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I. Supplementary methods 24 

Heat tolerance assay. CTmax is an ecologically relevant measure of heat tolerance that 25 

represents the point when an organism can no longer escape a stressful thermal environment [1]. 26 

Across ectotherms, it is also correlated with the harder-to-measure thermal optimum; in other 27 

words, species with high CTmax tend to have high thermal optima, such that CTmax should predict 28 

fitness changes even in response to sublethal temperatures [2]. 29 

To measure CTmax, we collected bees from university property and residential yards 30 

within 3.2 km of our laboratory, such that transit time from field to lab was no more than 10 min. 31 

Collecting sites were distinct from those used in the field population survey. We spent 15 – 35 32 

min netting bees, which we transported individually in 50 ml plastic tubes in an insulated 33 

container. In the lab, we transferred bees to weighted 45 ml glass vials in a circulating water bath 34 

constructed from a 13.25 L tub equipped with a recirculation pump (Rio Plus 50 Aqua Pump, 35 

TAAM, Inc., Camarillo, CA, USA) and a heating element (120V, Camco, Greensboro, NC, 36 

USA) controlled by a JLD612 dual display PID temperature controller and PT100 temperature 37 

sensor probe (Lightobject, Sacramento, CA, USA). Vial openings, plugged with cotton, 38 

remained above water. Following an initial period of 20 min at 25 °C, the bath warmed at a rate 39 

of 0.5 oC min-1. The bath accommodated seven bees at a time, and we kept an additional one to 40 

seven bees per assay in a separate, unheated bath to ensure that experimental conditions other 41 

than heat were not lethal. To monitor temperatures experienced by bees, an iButton (DS1923, 42 

Maxim Integrated, San Jose, CA, USA) recorded temperature and humidity every minute 43 

throughout the assay within identical glass vials in the heated and control baths. We recorded the 44 

time at which each bee fell over and was unable to right itself within 30s. CTmax for each 45 

individual bee was the iButton temperature recorded during the minute that the individual lost 46 



postural control. Because not all bees could be identified prior to the CTmax assay, species 47 

composition varied across trials; we present data for the 15 species that were common enough to 48 

yield at least 3 measurements per species.  49 

Field sampling. Site selection and sampling are described in detail elsewhere (Hamblin 50 

et al. in review). Briefly, we used Landsat-derived thermal map of Raleigh [3] to identify 15 51 

residential yards and 3 urban natural areas that varied in warming intensity. Yards were 405 to 52 

7487 m2; natural areas were larger, but we limited sampling to 4047 m2 per site. Residential 53 

neighborhoods were developed between the 1930s and 2003, such that local heat-island patterns 54 

were established at least a decade prior to sampling. All sites were more than 2 km apart to 55 

ensure independence of bee samples [4]. In 2015 we measured air temperature at each site using 56 

a pair of thermochron iButtons (DS1921, Maxim Integrated). Despite shielding iButtons as 57 

described by Hubbart [5], daytime readings were compromised by solar radiation. We therefore 58 

used only early evening temperatures (7-9pm) to compute a mean summer evening temperature 59 

at each site. Although this temperature does not represent conditions experienced by foraging 60 

bees, it captures the urban heat island effect without interference from solar radiation, accurately 61 

arraying sites on an axis from cooler to warmer [6].  62 

We sampled bees from May to August, visiting each site 6 times in 2014 and 5 times in 63 

2015. At each site on each date we deployed 12 pan traps and 1 blue vane trap (SpringStar, 64 

Seattle, WA), and conducted 20 min of netting. Pan traps were 3.25 oz soufflé cups (Solo Cup 65 

Co., Urbana, IL), left white or painted fluorescent yellow or blue (Guerra Paint & Pigment, New 66 

York, NY). On each sampling date, traps were out for 5 to 7 hours between 8:00 and 17:30 and 67 

we netted between 10:00 and 17:00. The full bee sample, described elsewhere, included 113 68 

species, most of which were rare; here we focus on the 15 common species for which we also 69 



measured CTmax. For these 15 species, the total number of individuals collected was 1732 (n = 11 70 

– 549 per species). In all downstream analyses, the abundance of a given species at a given site 71 

refers to the total number of individuals of that species collected over the two years of sampling.  72 

