundance

with low phosphorylation site stoichiometry indicated overrepre-

sentation of targets of cell-cycle kinases and DNA damage-

response kinases, which are in line with observations from previ-

ous studies (Olsen et al., 2010). Notably, the cluster analysis also

suggests that proline-directed kinases and baseophilic kinases

generally phosphorylate sites on proteins of low abundance to

high stoichiometry.

Since its introduction a decade ago global phosphoproteo-

mics has revolutionized the cell signaling field and has become

a standard technology accessible in many laboratories produc-

ing a wealth of publications (von Stechow et al., 2015). A site-

specific citation index can therefore be calculated indicating

how frequently a phosphorylation site is reported in the literature

(Hornbeck et al., 2004). When this analysis is applied to our clus-

ters of sites, a strong dependence between the site citation index

and the abundance of the site and its corresponding protein is

revealed (Figure 5D). In other words, low stoichiometry phos-

phorylation sites in HeLa cells are less studied in the general liter-

ature compared with sites we find to be of high abundance. As

control, we performed a similar analysis on the proteome as pro-

tein citation counts are available (Szklarczyk et al., 2015). This

analysis failed to find any dependence between the protein

abundance in HeLa cells with how studied the protein is. Collec-

tively, these analyses suggest that future technical challenges

specific to phosphoproteomics may arise from this strong abun-

dance bias we find in phosphoproteomics investigations re-

ported so far.

Comprehensive Proteome Analysis of Human Cell Lines
and Patient Samples
To assess the general applicability and quantitative accuracy of

this trypsin-based multi-shot proteomics workflow, we applied it
to five additional cancer cell lines and patient biopsy samples

from three different organs (Figure 6A). From all cell lines and tis-

sue samples we collectively identify 724,780 unique peptides,

15,984 protein groups, and 13,446 protein-coding genes (Tables

S2, S6, and S7). This deep and comprehensive coverage of pep-

tides and proteins for other cell lines and tissues is similar to the

numbers achieved for a comparable single HeLa analysis

(Tables S7 and S8). Hierarchical clustering of the label-free quan-

titation values for all detected proteins across six different cell

lines revealed high reproducibility between biological replicates

with Pearson correlation coefficients above 0.95 (Figure 6B).

We observe that the HEK293 cell proteome expression profile

was most similar to that of SY5Y neuroblastoma cells, while

the other four cell lines form a separate group. A neuronal

expression phenotype of HEK293 cells has been reported previ-

ously, which could potentially explain this observation (Shaw

et al., 2002). The protein expression profiles for these cancer

cell lines are overall very comparable, but important differences

are present. Analyzing the expression differences of proteins

that are members of specific cellular signaling pathways, such

as the cell-cycle network, reveals quantitative differences across

the cell lines (Figure 6C). Large abundance differences are

observed for key proteins, such as p53, CDN1A, and several pro-

tein kinases, indicating a total rewiring of cell division control sys-

tems in the individual cell lines. Some of these differences may

be known (for example, the high expression level of p53 in

HEK293 compared with the other cell lines), but such deep

proteome coverage can be used to quantify globally how pertur-

bations of a cellular signaling network may impact protein

expression in cancer cell lines.

Notably, this proteomics workflow works equally well to hu-

man tissues yielding a similar coverage of peptides and proteins

(Table S8). Overlapping our tissue proteomes of liver, colon, and

prostate with previously published datasets demonstrates that
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(A) Venn diagram showing overlap between pro-

teins with N-acetylation identified in this dataset

and annotations in UniProt.

(B) Cellular compartment gene ontology enrich-

ment analysis of the N-acetylated proteome

compared with the non-acetylated proteome.

(C) Comparison of observed versus theoretical

tryptic peptides from the 12,209 protein-coding

genes found in HeLa as a function of peptide

length.

(D) Fractional coverage of the theoretical peptide

space in HeLa.

