Cell Reports, Volume 19

# **Supplemental Information**

# **Definition of a High-Confidence**

# **Mitochondrial Proteome at Quantitative Scale**

Marcel Morgenstern, Sebastian B. Stiller, Philipp Lübbert, Christian D. Peikert, Stefan Dannenmaier, Friedel Drepper, Uri Weill, Philipp Höß, Reinhild Feuerstein, Michael Gebert, Maria Bohnert, Martin van der Laan, Maya Schuldiner, Conny Schütze, Silke Oeljeklaus, Nikolaus Pfanner, Nils Wiedemann, and Bettina Warscheid



# Figure S1. Illustration of experimental strategies employed for the determination of the mitochondrial proteome and the detailed characterization of individual mitochondrial proteins by quantitative MS Related to Figure 1

(A) Crude and gradient-purified mitochondrial fractions, prepared from differentially light (Arg0/Lys0) and heavy (Arg10/Lys8) SILAC-labeled yeast cells, were mixed in equal ratio and subsequently analyzed by LC-MS either directly without (w/o) fractionation or following various peptide and protein fractionation techniques such as high pH reversed-phase chromatography (pH 10 RP), strong cation exchange chromatography (SCX), and SDS-PAGE using Bis-Tris gradient and Tricine gels. For enzymatic protein digestion, trypsin (Tryp.), LysC, GluC, chymotrypsin (Chym.), and AspN were used as indicated. The experiment, referred to as 'pure/crude experiment', was performed in four independent biological replicates (including a label-switch). SILAC-based protein quantification and subsequent data analyses facilitated the definition of a mitochondrial core proteome.

(B) For a proteome-wide absolute quantification of yeast proteins grown on different carbon sources, a triple SILAC approach was applied. Cells were cultivated in the presence of glucose, galactose, or glycerol and either labeled with light (Arg0/Lys0), medium-heavy (Arg6/Lys4), or heavy (Arg10/Lys8) amino acids. Whole cell lysates were mixed in equal ratios, proteins were digested with trypsin (Tryp.) and peptides were fractionated by pH 10 RP followed by quantitative LC-MS analysis. The experiment, referred to as 'absolute quantification experiment', was performed in three independent biological replicates including a label-switch. Absolute protein quantification was based on the MS intensities determined by MaxQuant for light, medium-heavy, and heavy SILAC-labeled proteins following the proteomic ruler strategy (Wiśniewski et al., 2014).

(C) To globally profile submitochondrial protein localizations, protease accessibility assays were performed. Gradient-purified mitochondria isolated from differentially SILAC-labeled cells were either treated with proteases (i.e., trypsin and proteinase K) only (S1), digitonin and proteases (S2), or Triton X-100 (TX-100) and proteases (S3). Samples S1 - S3 were mixed with equal amounts of untreated mitochondria (M) serving as reference. Proteins were separated by SDS-PAGE, in-gel digested with trypsin, and analyzed by quantitative MS. The experiment, referred to as 'submitochondrial profiling experiment', was performed in three independent biological replicates including a label-switch.

(A - C) Further information given for each experimental strategy: duration of each LC-MS run and the number (#) of fractions obtained for the indicated sample processing method or LC-MS runs per replicate.



Figure S2

# Figure S2. Evaluation of the sample processing regime, protein identification and quantification of pure/crude experiments

#### **Related to Figure 2**

(A) Number of protein groups identified in individual replicates following different sample fractionation protocols (I - IX; see also Fig. S1A, Tables S2B and S2C) and in total. Proteins were analyzed by LC-MS either without fractionation (I) or following gel electrophoresis using TrisTricine (II) and BisTris (III) gels, high pH reversed-phase chromatography of tryptic peptides (IV), or strong cation exchange chromatography (SCX) of peptides derived from tryptic (V), LysC (VI), GluC (VII), chymotryptic (VIII), and AspN (IX) digests. Red, mitochondrial proteins according to GO cellular component annotations; light grey, other proteins; Rep, replicate.

(B) Overlap of protein groups identified in tryptic, LysC, GluC, chymotryptic, and AspN digests (left) and impact of the protease(s) chosen for proteolytic digestion on sequence coverage and the number of protein groups identified (right). All samples were analyzed by SCX (V - IX in [A]).

(C) Cartoons illustrating the sequence coverage of individual components of the TIM23 complex identified in pure/crude experiments by SCX following proteolytic digestion with trypsin only (V in A; left) or a multi-protease digestion approach using trypsin, LysC, GluC, chymotrypsin, and AspN (V - IX in A; right). IMS, intermembrane space.