Hierarchical model. To estimate the rate of change in abundance of each species relative 73 

to temperature, we constructed a hierarchical model analogous to a Poisson regression with log 74 

link function: log(µij) = ai + ri*tj where µij is the predicted count (a Poisson mean) for the ith 75 

species at the jth site; ai is the intercept for species i, ri is the Poisson regression coefficient for 76 

species i, and tj is the temperature at site j. The coefficient ri represents proportional change in 77 

abundance of a species per °C increase in temperature, and we refer to it as “response to 78 

warming” throughout this study. (Specifically, for each 1°C increase in temperature, µ is 79 

multiplied by eri.) We further specified ri as arising from a normal distribution with mean β and 80 

variance σ2, so that responses of all species were estimated jointly relative to the overall, species-81 

wide response, β. This approach allowed information from the entire dataset to inform the 82 

estimates for each species, stabilizing estimates for rarer taxa [7,8]. We fit the model in 83 

WinBUGS 1.4, assuming uninformative prior distributions for a, β, and σ2. We used 3 Markov 84 

chain simulations, each independently initialized and computed for 21000 draws. After 85 

inspecting diagnostic plots for convergence and autocorrelation, we discarded the first 1000 86 

draws from each chain and thinned to every tenth draw for a final sample of 6000 draws, which 87 

we used to compute estimates, standard errors, and 95% credible intervals for each species’ 88 

response to warming (ri).   89 

Phylogenetic inference. We downloaded the 20 gene dataset generated by Hedtke et al. 90 

[9], and selected one outgroup (Dasypoda hirtipes) and the lineages of interest for our study. 91 

Eleven of the 20 genes contained less than 10% of sequence data for our ingroup, thus we 92 



removed those genes from our dataset. We included the following nine genes in our study: 93 

arginine kinase (AK), calcium/calmodulin-dependent protein kinase II (CAD), elongation factor 94 

1-α copy 1 and 2 (EF1a1, EF1a2), sodium potassium adenosine triphosphate (NAD), 95 

phosphoenolpyruvate carboxykinase (PEPCK), long wavelength rhodopsin (Opsin), RNA 96 

polymerase II (PolII), and wingless (Wg). We added sequence data from the mitochondrial gene 97 

cytochrome oxidase I (COI) to improve species level resolution within the genera Bombus and 98 

Megachile. COI sequences for all species were retrieved from the National Center for 99 

Biotechnology Information (NCBI) or the BOLD System (table S1). We used sequences from 100 

the phylogenetically closest species when sequences from the focal species were not available. 101 

We aligned COI nucleotide sequences using the MUSCLE option in SeaView v.4.5.3 [10] and 102 

concatenated to nine-gene dataset [9]. Phylogenetic reconstruction was based on a total of 10,252 103 

nucleotides in our final alignment. Alignments were visually inspected and improved in 104 

Mesquite 3.0.3. Maximum likelihood trees were searched under the GTRGAMMA model of 105 

sequence evolution in RAxML using 1000 bootstrap replicates after partition optimization using 106 

the python script PartitionFinder v1.1.1 [11]. Trees were visually inspected and annotated in 107 

FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/). 108 

 109 
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Table S1. COI sequences and genbank accession numbers. These sequences were concatenated 116 

to 9 genes from Hedtke et al. [9]. 117 

Species in this study Species in Hedtke et 

al.  

Species for COI COI Genbank Accession 

No. 

Agapostemon 

virescens 

Agapostemon 

kohliellus 

Agapostemon 

virescens 

JQ266376 

Bombus bimaculatus  Bombus bimaculatus  Bombus bimaculatus  KM585629 

Bombus griseocollis Bombus griseocollis Bombus griseocollis SMTPL8163* 

Bombus impatiens Bombus wilmattae Bombus impatiens JF799030 

Ceratina calcarata Ceratina calcarata Ceratina calcarata KJ166268 

Ceratina strenua Ceratina cyanea Ceratina strenua KJ163420 

Halictus ligatus Halictus ligatus Halictus ligatus AF102840 

Lasioglossum 

bruneri 

Lasioglossum 

cressonii 

Lasioglossum 

bruneri 

JF903499 

Lasioglossum 

imitatum 

Lasioglossum 

imitatum 

Lasioglossum 

imitatum 

AF103967 

Megachile 

campanulae 

Megachile 

angelarum 

Megachile 

cetuncularis 

FJ582307 

Megachile exilis Megachile 

angelarum  

Megachile 

versicolor 

KJ836926 

Megachile mendica Megachile 

patellimana 

Megachile mendica KF839683 

Megachile rotundata Megachile texana Megachile rotundata GU706002 

Ptilothrix 

bombiformis 

Ptilothrix sp. JS 

2010 

Ptilothrix 

bombiformis 

AF300562 

Xylocopa virginica Xylocopa virginica Xylocopa virginica EU271670 

* Retrieved from BOLD system  118 
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II. Supplementary results 121 