(E) Comparison of this dataset with published

large-scale proteome datasets with more than

6,500 proteins.
proteome depth of all tissues is increased by thousands of pro-

teins, for example increasing the human colon tissue proteome

by an additional 4,400 proteins to 10,500 protein-coding genes

(Figure 6D). Next-generation RNA-seq of the same colon patient
(D) Overlap of protein-coding genes identified in colon tissue using this method with a previously published

(E) Overlap of colon transcriptome and proteome from the same patient sample.

(F) Scatterplot of colon protein copy-number estimates and RNA-seq fragments per kilobase of transcript pe

(G) Histogram of colon RNA-seq (FPKM) with corresponding proteome copy-number estimates.

Ce
biopsy combined with a stringent cutoff

criteria (fragments per kilobase of tran-

script per million mapped reads >1) pro-

vides evidence for expression of 13,347

different gene products (Figure 6E). This

is more genes than we find to be ex-

pressed at the protein level, most likely

due to only a single replicate being

analyzed for each proteome analysis.

Despite this limitation, however, the

method provides similar depth of the

obtained tissue proteomes as those

achieved for the cancer cell lines. For a

holistic view it is important to analyze

both mRNA and protein abundances in

parallel as the correlation between gene

expression measured by RNA-seq and

protein copy numbers estimated by MS

was weak, with a Pearson correlation

coefficient of 0.52 (Figure 6F). Similar

observations have been reported previ-

ously (Schwanhausser et al., 2011) in

part due to the difference in protein

and RNA abundance distribution profiles

(Figure 6G).

Collectively our dataset provides a

comprehensive resource of high-quality

peptide and protein identification and

quantitation, which can bemined compu-

tationally for new biology. For example,

combining all our datasets with the com-

plete human UniProt database reveals an

N-acetylated human proteome of more
than 7,000 sites of which the majority is covered in the six cell

lines analyzed here (Figure 7A). We find N-acetylation sites to

be highly enriched on nuclear and cytoplasmic proteins by

gene ontology analysis, whereas mitochondrial, extracellular,
in-depth colon dataset.

r million mapped reads (FPKM) values.
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and membrane proteins are strongly underrepresented (Fig-

ure 7B). Combining all tryptic datasets further underscores the

very comprehensive coverage of theoretical tryptic peptides we

achieve (Figure 7C). This entire LC-MS workflow is greatly opti-

mized for typical tryptic peptides of length 10–14 as we cover

more than 70% of all predicted tryptic peptides in this range (Fig-

ure 7D). The combined dataset of only six cell lines and three

tissues represents the largest coverage of human proteins and

peptides frommulti-proteome studies to date (Figure 7E). Impor-

tantly, although this workflow has been optimized for starting

amounts of 1 mg of peptides, it works equally well for 10-fold

lower starting material (Figure S6). This makes it applicable to

minute amounts of samples, for example from fluorescence-acti-

vated cell-sorted cell populations. The only downside of using

less starting material is a significant drop in the number of

PTMs, such as phosphorylation sites.

DISCUSSION

The multi-shot proteomics methodological approach presented

here represents a straightforward strategy for comprehensive

analysis of human proteomes. We circumvent the inherent large

dynamic range issues of human proteomes by significantly

increasing the peak and loading capacity of our LC-MS system

while maintaining overall analysis time. This is achieved by

high-resolution offline HpH reversed-phase chromatography

with high peptide loads, and collecting a high number of fractions

that in turn are analyzed by online low pH LC-MS/MS using fast

gradients and fastest peptide sequencing speed. While it has

been demonstrated previously that offline HpH reversed-phase

fractionation of peptide mixtures in combination with online

low pH LC-MS is a powerful technology for deep proteome anal-

ysis to a depth of 11,466 protein-coding genes across 20 breast

cancer cell lines and 4 tissues (Lawrence et al., 2015), and 12,405

protein-coding genes across 105 tumor samples (Mertins et al.,

2016), this study optimizes all parts of the shotgun proteomics

workflow to achieve coverage of 12,209 protein-coding genes

in a single human cell line covering essentially all expressed pro-

teins and 13,446 protein-coding genes across 6 cell lines and 3

tissues.

