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Model Error Level Method AUC BS
J
A

K
-S

T
A

T
0%

BDEN 0.90 (0.15) 0.11 (0.11)

DEN 0.60 (0.40) 0.16 (0.06)

2.5%
BDEN 0.67 (0.15) 0.16 (0.10)

DEN 0.51 (0.32) 0.32 (0.12)

7.5%
BDEN 0.61 (0.18) 0.19(0.15)

DEN 0.50 (0.33) 0.33 (0.13)

12.5%
BDEN 0.59 (0.08) 0.26(0.16)

DEN 0.43 (0.33) 0.33 (0.13)

G
p

ro
te

in

0%
BDEN 1.00 (0.00) 0.04 (0.03)

DEN 1.00 (0.00) 0.09 (0.02)

2.5%
BDEN 1.00 (0.00) 0.05 (0.03)

DEN 1.00 (0.00) 0.01 (0.01)

7.5%
BDEN 0.96 (0.06) 0.12 (0.06)

DEN 0.76 (0.20) 0.42 (0.05)

12.5%
BDEN 0.95 (0.07) 0.15 (0.09)

DEN 0.63 (0.23) 0.46 (0.05)

U
V

-B

0%
BDEN 0.91 (0.11) 0.19 (0.06)

DEN 0.80 (0.19) 0.22 (0.08)

2.5%
BDEN 0.78 (0.11) 0.14 (0.06)

DEN 0.75 (0.14) 0.20 (0.06)

7.5%
BDEN 0.76 (0.10) 0.15 (0.04)

DEN 0.72 (0.15) 0.20 (0.06)

12.5%
BDEN 0.73 (0.11) 0.16 (0.05)

DEN 0.70 (0.19) 0.22 (0.07)

m
ot

if
s

0%
BDEN 1.00 (0.00) 0.01 (0.00)

DEN 0.90 (0.14) 0.11 (0.09)

2.5%
BDEN 1.00 (< 0.01) 0.01 (0.01)

DEN 0.93 (0.11) 0.06 (0.08)

7.5%
BDEN 1.00 (< 0.01) (< 0.01) (< 0.01)

DEN 0.93 (0.11) 0.06 (0.08)

12.5%
BDEN 0.99 (0.03) 0.01 (0.02)

DEN 0.94 (0.10) 0.06 (0.08)

Table S1: Performance of BDEN and DEN in dependence on the error of the kinetic parameter
estimates (median) for a fixed measurement noise of 2.5%. The median absolute deviations of the
AUC (ROC) and Brier scores are given in brackets.
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Percentage Hidden influences AUC BS

17% 1.00 (< 0.01) 0.02 (0.02)

33% 0.96 (0.06) 0.11 (0.09)

50% 0.86 (0.12) 0.22 (0.17)

Table S2: Performance of the BDEN in dependence on an increasing number of hidden influences
for the G protein cycle in yeast relative to the number of nodes in the nominal model (median)
for a fixed measurement noise of 2.5%. The median absolute deviations of the AUC (ROC) and
Brier scores are given in brackets.

Model Noise Class. Overall

m
is

si
n
g

in
te

ra
ct

io
n

J
A

K
-S

T
A

T 2.5% 1.00 (0.01) 0.80 (0.24)

7.5% 1.00 (0.03) 0.70 (0.30)

12.5% 0.91 (0.10) 0.70 (0.31)

G
p
ro

te
in 2.5% 1.00 (0.05) 0.71 (0.27)

7.5% 0.93 (0.09) 0.58 (0.25)

12.5% 0.85 (0.16) 0.54 (0.33)

U
V

-B

2.5% 0.93 (0.09) 0.53 (0.15)

7.5% 0.87 (0.15) 0.53 (0.09)

12.5% 0.80 (0.23) 0.50 (0.14)

Model Noise Class. Overall

w
ro

n
g

in
te

ra
ct

io
n

J
A

K
-S

T
A

T 2.5% 1.00 (0.02) 0.87 (0.19)

7.5% 0.91 (0.06) 0.85 (0.19)