Hierarchical model of species responses to warming. The assemblage-wide mean response to 122 

warming was significantly negative with β = -0.66 (95% CI -0.96 to -0.40). Within this overall 123 

trend, species varied in their rates of decline; four species’ responses were indistinguishable from 124 

zero (as indicated by 95% credible intervals, fig. S1).   125 

 126 

Figure S1. Results of hierarchical model estimating Poisson regression coefficients for each bee 127 

species (“response to warming” as rate of population change per °C). Error bars are 95% credible 128 

intervals; numbers in parentheses are total number of individuals collected.  129 

 130 

Phylogeny reconstruction. We reconstructed the phylogenetic relationships of 21 bee 131 

species from four families using information from one mitochondrial and nine nuclear genes (fig. 132 

S2). The maximum likelihood phylogenetic reconstruction recovered all bee families with high 133 

bootstrap support, and the tree topology is congruent with Hedtke et al.   134 
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 135 

 136 

Figure S2. Phylogenetic reconstruction of 15 focal bee species; numbers on branches are 137 

bootstrap values after 10000 replicates.  138 

 139 

 Trait evolution. The relationship between phylogeny, CTmax, nesting behavior, and 140 

sociality is shown in fig. S3. We did not detect strong phylogenetic signal in CTmax; that is, 141 

models of trait evolution that incorporated the phylogeny were not a better fit to the data than 142 

was a phylogenetically independent white-noise model (ΔAICc <2, table S2). Body size, nesting 143 

habitat, and social behavior were all phylogenetically correlated; Brownian motion and Early 144 

Burst were the best-supported models of trait evolution (tables S2-S3). 145 



 146 

Figure S3. Bee traits considered in this study, as they relate to the phylogeny (numbers in 147 

parentheses are sample sizes for CTmax assay). 148 

 149 

Table S2. Models describing trait evolution of CTmax and body size across the bee phylogeny. 150 

Best-fitting models (ΔAICc <2) for each trait are bolded.  151 

  CTmax Body size 

Model AICc ΔAICc Parameters AICc ΔAICc Parameters 

Brownian motion 67.37 0.99 σ2 = 23.59 50.29 0.00 σ2 = 7.56 

Ornstein-Uhlenbeck 66.38 0.00 σ2 = 46.48, α = 5.76 53.36 3.07 σ2 = 8.93, α = 0.82 

White noise 66.95 0.57 σ2 = 3.64, μ = 46.87 60.59 10.30 σ2 = 2.38, μ = 2.70,  

Pagel’s λ 66.66 0.28 σ2 = 9.69, λ = 0.78 53.47 3.18 σ2 = 7.56, λ = 1.00 

Early burst 70.55 4.17 σ2 = 23.59, a = 1.00x10-6 53.28 2.99 σ2 = 15.03, a = -2.01 

 152 
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Table S3. Models describing trait evolution of discrete traits, nesting habitat and sociality, across the bee phylogeny. Best-fitting 155 

models (ΔAICc <2) for each trait are bolded.  156 

Model Nesting Sociality 

  AICc ΔAICc Parameters Rate1 AICc ΔAICc Parameters Rate2 

Equal-rate models         

Brownian motion 19.98 2.42 NA 0.68 15.21 0.00 NA 1.48 

White noise 36.31 18.80 NA NA 22.50 7.29 NA NA 

Pagel's λ 22.67 5.11 λ = 1.00 0.68 17.90 2.69 λ = 1.00 1.48 

Early burst 17.56 0.00 a = -28.06 978.17 15.84 0.63 a = -20.15 978.17 

 157 
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Phylogenetic generalized least-squares models. Regardless of the pattern of evolution of 162 

individual traits, the residuals of models relating those traits to one another (as in our two focal 163 

hypotheses) can also show phylogenetic signal. We addressed this possibility by comparing 164 

several models that differed only in their phylogenetic covariance structure. In the main text, we 165 

present the results of the best-fitting models; in Table S4 we provide fit details for the alternative 166 

models.  167 

 168 

Table S4. Comparison of generalized least-squares models testing two hypotheses with different 169 

phylogenetic correlation structures.  170 

Model 

Phylogenetic 

correlation structure d.f. 

