Type of file: PDF Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Methods, and Supplementary References.

Type of file: PDF Title of file for HTML: Peer Review File Description:

Supplementary Figures

Supplementary Figure 1 I Optimized structures and energies (based on the upper-left structure) of ten stereoisomers of ligand $1 (R = -OCH_3)$ (PM6 calculations).

Supplementary Figure 2 | ¹H NMR spectrum (500 MHz, CDCl₃, room temperature) of 6a.

Supplementary Figure 3 I¹³C NMR spectrum (125 MHz, CDCl₃, room temperature) of 6a.

Supplementary Figure 4 I HH COSY spectrum (500 MHz, CDCl₃, room temperature) of 6a.

Supplementary Figure 5 I HSQC spectra (500 MHz, $CDCl_3$, room temperature) of **6a**. (a) The aromatic and (b) aliphatic regions.

Supplementary Figure 7 I¹H NMR spectrum (500 MHz, CDCl₃, room temperature) of 1a.

Supplementary Figure 8 I ¹³C NMR spectra (125 MHz, CDCl₃, room temperature) of **1a**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 9 I HSQC spectra (500 MHz, CDCl₃, room temperature) of **1a**. (a) The aromatic and (b) aliphatic regions.

a _{ky685}

Data: ky6580001.E9[c] 2 Oct 2015 16:12 Cal: akita-yoshizawa-ref 24 Sep 2015 0:54 Shimadzu Biotech Axima CFRplus 2.9.3.20110624: Mode Reflectron, Power: 100, P.Ext. @ 1385 (bin 92)

Supplementary Figure 10 I (a) MALDI-TOF MS (dithranol) and (b) HR MS (ESI) spectra of 1a.

Supplementary Figure 11 I ¹H NMR spectra (500 MHz, DMSO- d_6 , room temperature) of (a) **2a** and (b) **2a'**.

Supplementary Figure 12 I ¹³C NMR spectra (125 MHz, DMSO- d_6 , room temperature) of **2a**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 13 | HH COSY spectrum (500 MHz, DMSO- d_6 , room temperature) of 2a.

Supplementary Figure 14 I HH TOCSY spectrum (500 MHz, DMSO-*d*₆, room temperature) of **2a**.

Supplementary Figure 15 | NOESY spectrum (500 MHz, DMSO- d_6 , room temperature) of 2a.

l,n Л е 1 20151001 3.52

b а Ĵ^{N—Pd}

d

е

с

3.52 spect 5 mm CPPBBO BB hsqcetgpsi2 1024 DMSO

b

e',I g',h,m',f

h,k

123 g m 124 е 0 0 125 (0)126 j 0 127 -Pd 128 d N. Ø 129 R h j 130 R 131 n k ≤ 132 d р $R = -OCH_2CH_2OCH_3$ sh q r s 3 133 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 ppm

g,j,n'

g',h,m' Μ

h,k

Supplementary Figure 16 I HSQC spectra (500 MHz, DMSO- d_6 , room temperature) of **2a**. (a,b) The aromatic and (c) aliphatic regions.

Supplementary Figure 18 | ESI-TOF MS spectrum (CH₃OH) of 2a.

Supplementary Figure 19 I ¹H NMR spectra (500 MHz, CDCl₃, room temperature) of **6b**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 20 I ¹³C NMR spectra (125 MHz, CDCl₃, room temperature) of **6b**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 21 I HSQC spectra (500 MHz, $CDCl_3$, room temperature) of **6b**. (a) The aromatic and (b) aliphatic regions.

Supplementary Figure 22 I (a) MALDI-TOF MS (dithranol) and (b) HR MS (ESI) spectra of **6b**.

Supplementary Figure 23 I ¹H NMR spectra (500 MHz, CDCl₃, room temperature) of **1b**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 24 | ¹³C NMR spectra (125 MHz, CDCl₃, room temperature) of 1b. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 25 I HSQC spectra (500 MHz, CDCl₃, room temperature) of **1b**. (a) The aromatic and (b) aliphatic regions.