An important aspect of deep proteome analysis is control of

FDR on protein level as recently debated (Savitski et al., 2015).

The MaxQuant software that we used here calculates protein

group scores and estimates FDR on both peptide and protein

levels, providing an estimate of expected misidentifications at

a global level. The publication by Ezkurdia et al. (2014) intro-

duced a simple quality test of large-scale proteome data using

the olfactory receptor family. The authors argued that a high-

quality proteomics experiment that does not specifically analyze

nasal tissues should not expect to detect many peptides for

olfactory receptors. Our combined dataset of six cell lines and

three tissues presented here, does not contain any olfactory re-

ceptors at the 1% protein FDR level, which therefore suggests

that it is of a similarly high-quality.

In total, the HeLa proteome presented here represents the first

analysis of a human cell line with coverage of protein-coding

genes comparable with that of next-generation RNA-seq tech-

nologies. Importantly, we demonstrate that our deep compre-

hensive HeLa proteome is acquired with high quantitative
596 Cell Systems 4, 587–599, June 28, 2017
accuracy and that this is independent of the number of offline

fractions collected and analyzed. This allowed us to determine

the copy number of 14,200 proteins in growing HeLa cells. Given

that our dataset represents the largest coverage of tryptic

peptides from human proteins to date, it serves as a useful

resource of high-resolution MS/MS spectra for the proteomics

community. For example, the dataset can be used to generate

high-quality and comprehensive spectral libraries for future

proteomics experiments. In a recent publication presenting the

Human SRMatlas, spectral libraries of 166,174 proteotypic

tryptic peptides from all human protein-coding genes were

generated by peptide synthesis and MS/MS analyses using

quadrupole time-of-flight and triple quadrupole type mass spec-

trometers (Kusebauch et al., 2016). Here we cover 108,573

of these proteotypic peptides representing two-thirds of the

Human SRMatlas, which is the same as our fractional coverage

of all human protein-coding genes.

An additional outcome of our deep proteome and improved

protein sequence coverage is that we identify thousands of

PTMs including more than 10,000 phosphorylation sites. Such

deep and broad PTM site coverage normally requires applica-

tion of specific enrichment strategies in a sequential manner

and extensive MS analysis time (Francavilla et al., 2016; Mertins

et al., 2013; Swaney et al., 2013), but comes for free with the

proteomics workflow presented here. This multi-shot prote-

omics strategy opens the possibility to study many PTMs simul-

taneously and estimate their stoichiometry directly (Olsen and

Mann, 2013), enabling investigations of PTM crosstalk, an

emerging theme in biology (Hunter, 2007), thus providing bio-

logical insights into the integrated and complex cell signaling

layers.

A current limitation of this approach is that we are still missing

comprehensive depth in PTM analysis and quantitative accuracy

for proteins of low abundance. But this can likely be addressed in

the next generation of MS instrumentation with faster peptide

sequencing speed, sensitivity, and increased dynamic range.

Nevertheless, we demonstrated the power of this proteomics

workflow by applying it to analyze human proteomes from a va-

riety of sample types, including different cancer cell lines and pa-

tient organ biopsies. These experiments firmly established the

capability of this proteomics strategy delineated here to compre-

hensively and quantitatively analyze protein expression differ-

ences between different cell states. Therefore, the experimental

workflow outlined here should be applicable to comprehensively

analyze any mammalian cell or tissue proteome in a quantitative

manner with sufficient throughput for clinical applications with

larger patient cohorts.
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Colon patient biopsy Århus University Hospital N/A

Liver patient biopsy Århus University Hospital N/A
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maxquant:start
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

