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ABSTRACT

See the main paper.

Table Supplementary Table S1. Table of notations

Notation Description
Measurements

n, k pixel number, frame number, respectively
N, K number of pixels, number of frames, respectively
r, rn point in the image space, center of nth pixel, respectively
T frame acquisition time
I(n), I(n,k) intensity at the nth pixel, intensity at the nth pixel in the kth frame, respectively
I Recorded image stack (presumably without noise), elements given by I(n,k)

Sample
m, M emitter number, number of emitters in the focal volume, respectively
r′, r′m point in the sample space, locations of emitters, respectively
τmax,b maximum time scales of the bright states
τmax,d maximum time scales of the dark states
S(m), S(m,k) number of photons emitted by the mth emitter, number of photons emitted by the mth emitter during the kth

frame, respectively
S̄m blinking vector of mth emitter, containing S(m,k)
S blinking matrix containing photon emissions from all emitters in each frame, elements given by S(m,k)
µ,σ mean and standard deviation of the photon counting statistics of an emitter, respectively

Imaging system
g(r,r′) mapping function that maps the emission of a photon at r′ to the intensity at r
G(n,m) emitter-to-pixel mapping, given in eq. (S.2)
Ḡm image of the mth emitter, contains G(n,m)
Ḡ(r′) image of an emitter at r′, contains G(rn,r′)
G mapping matrix, contains mapping vectors of all emitters, elements given by G(n,m)

S1 Imaging model

Let there be a distribution of M stationary emitters in the focal volume of the sample space. The points in the sample space
are denoted by r′ and the location of the mth emitter is denoted by r′m. The points in the image plane are denoted by r, the
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pixel centers are denoted by rn, and the region of one pixel is denoted by Ωn. Let the PSF of the imaging system be denoted as
g(r,r′). g(r,r′) maps the emission at a point r′ in the sample plane to the intensity at a point r in the sample plane.

The intensity at the nth pixel due to all emitters is given as:

I(n) =
∫

r∈Ωn

M

∑
m=1

g(r,r′m)S(m)dr =
M

∑
m=1

S(m)
∫

r∈Ωn

g(r,r′m)dr (S.1)

where S(m) denotes the number of photons emitted by the mth emitter during one image acquisition. We define an emitter-to-
pixel mapping G(n,m) as follows:

G(n,m) =
∫

r∈Ωn

g(r,r′m)dr (S.2)

Thus, eq. (S.1) can be simplified as:

I(n) =
M

∑
m=1

G(n,m)S(m) (S.3)

The intensities I(n) at all the pixels, usually arranged in a 2-dimensional array, comprise an image. For this analysis, the
intensities at all the pixels in an image are collected into a column vector such that there is one column vector for each frame.
Thus, the complete image stack is represented as a two-dimensional matrix I in which row n corresponds to the nth pixel,
column k corresponds to the kth frame, and element I(n,k) corresponds to intensity at the nth pixel in the kth frame. The matrix
I has dimension N×K, where N is the total number of pixels and K is the total number of frames. I can be represented in
matrix form as follows:

I = GS (S.4)

where G is a matrix of dimension N×M in which the (n,m)th element is G(n,m) and S is a matrix of dimension M×K in
which the (m,k)th element is S(m,k), i.e. number of photons emitted by the mth emitter in the kth frame.

For later convenience, we denote the matrices G and S as:

G =
[

Ḡ1 Ḡ2 · · · ḠM
]

(S.5)

S =
[

S̄1 S̄2 · · · S̄M
]T (S.6)

where Ḡm is the image of the mth emitter. Similarly, S̄m is blinking vector for the mth emitter. We also define:

¯̃G = ∑
m

Ḡm = GLM×1 (S.7)

The mean image of the image stack is given as:

¯̃I =
1
K

ILK×1 (S.8)

Substituting eq. S.4 in the above, we get:

¯̃I =
1
K

GSLK×1 (S.9)

SLK×1 contains K〈S(m,k)〉k. Since all the emitters are similar according to assumption A1, 〈S(m,k)〉k = µ∀m. Thus,

¯̃I = µGLM×1 (S.10)

Using eq. (S.7),

¯̃I = µ
¯̃G (S.11)
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S2 Derivation from eq. (1) to eq. (2)

Substituting eq. (S.4) in eq. (1), we get:

J = GSSTGT (S.12)

= G


S̄T

1 S̄1 S̄T
1 S̄2 · · · S̄T

1 S̄M

S̄T
2 S̄1

. . .
...