Supplementary Figure 26 | HR MS spectrum (ESI) of 1b.

Supplementary Figure 27 I ¹H NMR spectra (500 MHz, $D_2O:CD_3CN = 5:1$, room temperature) of **2b**. (a) The aromatic and aliphatic and (b) aromatic regions. ¹H NMR spectra (500 MHz, room temperature) of **2b** in (c) DMSO- d_6 , (d) $D_2O:CD_3CN = 5:1$, and (e) $D_2O:CD_3CN = 100:1$.

Supplementary Figure 28 I ¹³C NMR spectra (125 MHz, $D_2O:CD_3CN = 5:1$, room temperature) of **2b**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 29 | HH COSY spectrum (500 MHz, $D_2O:CD_3CN = 5:1$, room temperature) of 2b.

Supplementary Figure 30 I HH TOCSY spectrum (500 MHz, $D_2O:CD_3CN = 5:1$, room temperature) of 2b.

Supplementary Figure 31 I HSQC spectra (500 MHz, $D_2O:CD_3CN = 5:1$, room temperature) of **2b**. (a) The aromatic and (b) aliphatic regions.

Supplementary Figure 32 | DOSY NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of 2b.

Supplementary Figure 33 | ESI-TOF MS spectrum (CH₃OH) of 2b.

Supplementary Figure 34 I ¹H NMR spectra (500 MHz, DMSO- d_6 , room temperature) of $(C_{60})_2@3b$. (a) The aromatic and aliphatic and (b) aromatic regions. The ¹H NMR spectra of $(C_{60})_2@3b$ obtained by (c) the route 1 and (d) the route 2. Concentration-dependent ¹H NMR spectra of $(C_{60})_2@3b$ in (e) 0.36 mM and (f) 5.0 μ M and time-dependent ¹H NMR spectra of $(C_{60})_2@3b$ after (g) 10 min and (h) 5 d at room temperature. ¹H NMR spectra of a mixture of **2b** and C_{60} after (i) 6 h at 70 °C and (j) 3 h at 110 °C.

Supplementary Figure 35 I ¹H NMR spectra (500 MHz, DMSO- d_6 , room temperature) of $(C_{60})_2@3a$. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 36 I ¹³C NMR spectrum (125 MHz, DMSO- d_6 , room temperature) of $(C_{60})_2@$ **3b**.

Supplementary Figure 37 I (a) HH COSY and (b) HH TOCSY spectra (500 MHz, DMSO- d_6 , room temperature) of $(C_{60})_2@3b$.

Supplementary Figure 38 | HSQC spectra (500 MHz, DMSO- d_6 , room temperature) of $(C_{60})_2$ @**3b**. (a) The aromatic and (b) aliphatic regions.

Supplementary Figure 39 | DOSY NMR spectrum (500 MHz, DMSO- d_6 , 298 K) of (C₆₀)₂@3b.

Supplementary Figure 40 | ESI-TOF MS spectra (CH₃CN) of (a) $(C_{60})_2@3b$ and (b) $(C_{60})_2@3a$.

а

Supplementary Figure 41 I ¹H NMR spectra (500 MHz, DMSO- d_6 , room temperature) of $(C_{70})_2@$ **3b**. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 42 I ¹³C NMR spectrum (125 MHz, DMSO- d_6 , room temperature) of $(C_{70})_2@3b$.

Supplementary Figure 43 | DOSY NMR spectrum (500 MHz, DMSO- d_6 , 298 K) of (C₇₀)₂@3b.

Supplementary Figure 45 I ¹H NMR spectra (500 MHz, DMSO- d_6 , room temperature) of $(Sc_3N@C_{80})_2@3b$. (a) The aromatic and aliphatic and (b) aromatic regions.

Supplementary Figure 46 I ¹³C NMR spectrum (125 MHz, DMSO- d_6 , room temperature) of $(Sc_3N@C_{80})_2@3b$.

Supplementary Figure 47 | DOSY NMR spectrum (500 MHz, DMSO- d_6 , 298 K) of $(Sc_3N@C_{80})_2@3b$.