12.5% 0.89 (0.12) 0.85 (0.29)

G
p
ro

te
in 2.5% 1.00 (0.01) 0.67 (0.19)

7.5% 0.92 (0.14) 0.64 (0.10)

12.5% 0.83 (0.25) 0.64 (0.18)

U
V

-B

2.5% 0.91 (0.08) 0.68 (0.20)

7.5% 0.87 (0.07) 0.61 (0.28)

12.5% 0.83 (0.13) 0.50 (0.25)

Table S3: Performance of BDEN to correctly detect and classify interactions in dependence on
the level of relative measurement noise (median AUC and MAD). The column ”Class.” reflects
the accuracy for calling a correctly detected hidden influence as ”wrong/missing stimulation” and
”wrong/missing inhibition”, respectively. In contrast, the column ”Overall” reflects the accuracy
for correctly detecting a hidden influence AND correctly classifying it as wrong/missing interaction
AND calling it correctly ”simulation” and ”inhibition”, respectively.
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Model Error Level AUC

m
is

si
n
g

in
te

ra
ct

io
n

J
A

K
-S

T
A

T 0% 1.00 (0.00)

2.5% 1.00 (0.00)

7.5% 0.83 (0.28)

12.5% 0.67 (0.44)

G
p
ro

te
in 0% 0.81 (0.19)

2.5% 0.85 (0.21)

7.5% 0.72 (0.40)

12.5% 0.68 (0.43)

U
V

-B

0% 1.00 (0.00)

2.5% 1.00 (0.00)

7.5% 0.75 (0.38)

12.5% 0.65 (0.42)

Model Error Level AUC

w
ro

n
g

in
te

ra
ct

io
n

J
A

K
-S

T
A

T 0% 1.00 (0.00)

2.5% 0.93 (0.13)

7.5% 0.92 (0.14)

12.5% 0.83 (0.28)

G
p
ro

te
in 0% 1.00 (0.00)

2.5% 0.94 (0.10)

7.5% 0.89 (0.20)

12.5% 0.76 (0.34)

U
V

-B

0% 0.81 (0.20)

2.5% 0.84 (0.22)

7.5% 0.83 (0.18)

12.5% 0.74 (0.32)

Table S4: Performance of BDEN to detect wrong and missing interactions in dependence on the
error of kinetic parameter estimates (median and MAD) for fixed measurement noise of 2.5%.
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Model Error Level Class. Overall

M
is

si
n
g

In
te

ra
ct

io
n

J
A

K
-S

T
A

T 0% 1.00 (0.01) 0.80 (0.24)

2.5% 1.00 (0.08) 0.63 (0.19)

7.5% 0.94 (0.10) 0.58 (0.23)

12.5% 0.88 (0.12) 0.57 (0.26)

G
p
ro

te
in 0% 1.00 (0.05) 0.71 (0.27)

2.5% 1.00 (0.03) 0.68 (0.32)

7.5% 0.95 (0.11) 0.67 (0.27)

12.5% 0.84 (0.13) 0.68 (0.25)

U
V

-B

0% 0.93 (0.08) 0.53 (0.15)

2.5% 0.93 (0.08) 0.52 (0.08)

7.5% 0.85 (0.11) 0.52 (0.11)

12.5% 0.78 (0.09) 0.52 (0.12)

Model Error Level Class. Overall

W
ro

n
g

In
te

ra
ct

io
n

J
A

K
-S

T
A

T 0% 1.00 (0.02) 0.87 (0.19)

2.5% 0.99 (0.05) 0.90 (0.17)

7.5% 0.99 (0.06) 0.82 (0.27)

12.5% 0.91 (0.11) 0.77 (0.31)

G
p
ro

te
in 0% 1.00 (0.01) 0.67 (0.19)

2.5% 1.00 (0.05) 0.62 (0.27)

7.5% 0.93 (0.10) 0.52 (0.34)

12.5% 0.81 (0.12) 0.48 (0.32)

U
V

-B

0% 0.91 (0.08) 0.68 (0.20)