String v10 N/A http://string-db.org/

Cytoscape N/A www.cytoscape.org

IceLogo N/A http://iomics.ugent.be/icelogoserver/

index.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Jesper V. Olsen, by email at

jesper.olsen@cpr.ku.dk

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells
Human epithelial cervix carcinoma HeLa cells (female), human embryonic kidney HEK293 cells (fetus), human neuroblastoma

SH-SY5Y cells (female), lung adenocarcinoma A549 cells (male), human colon cancer HTC116 cells and human breast cancer

MCF-7 cells (female) were purchased from ATCC. Cells were cultured in DMEM (Gibco, Invitrogen), supplemented with 10% fetal

bovine serum, 100U/mL penicillin (Invitrogen), 100mg/mL streptomycin (Invitrogen), at 37�C, in a humidified incubator with 5%

CO2. SH-SY5Ywas cultured in RPMI (Gibco, Invitrogen) with the same supplements as listed above.We have not performed specific

authentication of the cell lines used in this study.

Patient Tissue Sample Biopsies
Collection and use of the human samples provided by Department of Molecular Medicine, Aarhus University Hospital, Aarhus,

Denmark has been approved by The Central Denmark Region Committees on Health Research Ethics (J. no‟s M-1999/4678 and

M-2000/0299). Informed consent was obtained from all donors. Use of clinical data associated with the samples has been approved

by the Danish Data protection Agency (j. no 2007-58-0010 and j.no. 2013-41-2041). Total RNA from serial cryosections were ex-

tracted using the RNeasy Mini Kit (Qiagen). RNA integrity was assessed using the Agilent RNA 6000 Nano Kit on an Agilent 2100 Bio-

analyzer and the analyzed samples had RNA integrity numbers (RIN) >9.

METHOD DETAILS

Cell Lysis
Cells were harvested at approximately 80%confluency bywashing twice with PBS (Gibco, Life technologies) and subsequently add-

ing boiling lysis buffer (6 M guanidinium hydrochloride (GndCl), 5 mM tris(2-carboxyethyl)phosphine, 10 mM chloroacetamide,

100mMTris, pH 8.5) directly to the plate. Cells were collected by scraping the plate and boiled for additional 10min followed bymicro

tip sonication.

Tissue Homogenization
Human tissues were quickly dissected and snap frozen. Followed by heat inactivation (Denator T1 Heat Stabilizor, Denator) the tis-

sues were transferred to a GndCl solution (6 M GndCl, 25 mM Tris, pH 8.5, Roche Complete Protease Inhibitor tablets (Roche)) and

homogenized by ceramic beads using 2 steps of 20 s at 5500 rpm (Precellys 24, Bertin Technologies). The tissues were heated for

10 min at 95 �C followed by micro tip sonication on ice and clarified by centrifugation (20 min, 16,000g, 4 �C). Samples were reduced

and alkylated by adding 5 mM tris(2-carboxyethyl)phosphine and 10 mM chloroacetamide for 20 min at room temperature.

Sample Preparation
Protein concentration was estimated by Bradford assay (Bio-Rad), and the lysates were digested with Lys-C (Wako) in an

enzyme/protein ratio of 1:100 (w/w) for 1 h followed by a threefold dilution with 25 mM Tris, pH 8.5, to 2 M GndCl and further

digested overnight with trypsin (Sigma Aldrich) 1:100 (w/w). For experiments using different proteases, lysates were directly

diluted to 2 M GndCl before addition of proteases (Lys-C, Trypsin, Chymotrypsin (Roche) and Glu-C (Roche)). Protease activity

was quenched by acidification with trifluoroacetic acid (TFA) to a final concentration of approximately 1%, and the resulting pep-

tide mixture was concentrated using reversed-phase Sep-Pak C18 Cartridge (Waters). Peptides were eluted off the Sep-Pak with