. . .
S̄T

M S̄1 S̄T
M S̄M

GT (S.13)

= KG


〈S(1,k)S(1,k)〉k 〈S(1,k)S(2,k)〉k · · · 〈S(1,k)S(M,k)〉k
〈S(2,k)S(1,k)〉k

. . .
...

. . .
〈S(M,k)S(1,k)〉k 〈S(M,k)S(M,k)〉k

GT (S.14)

Let x and y be two random variables. Their means are 〈x〉 and 〈y〉, respectively. The mean-shifted variables are ẋ = x−〈x〉
and ẏ = y−〈y〉. Obviously, 〈ẋ〉= 0 and 〈ẏ〉= 0. Then, 〈xy〉= 〈ẋẏ〉+ 〈x〉〈y〉. Covariance is 〈ẋẏ〉. Thus, 〈S(m1,k)S(m2,k)〉k =
〈Ṡ(m1,k)Ṡ(m2,k)〉k + 〈S(m1,k)〉k〈S(m2,k)〉k. Since all emitters are similar according to assumption A1 and the number of
frames is sufficiently large according to A3, 〈S(m1,k)〉k = 〈S(m2,k)〉k = µ . Thus, J can be simplified as:

= KG
(
R+µ

2LM×M
)

GT (S.15)

where R is the covariance matrix. The diagonal elements of R are standard deviations 〈Ṡ(m,k)Ṡ(m,k)〉k = σ2, where assumption
A3 is used. Further, since blinking of one emitter is independent of any other emitter according to assumption A2, covariance
〈Ṡ(m1,k)Ṡ(m2,k)〉k = 0 for m1 6= m2. Thus, R = σ2IM . Thus, eq. (S.15) can be written as:

J = KG
(
σ

2IM +µ
2LM×M

)
GT (S.16)

S3 Eigen-analysis of circulant matrix O

Matrix O is a circulant matrix of size M and has the form:

O(m′,m) =
a1 if m = m′

a0 if m 6= m′ (S.17)

where

a0 = µ
2; a1 = σ

2 +µ
2 (S.18)

The eigenvalues α j and eigenvectors v̄ j of such circulant matrix are computed as [S1]:

α j = a1 +a0

(
ω j +ω

2
j + · · ·+ω

M−1
j

)
(S.19)

v̄ j =
1√
M

[
1 ω j ω2

j · · · ω
M−1
j

]T
; (S.20)

where i =
√
−1 and

ω j = exp
(

i
2π( j−1)

M

)
(S.21)

Further, since ω j is Mth root of unity, it satisfies:(
ω j +ω

2
j + · · ·+ω

M−1
j

)
=

M−1 if j = 1
−1 otherwise (S.22)
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Consequently, α1 = a1 +(M−1)a0 = σ2 +Mµ2 and α j>1 = a1−a0 = σ2. We assign α0 = a1−a0.
As a consequence of the eigen-decomposition, O can be written as:

O = V†AV (S.23)

where, the superscript † is the Hermitian operator, A = diag([α1 α0 . . . α0]) and

V =
1√
M

[
v̄1 v̄2 · · · v̄M

]
=



1 1 1 1 · · · 1
1 ϖ ϖ2 ϖ3 · · · ϖ (M−1)

1 ϖ2 ϖ4 ϖ6 · · · ϖ2(M−1)

1 ϖ3 ϖ6 ϖ9 · · · ϖ3(M−1)

...
...

...
...

. . .
...

1 ϖ (M−1) ϖ2(M−1) ϖ3(M−1) · · · ϖ (M−1)2


(S.24)

where ϖ = exp(2πi/M). We note that the matrix V is related to discrete Fourier transform operation [S1]. Eq. (S.24) shows that
V is symmetric, i.e. VT = V. Thus, V† = conj

(
VT
)
= conj(V). We define U =

[
ū1 ū2 · · · ūM

]
where ū j = conj(v̄ j),

such that V† = U and O = UAV. Further, using the symmetry of V, we write O = UAVT. Subsequently,

O =
[

ū1 ū2 · · · ūM
]

diag([α1 α0 . . . α0])


v̄T

1
v̄T

2
...

v̄T
M

= α1ū1v̄T
1 +α0

M

∑
j=2

ū j v̄T
j (S.25)

S4 Derivation from eq. (2) to eq. (4)