2.5% 0.89 (0.09) 0.64 (0.18)

7.5% 0.83 (0.12) 0.61 (0.22)

12.5% 0.76 (0.16) 0.53 (0.32)

Table S5: Performance of BDEN to correctly detect and classify interactions in dependence on the
error of the kinetic parameter estimates (median AUC and MAD) for a fixed measurement noise of
2.5%. The column ”Class.” reflects the accuracy for calling a correctly detected hidden influence
as ”wrong/missing stimulation” and ”wrong/missing inhibition”, respectively. In contrast, the
column ”Overall” reflects the accuracy for correctly detecting a hidden influence AND correctly
classifying it as wrong/missing interaction AND calling it correctly ”simulation” and ”inhibition”,
respectively.

Figure S1: Reconstructing the hidden influence of the heterotrimeric G protein cycle in yeast Yi
et al. (2003). (a) The reaction graph. (b,c,d,e,f,g) Synthetic measurements (black) compared to the
posterior mean of BDEN predictions (red) including 95% credible intervals and the nominal model
(blue). (h) Estimates of the hidden influences (posterior mean) including 95% credible intervals.
(i) Estimated correlations (Corr) and cross-correlations (xCorr) of the hidden influence related to
GPα-inactive with all estimated state variables. (j) Estimated correlations and cross-correlations
of the wGPαi related to GPα-inactive with all remaining hidden influences.
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Figure S2: Reconstructing the model error for the photomorphogenic UV-B signaling (Ouyang
et al., 2014) in plants. (a) The reaction graph. (b,c,d,e) Synthetic measurements (black) compared
to BDEN predictions (posterior mean) including 95% credible intervals and the nominal model
(blue). (f) Posterior means of the hidden influences including 95% credible intervals. (g) Posterior
means of the model variables including 95% credible intervals. (h) Estimated cross-correlations
of all involved hidden influences with respect to w9. (i) Estimated cross-correlations of all state
variables with respect to w9.
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Figure S3: Reconstructing the hidden influence of the gene-regulatory network obtained from the
DREAM6 challenge Meyer et al. (2014). (a) The interaction graph of the gene regulatory net-
work including six proteins (even numbers) and related mRNAs (odd numbers). (b,c) Synthetic
measurements of the protein concentrations (black) compared to the posterior mean of BDEN
predictions (red) including 95% credible intervals and the nominal model (blue). (d) Synthetic
measurements of the mRNA level (black) compared to the posterior mean of BDEN predictions
(red) including 95% credible intervals and the nominal model (blue). (e,f,g) Synthetic measure-
ments of the protein concentrations (black) compared to the posterior mean of BDEN predictions
(red) including 95% credible intervals and the nominal model (blue). (h) Estimates of the hidden
influences (posterior mean) including 95% credible intervals. (i) Estimated correlations (Corr)
and cross-correlations (xCorr) of the hidden influence related to protein6 (w12) with all mRNAs
(x1, x3, x5, x7, x9, x11) because in the gene-regulatory network direct protein-protein interactions
are not considered Meyer et al. (2014). The highest correlation was found between protein6 (x12)
and mRNA3 (x5). Hence, the spurious inhibition of protein6 by mRNA3 was correctly detected.
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2 Details on simulation studies

Simulation of synthetic data was done as follows: First, a published ODE-based state-observation
model with respective initial conditions was employed to generate noise-free observations at 6 time
points, depending on the respective model (JAK-STAT - Section 8.4, UV-B signaling - Section 8.3,
G protein cycling - Section 8.2, network motifs - Section 8.1). Subsequently Gaussian noise with
fixed variance was added. Notably an (unrealistic) noise variance of zero is resulting into numerical
problems for the BDEN and was thus not considered.

Hidden influences were simulated by removing one (Tables 2, 3, S1, S3, S4, S5) or up to three
randomly picked (Table S2) state variables on the right hand side of the ODE system, yielding
a wrong nominal ODE system. Likewise, wrong interactions were simulated by randomly adding
one interaction on the right hand side of the ODE system. Missing interactions were simulated
by randomly removing one of the existing interactions.