2 mL 40% acetonitrile (ACN) followed by 2 mL 60% ACN. The ACN was removed by vacuum centrifugation for 40 min at 60 �C
and the final peptide concentration was estimated by measuring absorbance at 280 nm on a NanoDrop (NanoDrop 2000C,

Thermo Scientific).
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Offline High pH Reversed-Phase HPLC Fractionation
1-2 mg of peptides were fractionated using a Waters XBridge BEH130 C18 3.5 mm 4.63 250 mm column on an Ultimate 3000 high-

pressure liquid chromatography (HPLC) system (Dionex, Sunnyvale, CA, USA) operating at a flow rate of 1 mL/min with three buffer

lines: Buffer A consisting of water, buffer B of ACN and Buffer C of 25mMAmmonium bicarbonate, pH8. Peptides were separated by

a linear gradient from 5%B to 35%B in 62min followed by a linear increase to 60%B in 5min, and ramped to 70%B in 3min. Buffer C

was constantly introduced throughout the gradient at 10%. Fractions were collected at 60 s or 90 s intervals to a total of either 39, 46,

or 70 fractions. Samples were acidified with formic acid to a final concentration of approximately 0.1% prior to concentration using

vacuum centrifugation. For nanoflow LC–MS/MS, the loading amount was kept constant at 1 mg per injection, estimated by

measuring absorbance at 280 nm on a NanoDrop instrument.

Phosphopeptide Enrichment
Phosphopeptides from all 46 fractions were enriched using titanium dioxide beads (5 mm Titansphere, GL Sciences, Japan). TiO2

beads were pre-incubated in 2,5-dihydroxybenzoic acid (20 mg/mL) in 80%ACN and 1%TFA (5 mL/mg of beads) for 20 min. All frac-

tionswere brought to 80%ACNand 5%TFA in a final volume of 5mL. 1mg (in 5mL of DHB solution) was added to each fraction, which

was then incubated for 30 min while rotating. After incubation, fractions were transferred to a deep 96-well filter plate and the super-

natant was removed by a vacuummanifold and collected to four new fractions with a traditional concatenation scheme. These were

incubated with fresh TiO2 beads for a second enrichment step. Beads were washed on the filter plate with 1 mL 80% ACN and 1%

TFA, followed by 50%ACN and 1% TFA. The final washing step was with 10% ACN and 1% TFA. The phosphopeptides were eluted

from the plate with 400 mL 5% NH4OH followed by 400 mL 10% NH4OH with 25% ACN. Eluted peptides were concentrated in a

speed-vac and loaded onto C18 Stage-tips.

Nanoflow LC–MS/MS
All samples were analyzed on an Easy-nLC 1000 coupled to a Q-Exactive HF instrument (Thermo Fisher Scientific) equipped with a

nanoelectrospray source. Peptideswere separated on a 15 cmanalytical column (75 mm inner diameter) in-house packedwith 1.9 mm

C18 beads (Dr. Maisch, Germany). The column temperature was maintained at 40 �C using an integrated column oven (PRSO-V1,

Sonation GmbH, Biberach, Germany). Each peptide fraction was auto-sampled and separated using a 30 min gradient ranging from

10% buffer B (80% ACN and 0.1% formic acid) to 30% B in 25 min and ramped to 45 % B in 5 min at a flow rate of 350 nL/min. The

washout followed at 80% buffer B for 4 min. The Q-Exactive HF mass spectrometer was operated in data-dependent acquisition

mode. Spray voltage was set to 2 kV, s-lens RF level at 50, and heated capillary temperature at 275 �C. All experiments were per-

formed in the data-dependent acquisition mode to automatically isolate and fragment topN multiply-charged precursors according

to their intensities. Former target ions were dynamically for 30 seconds excluded and all experiments were acquired using positive

polarity mode. Full scan resolution was set to 60,000 at m/z 200 and the mass range was set to m/z 350-1400. Full scan ion target