Here, we use the results of S3 implicitly. Using eq. (S.24), the elements of eigenvector v̄ j of O are given by

v j, j′ = a j, j′/
√

M (S.26)

where

a j, j′ = ϖ
( j−1)( j′−1) = exp

(
2πi
M

( j−1)( j′−1)
)

(S.27)

We also note that ū1 = v̄1 = M−1/2LM×1. Substituting eq. (S.25) in eq. (2), we get:

J = Kα1(Gū1)(Gv̄1)
T +Kα0

M

∑
j=2

(Gū j)(Gv̄ j)
T (S.28)

Further, we compute Gv̄ j and Gū j as follows:

Gv̄ j =
1√
M

M

∑
m=1

Ḡma j,m =
1√
M

M

∑
m=1

Ḡm exp
(

2πi
M

( j−1)(m−1)
)

(S.29)

Gū j = Gconj
(
v̄ j
)
=

1√
M

M

∑
m′=1

Ḡm′conj(a j,m′) =
1√
M

M

∑
m′=1

Ḡm′ exp
(
−2πi

M
( j−1)(m′−1)

)
(S.30)

Consequently,

(Gū j)(Gv̄ j)
T =

1
M

M

∑
m=1

M

∑
m′=1

Ḡm′ Ḡ
T
m exp

(
2πi
M

( j−1)(m−m′)
)

(S.31)

and eq. (S.28) can be written as:

J =
K
M

α1
¯̃G ¯̃G

T
+

K
M

α0

M

∑
m=1

M

∑
m′=1

Ḡm′ Ḡ
T
m

M

∑
j=2

exp
(

2πi
M

( j−1)(m−m′)
)

(S.32)
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Here, we have used eq. (S.7) for the first term. We simplify the second summation term by assigning:

C(m,m′) =
M

∑
j=2

exp(iθ( j−1)) ; θ =
2π

M
(m−m′) (S.33)

and solving it for the cases m = m′ and m 6= m′ separately. For m = m′, C(m,m′) = (M−1) since θ = 0.
For m 6= m′, C(m,m′ 6= m) can be interpret as a geometric series with common ratio r and initial value a given by r = a = exp(iθ) and

number of elements in series equal to M−1. Thus, C(m,m′ 6= m) can be written as

C(m,m′ 6= m) = a
1− rM−1

1− r
= exp(iθ)

1− exp(iθ(M−1))
1− exp(iθ)

(S.34)

Using algebra of complex numbers, the above can be simplified to

C(m,m′ 6= m) = exp
(

iθ
M
2

)
sin (M−1)θ

2

sin θ

2
(S.35)

It is notable that θM/2 = π(m−m′) and (m−m′) being an integer, we get exp(iθM/2) = (−1)(m−m′). Further, using sin(M−1)θ/2 =
cosθ/2sinMθ/2−sinθ/2cosMθ/2, sinMθ/2= 0, and cosMθ/2=(−1)(m−m′), we simplify eq. (S.35) as C(m,m′ 6=m)=−1(−1)2(m−m′)=
−1.

Thus, substituting the values of C(m,m′ = m) and C(m,m′ 6= m) in eq. (S.32), we get:

J =
K
M

α1
¯̃G ¯̃G

T
+

K
M

(M−1)α0

M

∑
m=1

ḠmḠT
m−

K
M

α0

M

∑
m=1

M

∑
m′=1,6=m

Ḡm′ Ḡ
T
m (S.36)

S5 Relaxation of assumption A2

The assumption A2 is first used after eq. (S.15). If the assumption A2 is relaxed, i.e. blinking of emitters need not be independent of other
emitters, then R is not a diagonal matrix. It is a circulant matrix with diagonal elements equal to σ2 (the variance of photon emission
distribution of an emitter) and off-diagonal elements of σ̃2 (the covariance of photon emission distributions of any two emitter). Consequently,
with reference to S3, O is a circulant matrix with diagonal elements equal to a1 = σ2 +µ2 and off-diagonal elements equal to a0 = σ̃2 +µ2.
The derivations in S3 apply directly, with the revised values of α1 = (σ2− σ̃2)+M(µ2 + σ̃2) and α0 = (σ2− σ̃2). Then, following the
analysis in S4, eq. (5) can be written as:

c1 = KM
(
(σ2− σ̃

2)+M(µ2 + σ̃
2)
)

; c2 = K(M−1)(σ2− σ̃
2) (S.37)

S6 Simulation of examples illustrating C{1,2,3}

In this example, two emitters are along the y−axis in the lateral plane such that y′1 =−∆y/2 and y′2 = ∆y/2 are their locations. The emission
wavelength is 510 nm (which corresponds to the green fluorescence proteins), the numerical aperture is 1.4, and the PSF is given by the Airy
function [S2]. The PSF is normalized by its maximum amplitude before computing all the matrices.