Due to the randomness of the process described above we repeated all simulations a number
of times (Table S6). The exact number of repeats varies slightly to take into account the different
number of combination possibilities. ODE systems with more state variables or allow for a larger
number of possible combinations of hidden influence signals.

Table Repeats

2 450
3 400

S1 450
S2 400
S3 350
S4 400
S5 350

Table S6: Number of independent simulation repeats for each of the presented results.

3 Additive hidden inputs and model error

The assumption of an additive hidden input incorporates many different types of model errors
including parameter errors, hidden or misspecified interactions as well as inputs from exosystems.
This can be seen as follows. Assume that the true system generating the data has the form(

ẋ (t)
ż (t)

)
=

(
φ (x (t) , z (t) ,u (t))
ψ (x (t) , z (t) ,u (t))

)
(1a)

y (t) = h (x (t)) . (1b)

Here, x (t) = (x1 (t) , . . . , xN (t))
′ ∈ RN is the state vector also included in the nominal model

ẋ (t) = f (x (t) ,u (t)) (2a)

y (t) = h (x (t)) , (2b)

which represents our current knowledge or assumptions about the true system. We assume that the
output map h is exactly known and depends only on x, so (2b) and (1b) have the same form. The
exostate z (t) = (z1 (t) , . . . , zM (t))

′
in the true system (1) represents dynamic variables ignored

in the nominal model. Let us denote the solution of the true system (1a) as

ν(t) =

(
x(t)
z(t)

)
with initial condition ν(t0) =

(
x(t0)
z(t0)

)
. (3)

8



Now we compare the functions φ and f along the true state trajectory (3) and define

w(t) := ẋ(t)− f (x(t),u(t)) = φ (x(t), z(t),u(t))− f (x(t),u(t)) .

Thus,
ẋ(t) = f (x(t),u(t)) +w(t). (4)

represents the true dynamics x(t) through the nominal system f and the hidden input w(t). Note
that we have suppressed the dependence on the parameters in the notation. However, this can be
seen as part of the systems specification, i.e., as defining the properties of f , φ and ψ, respectively.
Thus, model errors can be represented by hidden (unknown) inputs.

4 Full derivation of Equation (6)

According to Zacher et al. (2012), Eq. (6) can be derived as follows:

Given yk,l

∣∣∣xl, ξ2
k,l ∼ N (yk,l |xl, 1/τk,l ) with unknown τ = 1

ξ2k,l
and τ ∼ G (α, β), we obtain

p
(
yk,l |xl, α, β

)
∝
∫
p
(
yk,l

∣∣xl, ξ2
k,l

)
× p

(
ξ2
k,l

∣∣α, β)dξ2
k,l

=

∫
N (yk,l |xl, τk,l )×G (τk,l|α, β)dτk,l

=

∫
βα

Γ (α)
τα−1 exp (−τβ)

( τ
2π

) 1
2

exp
(
−τ

2
(yk,l − hk (xl))

2
)
dτk,l

=
βα

Γ (α)

1√
2π

∫
τα+ 1

2−1 exp

−τ
(

2β + (yk,l − hk (xl))
2
)

2

dτk,l
=

βα

Γ (α)

1√
2π

Γ
(
α+ 1

2

)(
β + 1

2 (yk,l − hk (xl))
2
)α+ 1

2

=
Γ
(
α+ 1

2

)
Γ (α)

1

(2πβ)
1
2

1(
1 + 1

2β (yk,l − hk (xl))
2
)α+ 1

2
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5 Methodology

The full hierarchical model of the Bayesian elastic-net is given by (Zou and Hastie, 2005; Kyung
et al., 2010):

ωi,l
∣∣σ2, τ 2, λ2, ωi,l−1 ∼ N

(
ωi,l−1,

σ2τ2
i

λ2τ2
i + 1

)
τ 2
∣∣λ2

1 ∼
N∏
i=1

[
λ2

1,i

2
exp

(
−
λ2

1,iτ
2
i

2

)]
, τ2

1 , ..., τ
2
N > 0

λ2
1 ∼

N∏
i=1

[
δ
r1,i
1,i

Γ (r1,i)

(
λ2

1,i

)r1,i−1
exp

(
−δ1,iλ2

1,i

)]

λ2 ∼ δr22

Γ (r2)
λr2−1

2 exp (−δ2λ2)

σ2 ∼ p
(
σ2
)
, σ2 > 0.