Log 

likelihood AICc ΔAICc 

Model 

weight 

CTmax ~ Body size + Nest + 

Sociality Pagel's λ 7 -0.3 30.6 0.0 1.0 

 None 6 -25.1 72.6 42.0 0.0 

 Ornstein-Uhlenbeck 7 -24.5 79.0 48.4 0.0 

 Brownian motion 6 -30.1 82.7 52.1 0.0 
       

Response to warming ~ 

CTmax None 3 -0.3 8.7 0.0 0.8 

 Ornstein-Uhlenbeck 4 0.05 11.9 3.2 0.2 

 Brownian motion 3 -6.6 21.3 12.62 0.0 

  Pagel's λ did not converge* 

 171 

*Although the Pagel’s λ model did not converge using the gls function in nlme package in R, and 172 

therefore is not included for direct comparison with the other gls models, we examined a 173 

comparable model with Pagel correlation structure using the pgls function in the caper package, 174 

which produced a maximum-likelihood estimate of λ = 0 (95% CI 0 to 0.594). We also manually 175 

fit different values of λ in the gls function, and likelihood was maximized at λ = 0. These checks 176 

support the conclusion that there is not strong phylogenetic signal in the relation between 177 

response to warming and CTmax. 178 



Weighted regression.  To examine the possibility that error in the estimation of species 179 

responses to warming influenced our analysis of the relationship between CTmax and response to 180 

warming, we further examined the non-phylogenetic model using weighted regression. We 181 

weighted each response to warming by the inverse of its standard error (as estimated in the 182 

hierarchical model), thereby reducing the influence of the least certain estimates. We fit the 183 

weighted regression using the lm function in the stats package of R. Results (table S5) were 184 

comparable to those of the non-weighted regression shown in the main text.   185 

 186 

Table S5. Results of weighted regression describing each species’ response to warming as a 187 

function of its CTmax (where each response is weighted by the inverse of its standard error). 188 

Term Coefficient s.e. t p 

Intercept -5.52 1.86 -3.0 0.011 

CTmax 0.10 0.040 2.6 0.021 

 189 
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III. Community Analysis 200 

The results of the hierarchical model demonstrate that some bee species declined faster than 201 

others in response to warming. These differential rates of change imply that species’ relative 202 

abundances, and thus community composition, also shifted with warming. Here, we explicitly 203 

test for an effect of temperature on bee community composition across sites by performing a 204 

distance-based redundancy analysis (db-RDA) using the vegan package in R [12]. This 205 

constrained ordination analysis assumes a linear relation between predictors (here, temperature) 206 

and the multivariate response (bee abundances), and tests significance with a permutation test 207 

(without assuming multivariate normality) [13,14]. In this analysis, we log(x+1) transformed bee 208 

counts to meet the assumption of linearity, and used db-RDA with Bray-Curtis distances because 209 

the Euclidean distances of standard RDA are misleading when the data include many zeros [13].  210 

 The db-RDA detected significant effects of site temperature on community composition 211 

across sites, with 14% of the inertia in the dataset represented on the db-RDA axis that aligns 212 

with temperature (p = 0.015, fig. S4). Species’ loadings on the temperature axis could be 213 

analyzed as an alternate quantification of “response to warming” that makes the connection 214 

between CTmax and community ordination more explicit. For ease of interpretation, however, we 215 

focused our analyses on the Poisson regression coefficients, for which error is more readily 216 

estimated and which represent rate of change in biologically meaningful units.  217 

 218 

 219 



 220 

Figure S4. db-RDA ordination indicates that bee community composition varied across sites as a 221 

function of temperature. Black points represent the positions of the 18 study sites in ordination 222 

space, as they relate to temperature (blue arrow) and bee species abundances (black arrows). 223 

Arrows indicate the direction of increase of each variable; the plot was generated using scaling = 224 

3 to optimize display of sites and species. For clarity, only selected species are labeled. They are 225 

1, Ceratina strenua; 2, Ceratina calcarata; 3, Lasioglossum bruneri; 4, Bombus griseocollis; 5, 226 

Agapostemon virescens; 6, Megachile mendica; 7, Halictus ligatus/poeyi.  227 
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