S7 Model and simulation of photon counting statistics

It was shown in [S3] that the photon-count statistics due to blinking can be modelled as sum of two Poisson distributions and a third largely-flat
low probability term. The two Poisson distributions correspond to the emissions in dark states and the emission in bright states respectively.
They have means equal to ndT and nbT where T is the time per frame, and nd and nb are the fluorescence emission rates of the dark and
bright state, respectively. The third term corresponds to the jumps in the state of molecule during the acquisition of one frame. For very slow
acquisition, this third term converges to a Gaussian distribution. However, this is seldom the case in super-resolution imaging and the two
Poisson distributions dominate the photon-count statistics [S3]. Thus, the photon counting statistics is modelled as:

P(s|T )≈ pdPoi(ndT )+ pbPoi(nbT ) (S.38)
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where Poi(X) denotes Poisson distribution in random variable s with mean X , pd and pb are the mixing proportions for the Poisson
distributions corresponding to the dark and bright states. The proportions pd and pb are functions of the quantum yield y, the smallest and
largest time scales of the dark states, τmin,d and τmax,d respectively, the smallest and largest time scales of the bright states, τmin,b and τmax,b
respectively, and the power terms αd and αb of the power laws governing the statistics of the times of dark and bright states. The proportion
pd is given as:

pd = cNb
j=Nd

∑
j=1

exp(−K j,dT )
K j,d

pb = cNd
j=Nb

∑
j=1

exp(−K j,bT )
K j,b

(S.39)

where

K j,d =
(
Kαd−1

1,d +Ad( j−1)
) 1

αd ; Ad =
Kαd−1

Nd ,d
−Kαd−1

1,d

Nd−1 ; K1,d = 1/τmax,d; KNd,d = 1/τmin,d;

K j,b =
(
Kαb−1

1,b +Ab( j−1)
) 1

αb ; Ab =
Kαb−1

Nb ,b
−Kαb−1

1,b

Nb−1 ; K1,b = 1/τmax,b; KNb,b = 1/τmin,b;
(S.40)

c =

(
Nb

j=Nd

∑
j=1

1
K j,d

+Nd

j=Nb

∑
j=1

1
K j,b

)−1

(S.41)

Nb = yNd (S.42)

and Nd is sufficiently large. We found that the ratios µ2/σ2 are not sensitive to the value of y. We have used y = 0.5, T = 10 ms, nd = 1
photons/ms, nb = 100 photons/ms, αd = αb = 1.5, Nd = 106, and τmin,d = τmin,b = 0.01 ms.

S8 µ2/σ2 as a function of acquisition time per frame T

Here, we study µ2/σ2 as a function of the acquisition time per frame T for a several sets of τmax,b and τmax,d shown in Supplementary Figure
S1. We consider the values of T in the range [τmax,b,τmax,d]. T < τmax,b corresponds to the case where the measured data is expected to be
temporally sparse while T > τmax,d corresponds to the case where the measured data is expected to demonstrate rapidly decreasing temporal
sparsity. In Supplementary Figure S1, comparison of the plots in dashed lines indicates that pattern is repeatable for τmax,b/τmax,d = 0.01,
which correspond to long dark states. Similar inference applies to the solid lines that correspond to τmax,b/τmax,d = 0.1, i.e. relatively
shorter dark states. Interestingly, the value of µ2/σ2 exhibits a maximum for the case τmax,b/τmax,d = 0.01 and a minimum for the case
τmax,b/τmax,d < 0.1. This implies that there is a worst value of T for the case τmax,b/τmax,d = 0.01 and a best value of T for the case
τmax,b/τmax,d = 0.1. Also, the lowest value of µ2/σ2 for the case τmax,b/τmax,d = 0.1 is much lower than the highest value of µ2/σ2 for the
case τmax,b/τmax,d = 0.01. This provides a counter-intuitive inference that shorter dark states may correspond to a larger value of c2/c1 for a
suitably chosen T , which consequently indicates better possibility of super-resolution. However, such observations have been reported before
as well [S4].