For σ2 we chose a standard non-informative, improper and scale-invariant prior p
(
σ2
)
∝

σ−2 (Park and Casella, 2008; Kyung et al., 2010). In contrast to the variance of the measurement
noise ξl, σ

2 represents the variance of the hidden influences. The parameters λ1 and λ2 control
the sparsity and smoothness of the resulting hidden influence dynamics, respectively. Please note
that the parameter λ1 in contrast to λ2 is controlled by an additional hyper-parameter τ 2. For
l = 1 the full Bayesian elastic-net prior corresponds to a product of a Gaussian and Laplace
distribution (Zou and Hastie, 2005; Kyung et al., 2010).
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6 Sampling Algorithm

Algorithm 1: Pseudo Code

for l← 1 to T do
for s← 1 to S do

1. i← random species
wsi,tl ← wi,l−1 +N (0, J)

Accept wsi,l with probability Φ
(
ws
l

∣∣∣w(s−1)
l

)
, otherwise set wsi,l ← w

(s−1)
i,l

2. Draw σ2 ∼ inverseGamma

n
2 ,

ζ+
∑N
i=1 (wi,l−wi,l−1)2

λ2τ
2
i +1

τ2
i

2


3. Draw τ−2

i ∼ inverseGaussian

(√
λ2
1,iσ

2

ωi,l−ωi,l−1
, λ2

)
for i = 1, ..., N

4. Draw λ2
1,i ∼ Gamma

(
r1,i + 1,

τ2
i

2 + δ1,i

)
for i = 1, ..., N

5. Draw λ2 ∼ Gamma
(
r2 + n

2 ,
1

2σ2 ‖ωl − ωl−1‖22 + δ2

)

wl = 1
S

S∑
s=1

ωsl ;

xl =
∫ tl
tl−1

f (x (t′l)u (t′l)) +w (t′l) dt
′
∣∣
xl−1

, x0 = η

Φ
(
ws

l

∣∣∣w(s−1)
l

)
= min

{
1,
p (yl |xl, α, β )

p (yl |xl, α, β )
× p (xl |xl−1,w

s
l ,wl−1 )

p
(
xl
∣∣xl−1,w

s−1
l ,wl−1

) × p (ws
l |θ )

p
(
ws−1
l |θ

)}

= min

1,

K∏
i=1

(
2β + (yk,l − hk(xl))

2

2β + (yk,l − hk(xl))
2

)α+ 1
2

×
p
(
ws
l

∣∣σ2, τ 2, λ2, ωi,l−1

)
p
(
ws−1
l |σ2, τ 2, λ2, ωi,l−1

)


Step 1 is given by a Metropolis-Hastings move (Algorithm 2) with respect to J (Brooks, 1998).
Avoiding autocorrelation, the mean for wl is adapted via thinning (Gelman et al., 2013).
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Algorithm 2: Independent MH

for s′ ← 1 to S′ do
Draw I ∼ U {1, N}

Draw ω∗i=I,l ∼ N (ωi=I,l−1, J)

ω∗i6=I,l = ω
(s′−1)
i 6=I,l

if Φ

(
ws′

l

∣∣∣∣w(s′−1)
l

)
≥ α then ωs

′

i,l = ω∗i,l

else ωs
′

i,l = ω
(s′−1)
i,l

wl = 1
S′

S′∑
s′=1

ωs
′

l

7 Hyper-parameter Settings

Following an empirical Bayesian approach, α and β in the variance prior are estimated by fitting
the inverse sample variance distribution via maximum likelihood. An initial value for σ2 can be
approximated by the maximal distance between two subsequent w (tl) in the time series

max
k,l>1

(|ωi (tl)| − |ωi (tl−1)|) ∝ max
k,l>1

(∣∣∣∣d (yk (tl)− hk (x (tl)))

dtl

∣∣∣∣− ∣∣∣∣d (yk (tl−1)− hk (x (tl−1)))

dtl−1

∣∣∣∣) . (5)

We advise to include a parameter ζ to omit values next to zero for σ2, which would lead to
numerical issues. Here a good conservative choice is also given by Equation (5).