value was 3E6 allowing amaximumfill time of 100ms. Higher-energy collisional dissociation (HCD)(Olsen et al., 2007) fragment scans

was acquired with optimal setting for parallel acquisition using 1.3 m/z isolation width and normalized collision energy of 28. For fast-

est HCD-MS/MS scanning a top20 method was employed with fragment scan resolution of 15,000 and an ion target value of 1E5

allowing maximum filling time of 15 ms. For protease comparisons, LC-MS/MS experiments were analyzed with a mix of 30 min

and 60 min LC gradients and full scan resolutions at 120,000 at m/z 200 with a maximum fill time of 25 ms. For 60 min gradients,

fast scanning top12 method using 30,000 resolution for HCD scans with maximum fill time of 45 ms was acquired. Phosphopep-

tide-enriched samples were analyzed with a sensitive top7 scanning method. Ion target value for HCD fragment scans were set

to 2E5 with a maximum fill time of 110 ms and analyzed with 60,000 resolution.

Next-Generation RNA-Seq
Paired end mRNA sequencing was performed as previously described (Ongen et al., 2014) using the Illumina Hiseq 2000 Platform. In

brief, 500 ng total RNA was used for library preparation with the TruSeq RNA Sample Prep Kit v2 and the libraries had fragment

lengths of �200bp. TruSeq PE Cluster Kit v3 was used for cluster generation, and TruSeq SBS Kit v3 for sequencing. Human tran-

scriptome quantification was performed by trimming read adaptor sequences using the AdapterRemoval tool (https://github.com/

slindgreen/AdapterRemoval) mapping the reads to the human genome issue HG19 (hg19) using the Tophat2 mapper (Kim et al.,

2013) and estimating FPKM values for Ensembl genes using Cufflink (Gencode v15 annotation w/o Pseudogenes) (Trapnell

et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Raw Data Processing and Analysis
All raw LC–MS/MS data were analyzed by MaxQuant v1.5.3.6 using the Andromeda Search engine and searched against the

complete human UniProt database including all Swiss-Prot and TrEMBL entries as well as all isoforms. In addition, the default

contaminant protein database was included and any hits to this excluded from further analysis. The second peptide option was

disabled and ‘‘match between runs’’ features were excluded in the downstream analysis. Two previously published dataset were

included as raw-files in our combined MaxQuant analysis. These are three 14 fraction HeLa experiments (Kelstrup et al., 2014)

and three human tissues (Kim et al., 2014). Four analysis groups were made in MaxQuant, enabling one combined analysis for all
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proteases. Carbamidomethylation of cysteine was specified as fixed modification for all groups. Variable modifications considered

were oxidation of methionine, protein N-terminal acetylation, pyro-glutamate formation from glutamine and phosphorylation of

serine, threonine, and tyrosine residues. For PTM analysis, the HeLa dataset was searched separately using methylation of argnines

and lysines or acetylation of lysines as variable modifications.

False Discovery Rate (FDR) Analysis
The false discovery rate (FDR) was set to 1% on PSM, PTM site and Protein level. The FDR control employed in MaxQuant has

recently been described in detail (Tyanova et al., 2016a). Briefly, MaxQuant make use of the target-decoy search strategy to estimate

and control the extent of false-positive identifications using the concept of posterior error probability (PEP) to integrate multiple pep-

tide properties, such as length, charge, number of modifications, and Andromeda score into a single quantity reflecting the quality of

a peptide spectrum match (PSM). A second level of FDR control is set on the list of reported protein groups by calculating a Protein

group score. This is the product of individual PEPs of the peptides of a protein group, and includes a factor to take into account the

number of peptides per protein group. The protein group score is similar to the PEP, in that it provides a measure of the certainty of

protein identification.