Figure Supplementary Figure S1. µ2/σ2 as a function of the acquisition time per frame T for a given set of τmax,b and
τmax,d.
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S9 Estimation of the value of M for the benchmark examples MT0.N1.LD and MT0.N1.HD
in single molecule localization microscopy symposium challenge 2016 [S5]

MT0.N1.LD is an example of simulated 3-dimensional arrangement of microtubules with low density of emitters per frame, specifically 0.2
emitters per µm3 per frame. It has a total of 8731 emitters in a square field of view (emitters projected on the lateral x− y plane) of 6.4 ×
6.4 µm2. However, since most of the region is empty, we consider the median number of emitters when the field of view is discretized into
squares of dimensions λ/NA (approximately the width of the PSF). This number is multiplied by π/4 to obtain median number of emitters in
circular region or radius λ/2NA. This can be used as an approximate value of M for analysis presented in this paper. The value of M for
MT0.N1.LD is 298.

MT0.N1.HD is another benchmark example similar to of MT0.N1.LD, but with high density of emitters per frame, which is 2 emitters
per µm3 per frame. It has a total of 11172 emitters in a square field of view of 6.4 × 6.4 µm2. The value of M for this example computed as
described above is 364.

S10 Implication of maximum likelihood estimation of localization

In maximum likelihood estimation, the following log likelihood is maximized [S6, S7].

lnL(Īm|{r′m̃,S(m̃)}) = ∑
n
(Im(n) lnS(m̃)G(n, m̃)−S(m̃)G(n, m̃)− Im(n)!) (S.43)

where Īm is the measured image of the mth emitter (assuming emissions from only the mth emitter in the focal volume) with elements Im(n)
and r′m̃ and S(m̃) are the estimated location and the estimated number of photons emitted by the mth emitter. Here noise terms are suppressed
for simplicity. Analogously, for multiple emitters in an image, the MLE problem is written as:

lnL(Ī|{r′m̃,S(m̃);∀m}) = ∑
n

(
I(n)∑

m
lnS(m̃)G(n, m̃)−∑

m
S(m̃)G(n, m̃)− I(n)!

)
(S.44)

Using Taylor series expansion for lnS(m̃)G(n, m̃) in eq. (S.43), we get:

lnL(Ī|{r′m̃,S(m̃);∀m}) =

Term1︷ ︸︸ ︷
∑
n

I(n)∑
m

S(m̃)G(n, m̃)+

Term2︷ ︸︸ ︷
∑
n

∑
m

S(m̃)G(n, m̃))

Term3︷ ︸︸ ︷
+∑

n
∑
m

∞

∑
j=2

(
(−1) j−1

j
I(n)(S(m̃)G(n, m̃)−1) j

)
Term4︷ ︸︸ ︷

−∑
n

I(n)−∑
n

I(n)!

(S.45)

Term 4 does not participate in maximization since it is not a function of m̃. Term 3 is a non-linear term, in fact a power series. Term 2
corresponds to the term linear in G(n, m̃) independent of measurements and incomparable with the matrices C̃1, C̃2, and C̃3.

Term 1 is directly associated with the matrices C̃2 and C̃3 as we show below. The first term ∑n I(n)∑m s(m̃)G(n, m̃) can be given
as S̄TGTG̃ ¯̃S, where S̄ is the vector containing the number of photons emitted by the emitters and ¯̃S is an estimate of it. Further, with
algebraic manipulations, GG̃ = min(M,M̃)C̃2 +min(M,M̃)(min(M,M̃)−1)C̃3 = min(M,M̃)(C̃2− C̃3)+min(M2,M̃2)C̃3. Thus, the first
term incorporates C̃2− C̃3 and an additional component of C̃3. This implies that although the magnitude of C̃2− C̃3 may be small, MLE
incorporates the component C̃3 which is the richest in numerical content pertaining super-resolution.

S11 Derivation of F for SOFI

We define:

F = (I− ¯̃IL T
K×1)(I− ¯̃IL T

K×1)
T (S.46)

where ¯̃I is the mean image and is given by eqs. (S.8,S.11). Thus, F can be expanded as

F = J− ¯̃IL T
K×1IT− ILK×1

¯̃I
T
+ ¯̃IL T

K×1LK×1
¯̃I
T

= J−2K ¯̃I ¯̃I
T
+K ¯̃I ¯̃I

T

= J−Kµ2G̃G̃T

= J−Kµ2M2C1 = c2(C1 +C2−C3)

(S.47)

where eqs. (4−8) have been used.
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