The parameter J of the candidate distribution π ∼ N (0, J) can be defined as the maximum
of the mean largest value of the approximated hidden influence with respect to the least square
error. To increase performance we suggest a burn-in phase of about 33% of the total number of
iterations, which was set to 1500×N as a compromise between computational time and sampling
quality. The number of Metropolis-Hastings moves was set to be ten times larger than the number
of Gibbs steps.

Due to the low number of measurement points and their variance we introduce the addi-
tional parameter γ ≤ 1 which means that the measurement noise is reduced by γ and ξi,l is
re-parametrized as

ξ2
i,l ∼ IG

(
α,
β

γ

)
. (6)

Since the re-parametrized variance estimator yields a sharper prior distribution, it is more
conservative.

The parameters λ1 and λ2 themselves depend on hyper-parameters, which can be set in a
non-informative manner or with respect to prior knowledge about the degree of shrinkage and
smoothness of the hidden influences (Kyung et al., 2010).
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8 Model Details

8.1 Motifs

Graphical representation of the investigated Bi-Fan motif (BF), Diamond motif (Dia), Feed-
Forward loop (FF) and the Protein cascade (PC) (Milo, 2002).

For all motifs (see Milo (2002)) we used the monotonic function

u (t) =

(
1− 1

1 + t

)
as known input stimulus and the initial condition x(0) = 0 for all state variables with t = [0, 1].
The system is assumed to be fully observable.

8.1.1 Bi-fan

ẋ1 (t) = u (t)− x1 (t)

ẋ2 (t) = u (t)− x2 (t)

ẋ3 (t) = x2 (t) + x1 (t)− x3 (t)

ẋ4 (t) = x2 (t) + x1 (t)− x4 (t)

8.1.2 Diamond

ẋ1 (t) = u (t)− x1 (t)

ẋ2 (t) = x1 (t)− x2 (t)

ẋ3 (t) = x1 (t)− x3 (t)

ẋ4 (t) = x2 (t) + x3 (t)− x4 (t)

8.1.3 Feed-forward Loop

ẋ1 (t) = u (t)− x1 (t)

ẋ2 (t) = x1 (t)− x2 (t)

ẋ3 (t) = x2 (t) + x1 (t)− x3 (t)

8.1.4 Protein Cascade

ẋ1 (t) = u (t)− x1 (t)

ẋ2 (t) =
x1 (t)

1 + x4
− x2 (t)

ẋ3 (t) = x2 (t)− x3 (t)

ẋ4 (t) = x3 (t)− x4 (t)

13



8.2 G protein signaling model

The model for the heterotrimeric G protein cycle in yeast (Yi et al., 2003) was downloaded from
the BioModels Database (Li et al., 2010) (BIOMD0000000072). The system is assumed to be fully
observable.

d([R])
dt = −

(
3.32e−18

)
[L]const. [R] + 0.01 [RL]− 4− 0.0004 [R]

d([GPi])
dt = [GPαi] [GPβ ]−

(
1e−05

)
[RL] [GPi]

d([GPβ ])
dt = − [GPαi] [GPβ ] +

(
1e−05

)
[RL] [GPi]

d([GPαi ])
dt = − [GPαi] [GPβ ] + 0.11 [GPα]

d([GPα])
dt =

(
1e−05

)
[RL] [GPi]− 0.11 [GPα]

d([RL])
dt =

(
3.32e−18

)
[L]const. [R]− 0.01 [RL]− 0.004 [RL]

The initial conditions are given by

[R]0 = 100 item\l; [GPαi]0 = 30 item\l;
[GPi]0 = 70 item\l; [GPα]0 = 0 item\l;
[GPβ ]0 = 30 item\l; [RL]0 = 0 item\l;