Supplementary Figure 48 | ESI-TOF MS spectrum (CH₃CN) of (Sc₃N@C₈₀)₂@3b.

Supplementary Figure 49 | Normalized UV-visible spectra (~0.3 mM, DMSO, room temperature) and photographs of $(C_{60})_2@3b$, $(C_{70})_2@3b$, and $(Sc_3N@C_{80})_2@3b$.

Supplementary Figure 50 | ¹H NMR spectrum (500 MHz, $D_2O:CD_3CN = 100:1$, room temperature) of (4a/4a)@2b.

Supplementary Figure 51 | DOSY NMR spectrum (500 MHz, $D_2O:CD_3CN = 100:1, 298$ K) of (4a/4a)@2b.

Supplementary Figure 52 | ESI-TOF MS spectrum ($H_2O:CH_3CN = 100:1$) of (4a/4a)@2b.

Supplementary Figure 53 | ¹H NMR spectrum (500 MHz, $D_2O:CD_3CN = 100:1$, room temperature) of (4c/4c)@2b.

Supplementary Figure 54 | DOSY NMR spectrum (500 MHz, $D_2O:CD_3CN = 100:1, 298$ K) of (4c/4c)@2b.

Supplementary Figure 55 | ESI-TOF MS spectrum ($H_2O:CH_3CN = 100:1$) of (4c/4c)@2b.

Supplementary Figure 56 I ¹H NMR spectrum (500 MHz, $D_2O:CD_3CN = 100:1$, room temperature) of $(4b/(4b)_2)@2b$.

Supplementary Figure 57 | ESI-TOF MS spectrum ($H_2O:CH_3CN = 100:1$) of $(4b/(4b)_2)@2b$.

temperature) of $(4a/(4b)_2)@2b$.

Supplementary Figure 59 | ESI-TOF MS spectrum ($H_2O:CH_3CN = 100:1$) of $(4a/(4b)_2)@2b$.

Supplementary Figure 60 I (a) ORTEP drawing of double capsule **2a**'. Ball-and-stick representation of (b) the side and (c) top views of **2a**'. The counterions are omitted for clarity.

Supplementary Figure 61 I Optimized structures of (a) $(C_{70})_2@3b$ (R = -H) and (b) $(Sc_3N@C_{80})_2@3b$ (R = -H) by molecular force-field calculation.

Supplementary Figure 62 | Optimized structures and calculated voids of (a) 2b (R = -H), (b) (4a/void)@2b (R = -H), (c) $(void/(4b)_2)@2b$ (R = -H), and (d) $((4a/(4b)_2)@2b$ (R = -H) by molecular force-field calculation.

Supplementary Figure 63 I Calculated total energies of (a) **2b** ($R = -OCH_3$), two fullerenes, two DMSO, and four pyridines, and (b) $(C_{60})_2@3b$ ($R = -OCH_3$) and Pd(pyridine)₄, and (c) $(C_{60})_2@2b$ ($R = -OCH_3$) and four pyridines by molecular force-field calculation.

Supplementary Table

Identification code	KY781
Empirical formula	C380 H300 B1 F4 N12 O32 Pd3
Formula weight	5952.61
Temperature	93 K
Wavelength	1.54187 Å
Crystal system	tetragonal
Space group	P4/ncc
Unit cell dimensions	$a = 26.5390(8) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 26.5390(8) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 71.806(7) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	50574(5) Å ³
Ζ	4
Density (calculated)	0.782 Mg/m ³
Absorption coefficient	1.216 mm^{-1}
F(000)	12396.0
Crystal size	$0.189\times0.184\times0.047~mm^3$
Theta range for data collection	7.55 to 149.276°.
Index ranges	-33 <=h<=31, -29<=k<=32, -73<=l<=89
Reflections collected	152900
Independent reflections	25558 [R(int) = 0.0690]
Completeness to theta = 67.687°	98.5 %
Absorption correction	multi-scan
Max. and min. transmission	0.944 and 0.678
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	25558 / 370 / 1024
Goodness-of-fit on F ²	1.204
Final R indices [I>2sigma(I)]	$R_1 = 0.1060, wR_2 = 0.3412$
R indices (all data)	$R_1 = 0.1548, wR_2 = 0.3855$
Largest diff. peak and hole	$0.79 \text{ and } -1.67 \text{ e.} \text{Å}^{-3}$

Supplementary Table 1 | Crystal data and structure refinement for 2a'.