When analyzing multiple different cell lines, tissue samples and external datasets together in MaxQuant compared to analyzing the

datasets individually, themain difference lies in the calculation of the protein FDR, which is done globally based on all raw files. This is

important because if search results for separate raw files or datasets are combined into one larger dataset without any further higher-

level FDR control; false-positive protein identifications are known to aggregate. As the computational performance of MaxQuant

scales very well with the number of raw files it is recommended to always analyze all raw files that will later be used in a comparative

manner together in a singleMaxQuant. This has the additional advantage that the protein groups are defined in common for thewhole

data set, which simplifies quantitative comparative analysis of protein ratios and intensities.

Bioinformatics Analysis
The majority of the bioinformatics was accomplished using custom Perl and R scripts supplemented with Perseus (Tyanova et al.,

2016b). Pathway visualization was done using PathVisio 3.2.2 (Kutmon et al., 2015). The String (Szklarczyk et al., 2015) database

version 10 was read into Cytoscape (www.cytoscape.org) for visualization of complexes. External datasets used were proteome

and RNAseq data from HeLa (Nagaraj et al., 2011), the Corum (Ruepp et al., 2010) database release February 2012 limited to human

species, citation numbers were obtained from PhosphoSite.org (Hornbeck et al., 2004), and HeLa copy number estimates (Hanke

et al., 2008; Zeiler et al., 2012). Mapping of gene and protein identifiers between experiments were done as follows. All identifiers

from UniProt, IPI, and older Ensembl identifiers were mapped to protein-coding genes in the Ensembl database version 84 primary

assembly based on GRCh38. The primary gene identifier for each protein group was defined as the ones that represented proteins

that could explain all peptides within a protein group. Overlap between datasets was calculated based on match to primary gene

identifier. When a gene identifier represents multiple protein groups, the highest number of razor and unique peptides is used to

choose the group of the main protein-coding gene. PTM site sequence motif analysis was performed using IceLogo (Colaert

et al., 2009)with fold-change as the scoring system and a p-value cut-off of 0.05. Our input dataset was sequence windows for in-

dividual PTM sites identified and the complete human dataset were used as the background dataset.

DATA AND SOFTWARE AVAILABILITY

All raw mass spectrometric data files from this study have been deposited to the ProteomeXchange Consortium via the PRIDE part-

ner repository (Vizcaino et al., 2014) with the dataset identifier PXD004452.
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Figure S1:  Relationship between LC/MS gradient length and peptide identification rates. Related 
to Figure 1. A fixed amount of 1ug Hela tryptic digest ‘on column’ was analyzed with variable gradient 
lengths. Optimal column and MS method was chosen for each time point. Left plot shows the total 
amount of unique peptides identified. The right plot shows the number of unique peptide identifications 
per minute. Above each time point the average of replica analysis is shown.
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Figure S2:  Score distributions for the HeLa experiment fractionated in 46 fractions. Related to 
Figure 1. The search engine (Andromeda) score distribution is shown for all PSMs and only the best 
scoring PSM per unique peptide sequence. Further, three annotated example spectra are shown for 
different scores.
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Figure S3
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Figure S3:  Comparison of proteome coverage with different proteases. Related to Figure 3. a) Peptide 
and protein comparison using different enzymes. Single and two way combination with trypsin and technical 
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Figure S4:  Analysis of protein N-terminus. Related to Figure 5. The two colours indicate whether an 
identified protein also had peptide sequence coverage of the first amino acid (AA) counted from the 
N-terminal of the protein. This analysis was extended to include different groups of known protein 
processing, obtained through annotation of the identified proteins from UniProt.
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Figure S5: Phosphopeptides in HeLa. Related to Figure 5. Overlap of the phosphorylation sites foun 
with and without enrichment compared to the largest HeLa phosphoproteome published to date. 
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Figure S6: Downscaling of the peptide amount input. Related to Figure 7. Comparison of 100 µg 
tryptic HeLa peptides with 1 mg using the standard HpH 46 fractionation scheme.
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