[L]const. = 0.02 item\l,

and t = [0, 25].
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8.3 UV-B Network model

The model equations for the UV-B signaling network (Ouyang et al., 2014) were obtained from
the BioModels Database (Li et al., 2010), see BIOMD0000000545.

d [CS]

dt
=− 2 · ka1 · [CS]

2 · [UVR8M]
2

+ 2kd1 · [UCS]

+ ks1 · (1 + UV · n3 · ([HY5] + FHY 3))

− kdr1 · (1 + (n1 · UV )) · [CS]− kd2 · [CDCS]

− 2 · ka2 · [CS]
2 · [CD]

d [CD]

dt
=− ka2 · [CS]

2 · [CD] + kd2 · [CDCS]

+ ka4 · [CD] · [DWD] + kd4 · [CDW]

d [CDCS]

dt
=− kd2 · [CDCS] + ka2 · [CS]

2 · [CD]

d [UVR8M]

dt
=− 2 · k1 · [UVR8M]

2
+ 2 · k2 · [UVR8D]

− 2 · ka1 · [CS]
2 · [UVR8M]

2
+ 2 · kd1 · [UCS]

− ka3 · [UVR8M] · [RUP]

d [UCS]

dt
=− kd1 · [UCS] + ka1 · [CS]

2 · [UVR8M]
2

d [UVR8D]

dt
=− k2 · [UVR8D] + k1 · [UVR8M]

2
+ kd3 · [UR]

2

d [RUP]

dt
=− ka3 · [UVR8M] · [RUP] + ks2 · (1 + UV · [UCS])

− kdr2 · [RUP] + (2) · kd3 · [UR]
2

d [UR]

dt
=− 2 · kd3 · [UR]

2
+ ka3 · [UVR8M] · [RUP]

d [HY5]

dt
=− kdr3 ·

(
[CDCS]

kdr3a + [CDCS]
+

[CDW]

kdr3b + [CDW]

)
· [HY5]

+ ks3p · (1 + n2 · UV )− kdr3 ·
(

[UCS]

ksr + [UCS]

)
· [HY5]

d [DWD]

dt
=− ka4 · [CD] · [DWD] + kd4 · [CDW]

d [CDW]

dt
=− kd4 · [CDW] + ka4 · [CD] · [DWD]

UMTotal = 2 · [UCS] + [UVR8M] + [UR]

COP1Total = 2 · [UCS] + 2 · [CDCS] + [CS]

UV R8Dobs. = [UVR8D]

HY 5obs. = [HY5]

UV R8Mobs = [UVR8M]

[CS] = x1; [UVR8M] = x4; [RUP] = x7; [DWD] = x10;

[CD] = x2; [UCS] = x5; [UR] = x8; [CDW] = x11;

[CDCS] = x3; [UVR8D] = x6; [HY5] = x9
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The initial conditions are given by

[CS]0 = 0.2mol [RUP]0 = 0mol

[CD]0 = 10mol [UR]0 = 0mol

[CDCS]0 = 2mol [HY5]0 = 0.25mol

[UVR8M]0 = 0mol [DWD]0 = 20mol

[UCS]0 = 0mol [CDW]0 = 0mol

[UVR8D]0 = 20mol,

and t = [0, 6].

8.4 JAK-STAT model

The measurements for the JAK-STAT system were obtained from http://webber.physik.uni-freiburg.de/
˜jeti/PNAS Swameye Data. Mass conservation was accounted for by the constraint 2x4(t) +
2x3(t) + x1(t) + x2(t) = const. for all t (Swameye et al., 2003; Raue et al., 2009). The nominal
model is given by (Swameye et al., 2003):

ẋ1 = −ψ1x1u

ẋ2 = ψ1x1u− 2ψ2x
2
2

ẋ3 = ψ2x
2
2 − ψ3x3

ẋ4 = ψ3x3

y2 = ψ5 (x1 + x2 + 2x3)

y1 = ψ4 (x2 + 2x3)

u = Erythropoietin Receptor

x1 = STAT5

x2 = STAT5p

x3 = STAT5di

x4 = STAT5n

y1 = total STAT5

y2 = total STAT5p,

and t = [0, 60].
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8.5 Model of information processing at EpoR

The Model of the information processing at EpoR was obtained from Becker et al. (2010). Data
was obtained from dMod.