The supplementary crystallographic data of 2a' (CCDC 529139) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif. Disordered solvent molecules and counterions were removed by SQUEEZE program and the result was attached to the CIF file¹⁻⁶.

Supplementary Methods Synthesis of compound 6a

Compound **5a** (2.084 g, 2.829 mmol), 3-pyridineboronic acid pinacol ester (0.614 g, 2.96 mmol), K₃PO₄ (2.673 g, 12.59 mmol), and Pd(PPh₃)₄ (124 mg, 0.108 mmol) were added to a 300 mL glass flask filled with N₂. Dry DMF (50 mL) was added to the flask and then the mixture was stirred at 80 °C for 1 d. The resultant solution was concentrated under reduced pressure. After addition of water, the crude product was extracted with CHCl₃. The obtained organic layer was dried over MgSO₄, filtrated, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, ethyl acetate : hexane : CHCl₃ = 1 : 1 : 1) to afford compound **6a** as a yellow powder (0.819 g, 1.12 mmol, 39%) (see Supplementary Figs 2-6).

¹H NMR (500 MHz, CDCl₃, room temperature): δ 8.80 (d, J = 5.0 Hz, 1H), 8.74 (s, 0.5H), 8.65 (s, 0.5H), 8.58 (d, J = 9.0 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 7.5 Hz, 0.5H), 7.77 (d, J = 7.0 Hz, 0.5H), 7.62-7.57 (m, 5H), 7.48-7.42 (m, 4H), 7.35 (dd, J = 9.5, 9.5 Hz, 2H), 7.24 (s, 1H), 7.12 (s, 1H), 4.14 (t, J = 5.0 Hz, 2H), 4.17-4.09 (m, 2H), 3.38 (t, J = 5.0 Hz, 2H), 3.32 (t, J = 5.0 Hz, 2H), 2.94 (s, 6H), 2.91 (s, 6H). ¹³C NMR (125 MHz, CDCl₃, room temperature): δ 158.2 (C_q), 151.7 (CH), 148.7 (CH), 139.1 (CH), 136.8 (CH), 135.2 (C_q), 134.4 (C_q), 134.1 (C_q), 132.4 (C_q), 131.5 (C_q), 130.4 (2 × C_q), 127.9 (CH), 127.4 (CH), 127.2 (CH), 126.8 (CH), 126.2 (CH), 125.5 (2 × CH), 125.1 (2 × C_q), 123.5 (CH), 122.6 (C_q), 120.3 (C_q), 120.0 (C_q), 100.0 (CH), 70.7 (CH₂), 69.1 (CH₂), 59.0 (CH₃). FT-IR (KBr, cm⁻¹): 2925, 2879, 2817, 1604, 1506, 1451, 1439, 1376, 1360, 1335, 1303, 1265, 1192, 1162, 1128, 1105, 1058, 1025, 769, 758, 718, 686, 608. HR MS (ESI, CH₃OH): *m*/z Calcd. for C₄₅H₃₆NO₄Br: 736.1883, Found 736.1889 [M + H]⁺.

Synthesis of compound 6b

Compound **5b** (2.847 g, 2.945 mmol), 3-pyridineboronic acid pinacol ester (0.5957 g, 2.904 mmol), K_3PO_4 (2.415 g, 11.38 mmol), and Pd(PPh_3)₄ (100.2 mg, 0.8675 mmol) were added to a 300 mL glass flask filled with N₂. Dry DMF (50 mL) was added to the flask and then the mixture was stirred at 80 °C for 1 d. The resultant solution was concentrated under reduced pressure and then washed by water. The crude product was purified by column chromatography (silica gel, ethyl acetate : hexane = 1 : 1) to give compound **6b** and its debrominated compound. A mixture of the resultant powder and DBH was stirred in CH₂Cl₂ (20 mL) for 1 night. The resultant solution was washed with water to give **6b** as yellow powder (0.7843 g, 0.979 mmol, 33%) (see Supplementary Figs 19-22).

¹H NMR (500 MHz, CDCl₃, room temperature): δ 8.83 (d, J = 4.5 Hz, 1H), 8.75 (s, 0.5H), 8.67 (s, 0.5H), 8.62 (d, J = 9.0 Hz, 2H), 7.97 (m, 4H), 7.85 (d, J = 8.0 Hz, 0.5H), 7.77 (d, J = 8.0 Hz, 0.5H), 7.63-7.55 (m, 5.0H), 7.53-7.49 (m, 4.0H), 7.39 (dd, J = 7.5, 7.5 Hz, 2H), 7.07 (s, 0.5H), 7.06 (s, 0.5H), 4.52-4.51 (m, 2H), 3.98 (t, J = 4.5 Hz, 2H), 3.92 (br, 2H), 3.86 (t, J = 4.0 Hz, 2H), 3.47 (s, 3H), 3.09-3.06 (m, 2H), 3.01 (br, 2H), 2.79-2.78 (m, 6H). ¹³C NMR (125 MHz, CDCl₃, room temperature): δ 152.5 (C_q), 152.4 (C_q), 152.2 (C_q), 151.7 (CH), 151.7 (CH), 148.8 (CH), 145.8 (C_q), 145.7 (C_q), 139.1 (CH), 139.0 (CH), 135.0 (C_q), 134.1 (C_q), 134.0 (C_q), 133.8 (C_q), 133.7 (C_q), 132.8 (C_q), 131.3 (C_q), 130.5 (CH), 127.0 (CH), 126.9 (CH), 126.3 (CH), 125.9 (CH), 127.6 (C_q), 125.5 (CH), 123.5 (CH), 123.4 (CH), 123.0 (C_q), 72.9 (CH₂), 72.8 (CH₂), 72.1 (CH₂), 71.4 (CH₂), 71.3 (CH₂), 59.0 (CH₂), 58.3 (CH₃). FT-IR (KBr, cm⁻¹): 2979, 2925, 2881, 2818, 1464, 1438, 1416, 1389, 1348, 1256, 1130, 1106, 1070, 1026, 926, 909, 759. MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₄₈H₄₂NO₆: 810.23, Found 810.42 [M + H]⁺. HR MS (ESI): *m*/*z* Calcd. for C₄₈H₄₂NO₆: 810.2251, Found 810.2219 [M + H]⁺.

Synthesis of W-shaped ligand 1b

Compound **6b** (1.3568 g, 1.6775 mmol), 3,5-pyridinediboronic acid bis(pinacol) ester (194.6 mg, 0.58 mmol), K_3PO_4 (1.04 g, 4.9 mmol), and Pd(PPh_3)₄ (90.5 mg, 78.0 µmol) were added to a 300 mL glass flask filled with N₂. Dry DMF (100 mL) was added to the flask and then the mixture was stirred at 80 °C for 2 d. After addition of water (200 mL), the precipitation was collected by the filtration. The crude product was purified by gel permeation chromatography to afford ligand **1b** as a yellow powder (345.1 mg, 0.2248 mmol, 39%) (see Supplementary Figs 23-26).