ẋ1 =kt ·Bmax − kt · x1 − kon · x1 · x2 + koff · x3 + kex · x4

ẋ2 =− kon · x1 · x2 + koff · x3 + kex · x4

ẋ3 =kon · x1 · x2 − koff · x3 − ke · x3

ẋ4 =ke · x3 − kex · x4 − kdi · x4 − kde · x4

ẋ5 =kdi · x4

ẋ6 =kde · x4

y2 =ψ1 (x2 + 2x6)

y1 =ψ2 (x3)

y3 =ψ3 (x4 + x5)

x1 = EpoR

x2 = Epo

x3 = Epo-EpoR

x4 = Epo-EpoRi

x5 = dEpoi

x6 = dEpoe

y1 = Epo concentration in medium

y2 = Epo concentration on surface

y3 = Epo concentration in cells,

and t = [0, 300].

8.6 Model of a-Pinene isomerization

The model of the thermal isomerization of a-Pinene in the liquid phase was obtained from Fuguitt
and Hawkins (1947).

ẋ1 =− (p1 + p2) · x1

ẋ2 =p1 · x1

ẋ3 =p2 · x1 − (p3 + p4) · x3 + p5 · x4

ẋ4 =p4 · x3 − p5 · x4

x1 = a-Pinene

x2 = Dipentene

x3 = Dimer

x4 = allo-ocimene,

and t = [0, 25].
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8.7 Gene-regulatory network

The gene-regulatory network was obtained from DREAM6 challenge Meyer et al. (2014). For
further information about this challenge we refer the reader to the DREAM6 challenge.

ẋ1 =pro1strength −mrna1degradation−rate · x1

ẋ2 =rbs1strength · x1 − pdegradation−rate · x2

ẋ3 =pro2strength ·

(
x1

v2Kd

)v2h

1 +
(

x2

v2Kd

)v2h
· 1

1 +
(

x6

v5Kd

)v5h
−mrna2degradation−rate · x3

ẋ4 =rbs2strength · x3 − pdegradation−rate · x4

ẋ5 =pro3strength ·

(
x1

v3Kd

)v3h

1 +
(

x2

v3Kd

)v3h
· 1

1 +
(

x2

v4Kd

)v4h
−mrna3degradation−rate · x5

ẋ6 =rbs3strength · x5 − pdegradation−rate · x6

ẋ7 =pro4strength ·

(
x1

v1Kd

)v1h

1 +
(

x2

v1Kd

)v1h
· 1

1 +
(

x5

v8Kd

)v8h
−mrna4degradation−rate · x7

ẋ8 =rbs4strength · x7 − pdegradation−rate · x8

ẋ9 =pro5strength ·
1

1 +
(

x4

v6Kd

)v6h
−mrna5degradation−rate · x9

ẋ10 =rbs5strength · x9 − pdegradation−rate · x10

ẋ11 =pro6strength ·
1

1 +
(

x4

v7Kd

)v7h
−mrna6degradation−rate ∗ x11

ẋ12 =rbs6strength · x11 − pdegradation−rate · x12

y1 = pp1mrna

y2 = p1

y3 = p2

y4 = p3

y5 = p4

y6 = p5

y7 = p6

x1 = pp1mrna

x2 = p1

x3 = pp2mrna

x4 = p2

x5 = pp3mrna

x6 = p3

x7 = pp4mrna

x8 = p4

x9 = pp5mrna

x10 = p5

x11 = pp6mrna

x12 = p6

The initial conditions for the proteins p1 to p6 were set to 1 and, for all mRNA species, pp1mrna

to pp6mrna were set to 0. The observation period is given by t = [0, 20].
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