¹H NMR (500 MHz, CDCl₃, room temperature): δ 8.96-8.60 (m, 6H), 8.06-7.34 (m, 37H), 7.16-7.08 (m, 2H), 4.56-4.54 (m, 4H), 4.01-3.87 (m, 12H), 3.50-3.44 (m, 6H), 3.14-3.07 (m, 8H), 2.86-2.56 (m, 12H). ¹³C NMR (100 MHz, CDCl₃, room temperature): δ 152.4 (CH), 151.8 (C_q), 151.1 (CH), 148.9 (CH), 145.7 (C_q), 141.9 (CH), 138.9 (CH), 134.9 (C_q), 134.7 (C_q), 134.4(C_q), 134.1 (C_q), 132.8 (C_q), 132.4 (C_q), 130.6 (CH), 130.20 (C_q), 127.6 (CH), 127.2 (CH), 127.1 (CH), 126.3 (CH), 125.9 (CH), 125.5 (CH), 123.4 (CH, C_q), 72.9 (CH₂), 72.7 (CH₂), 72.1 (CH₂), 71.4 (CH₂), 59.0 (CH₃), 58.2 (CH₃). FT-IR (KBr, cm⁻¹): 2926, 2877, 2814, 1440, 1415, 1394, 1375, 1356, 1245, 1196, 1129,1104, 1068, 1025, 927, 767, 718, 650. HR MS (ESI, CH₂Cl₂:CH₃OH): *m/z* Calcd. 1557.6215, Found 1557.6214 [M + Na]⁺.

Formation of double capsule 2b

W-shaped ligand **1b** (91.8 mg, 59.8 μ mol), a DMSO- d_6 solution (50 mM) of Pd(NO₃)₂ (0.93 mL, 46.4 μ mol), which prepared *in situ* from PdCl₂(DMSO)₂ and AgNO₃, and DMSO- d_6 (4 mL) were added to a glass test tube and then the mixture was stirred at 110 °C for 12 h. The quantitative formation of double capsule **2b** was confirmed by NMR and MS analyses (see Supplementary Figs 27-33).

¹H NMR (500 MHz, $D_2O:CD_3CN = 5:1$, room temperature): $\delta 9.32$ (d, J = 5.5 Hz, 2H), 9.25 (s, 2H), 8.81 (s, 2H), 8.73 (d, J = 5.5 Hz, 2H), 8.56 (dd, J = 5.5, 5.5 Hz, 2H), 8.31 (d, J = 6.8 Hz, 2H), 8.26 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 9.0 Hz, 2H), 8.04-7.89 (m, J = 0.0 Hz, 2H), 8.04-7.89 (m, J =10H), 7.70 (dd, J = 7.5, 7.0 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.45 (dd, J = 8.0, 7.0 Hz, 2H), 7.19 (dd, J = 7.0, 7.0 Hz, 2H), 7.09-7.00 (m, 6H), 6.69 (d, J = 8.0 Hz, 2H), 6.64 (s, 2H), 5.92 (dd, *J* = 8.5, 7.5 Hz, 2H), 4.72 (br, 2H), 4.57-4.54 (m, 2H), 4.21-4.19 (m, 2H), 4.13-4.01 (m, 10H), 3.55 (s, 6H), 3.28-3.25 (m, 2H), 3.20-3.17 (m, 2H), 3.06-3.04 (m, 4H), 2.70 (s, 6H), 2.57 (s, 6H). ¹³C NMR (120 MHz, $D_2O:CD_3CN = 5:1$, room temperature): δ 151.6 (CH), 151.3 (CH, C_a), 150.4 (CH), 147.3 (CH), 144.9 (C_a), 144.0 (CH), 139.5 (C_a), 137.1 (C_a), 135.6 (C_a), 134.4 (C_a), 129.2 (CH), 128.9 (C_a), 128.8 (C_a), 128.6 (C_a), 128.4 (C_a), 128.0 (C_a), 127.7 (C_a), 127.4 (CH), 127.2 (CH), 126.5 (CH), 126.3 (CH), 124.9 (CH), 124.7 (CH), 124.0 (CH), 123.4 (CH), 122.6 (CH), 122.2 (CH), 71.8 (CH₂), 70.9 (CH₂), 69.9 (CH₂), 57.4 (CH₃), 56.4 (CH₃). DOSY NMR (500 MHz, DMSO- d_6 , 298 K): $D = 6.31 \times 10^{-11} \text{m}^2 \text{ s}^{-1}$. FT-IR (KBr, cm⁻¹): 3060, 2931, 2884, 2816, 1442, 1417, 1378, 1228, 1195, 1105, 1065, 1030, 944, 925, 886, 848, 829, 772, 707, 671, 643, 616. ESI-TOF MS (CH₃CN): m/z 1304.0 [**2b** - 5•NO₃⁻]⁵⁺, 1645.5 [**2b** - $4 \cdot NO_3^{-1}^{4+}$, 2214.7 $[2b - 3 \cdot NO_3^{-1}]^{3+}$.

Formation of (C₆₀)₂@3a, (C₇₀)₂@3b, and (Sc₃N@C₈₀)₂@3b

(C₆₀)₂@**3a.** ¹H NMR (500 MHz, DMSO, room temperature): δ 9.18 (d, *J* = 5.0 Hz, 2H), 8.67 (br, 4H), 8.51 (dd, *J* = 9.0, 5.0 Hz, 2H), 8.42 (d, *J* = 9.0 Hz, 2H), 8.30 (d, *J* = 8.0 Hz, 2H), 8.05 (br, 2H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.91-7.86 (m, 4H), 7.78 (s, 1H), 7.71-7.69 (m, 4H), 7.61-7.50 (m, 10H), 7.20 (s, 2H), 7.02 (dd, *J* = 7.5, 6.0 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.84 (s, 2H), 6.57 (br, 2H), 6.29 (d, *J* = 8.0 Hz, 2H), 4.26 (br, 4H), 4.12 (br, 4H), 3.35 (br, 4H), 3.20 (br, 4H), 2.95 (s, 6H), 2.69 (s, 6H). ESI-TOF MS (CH₃CN) of (C₆₀)₂@**3a**: *m*/*z* 1800.0 [(C₆₀)₂@**3a** − 4•NO₃⁻]⁴⁺, 2420.7 [(C₆₀)₂@**3a** − 3•NO₃⁻]³⁺.

(C₇₀)₂@**3b.** ¹H NMR (500 MHz, DMSO, room temperature): δ 9.38 (d, *J* = 5.0 Hz, 2H), 8.97 (s, 2H), 8.71 (d, *J* = 7.5 Hz, 2H), 8.60 (dd, *J* = 7.5, 5.0 Hz, 2H), 8.43-8.41 (m, 2H), 8.20 (s, 2H), 8.12 (s, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.90 (d, *J* = 8.5 Hz, 2H), 7.84 (br, 2H), 7.77 (br, 2H), 7.73 (dd, *J* = 8.5, 6.5 Hz, 2H), 7.62 (br, 2H), 7.51 (br, 6H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.89 (dd, *J* = 8.0, 7.0 Hz, 2H), 6.57 (br, 4H), 6.46 (d, *J* = 8.0 Hz, 2H), 4.36-4.28 (m, 4H), 3.96-3.86 (m, 4H), 3.82-3.74 (m, 4H), 3.71 (t, *J* = 4.0 Hz, 4H), 3.32 (s, 6H), 3.01 (t, *J* = 5.0 Hz, 4H), 2.85 (t, *J* = 4.5 Hz, 4H), 2.62 (s, 6H), 2.55 (s, 6H). ESI-TOF MS (CH₃CN) of (C₇₀)₂@**3b**: *m*/z 2008.3 [(C₇₀)₂@**3b** - 4•NO₃⁻]⁴⁺, 2698.4 [(C₇₀)₂@**3b** - 3•NO₃⁻]³⁺.

(Sc₃N@C₈₀)₂@3b. ¹H NMR (500 MHz, DMSO, room temperature): δ 9.22 (d, *J* = 5.0 Hz, 2H), 8.73 (s, 2H), 8.55 (d, *J* = 6.0 Hz, 2H), 8.46 (br, 2H), 8.39 (d, *J* = 6.0 Hz, 2H), 8.20 (br, 2H), 8.16 (br, 2H), 8.10 (d, *J* = 7.0 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.89 (br, 3H), 7.84 (br, 2H), 7.79(br, 2H), 7.76 (br, 4H), 7.58 (br, 4H), 7.49 (d, *J* = 6.0 Hz, 2H), 7.13 (br, 2H), 6.88 (d, *J* = 7.0 Hz, 2H), 6.76 (s, 2H), 6.65 (br, 2H), 6.37 (d, *J* = 8.0 Hz, 2H), 4.39 (br, 4H), 3.95-3.90 (m, 8H), 3.75 (br, 4H), 3.35 (s, 6H), 3.00 (br, 4H), 2.92 (br, 4H), 2.60 (s, 6H), 2.55 (s, 6H). ESI-TOF MS (CH₃CN) of (Sc₃N@C₈₀)₂@3b − 4•NO₃⁻]⁴⁺, 2877.7 [(Sc₃N@C₈₀)₂@3b − 3•NO₃⁻]³⁺.

Encapsulation of diamantane (4a) by 2b

Diamantane (4a; 0.8 mg, 4.0 μ mol) was added to a 100:1 D₂O:CD₃CN solution (0.6 mL) of double capsule 2b (1.5 mg, 0.22 μ mol) and the mixture was stirred at 60 °C for 3 h. The quantitative formation of a (4a/4a)@2b complex was confirmed by NMR and ESI-TOF MS analyses (see Supplementary Figs 50-52). Similarly, two molecules of *p*-cyclophane (4c) were quantitatively encapsulated within 2b to give a (4c/4c)@2b complex (see Supplementary Figs 53-55).

(4a/4a)@2b. DOSY NMR (500 MHz, D₂O:CD₃CN = 100:1, 298 K): $D = 1.32 \times 10^{-10}$ m² s⁻¹. ESI-TOF MS (H₂O:CH₃CN = 100:1): m/z 1139.1 [(4a/4a)@2b - 6•NO₃⁻]⁶⁺, 1379.3 [(4a/4a)@2b - 5•NO₃⁻]⁵⁺, 1739.6 [(4a/4a)@2b - 4•NO₃⁻]⁴⁺, 2340.1 [(4a/4a)@2b - 3•NO₃⁻]³⁺.

(4c/4c)@2b. DOSY NMR (500 MHz, D₂O:CD₃CN = 100:1, 298 K): $D = 1.26 \times 10^{-10}$ m² s⁻¹. ESI-TOF MS (H₂O:CH₃CN = 100:1): m/z 1145.8 [(4c/4c)@2b - 6•NO₃⁻]⁶⁺, 1387.3 [(4c/4c)@2b - 5•NO₃⁻]⁵⁺, 1749.6 [(4c/4c)@2b - 4•NO₃⁻]⁴⁺, 2353.5 [(4c/4c)@2b - 3•NO₃⁻]³⁺.

Encapsulation of phenanthrene (4b) by 2b

Phenanthrene (**4b**; 0.8 mg, 4.4 µmol) was added to a 100:1 D₂O:CD₃CN solution (0.6 mL) of double capsule **2b** (1.5 mg, 0.22 µmol) and the mixture was stirred at room temperature for 3 h. The formation of a (**4b**/(**4b**)₂)@**2b** complex was confirmed by NMR and ESI-TOF MS analyses (see Supplementary Figs 56-57). ESI-TOF MS (H₂O:CH₃CN = 100:1): m/z 1165.4 [(**4b**/(**4b**)₂)@**2b** - 6•NO₃⁻]⁶⁺, 1410.9 [(**4b**/(**4b**)₂)@**2b** - 5•NO₃⁻]⁵⁺, 1779.1 [(**4b**/(**4b**)₂)@**2b** - 4•NO₃⁻]⁴⁺.

Supplementary References

- 1. Rigaku CrystalStructure, Version 4.2 (2015).
- 2. Rigaku REQAB (1998).
- 3. Sheldrick, G. M. A short history of *SHELX*. Acta Cryst. A 64, 112-122 (2008).
- 4. Sheldrick, G. M. SHELXT: Integrating space group determination and structure solution. *Acta Cryst. A* **70**, C1437 (2014).
- Vandersluis, P. & Spek, L. A. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. *Acta Cryst. A* 46, 194–201 (1990).
- Spek, A. L. Structure validation in chemical crystallography. *Acta Cryst. D* 65, 148–155 (2009).