(D) Overlap of proteins identified in pure/crude experiments in this study and in previous studies targeting the mitochondrial proteome of *S. cerevisiae*. Numbers in parentheses indicate the number of proteins identified in this study, by (Ohlmeier et al., 2004) and (Prokisch et al., 2004), and the number of proteins present in the ePROMITO list comprising mitochondrial proteins reported by (Reinders et al., 2006) (global mitochondrial proteome), (Zahedi et al., 2006) (mitochondrial outer membrane proteome), and (Vögtle et al., 2012) (mitochondrial intermembrane space proteome). See also Table S2B.

(E) Overview of proteins reported to be mitochondrial in the studies shown in (D) that were not identified in this study in pure/crude experiments. Proteins were classified according to the category of annotation as mitochondrial protein in the SGD, i.e. manually curated, high-throughput (lacking firm evidence for a mitochondrial localization), computational prediction, or none. In case the annotation was based on more than one category, the protein was assigned to the category with the highest reliability (manually curated > high-throughput > computationally predicted).

(F) Multiscatter plot showing the reproducibility of protein quantification between four independent replicates. Protein abundance ratios (pure/crude) calculated for individual replicates were log<sub>2</sub>-transformed and plotted against each other. Values in the upper left corner indicate the Pearson correlation coefficient between replicates. Rep, replicate.

(G) Overlap of proteins quantified in four individual replicates.

(H) Histogram and density curve visualizing the distribution of protein abundance changes between pure and crude mitochondria. Shown are the mean of  $\log_2$ -transformed pure/crude ratios (n = 4) of proteins quantified in all replicates with at least two fractionation methods. The data show a bimodal distribution, as indicated by the density curves (solid blue and black dotted lines), with distribution center d1 at a mean  $\log_2$  ratio of -1.47 and d2 at 0.31. For each protein it was tested, to which distribution it belongs using an equivalence test (p value < 0.01). All proteins with inconclusive classification, i.e. proteins that belonged to neither of the distributions according to the equivalence test, were further analyzed employing a two-sample two-sided t test (p value < 0.01). Statistical analysis resulted in the definition of four distinct classes as shown in Fig. 2D. For more details about the statistical analysis, refer to Supplemental Experimental Procedures.

(I) Additional data filter criteria on class 1 proteins. To exclude low abundant non-mitochondrial contaminants that co-migrated with mitochondria in sucrose density gradients from our mitochondrial core proteome, we disregarded all proteins with a standard deviation of > 0.75 of log<sub>2</sub> pure/crude ratios across all replicates and a sequence coverage of  $\leq$  20%. The ratio-intensity plot (top) shows the distribution of class 1 proteins after filtering (see also Fig. 2D). Information about subcellular localizations were derived from GO cellular component annotations (Table S2B). Non-mito, class 1 proteins without previous association with mitochondria or mitochondrial subcompartments.



#### Figure S3. Assessment of proteome-wide absolute quantification experiments

#### **Related to Figure 3**

(A) Multiscatter plot showing the reproducibility of protein abundance ratios determined in three biological replicates of proteome-wide absolute quantification experiments. Abundance ratios were determined based on triple SILAC experiments (with label-switch) for proteins extracted from cells grown on galactose versus glucose (gal/glc, top row), glycerol versus glucose (gly/glc, middle row), and glycerol versus galactose (gly/gal, bottom row) (see Table S2E). Log<sub>2</sub>-transformed ratios of individual replicates were plotted against each other. Values in the upper left corner of each plot indicate the Pearson correlation coefficient between replicates. MS intensities for light, mediumheavy, and heavy labeled proteins of this experiment were used to calculated absolute protein copy numbers for all three carbon sources according to the proteomic ruler strategy (Wiśniewski et al., 2014). Rep, replicate. (B) Comparison between protein copy numbers determined in this study and copy numbers reported in previous global proteome studies of S. cerevisiae. Copy numbers determined in our study for proteins from cells grown on glucose were compared with data previously published by (Ghaemmaghami et al., 2003), (Chong et al., 2015), and (Kulak et al., 2014) (see Table S2D). The calculation of protein copy numbers in these studies was based on Western blot analyses, single cell imaging, and the 'Total Protein Approach' (Wiśniewski et al., 2012), respectively. Values in the upper left corner of the scatter plots indicate the Pearson correlation coefficient between the data of the studies. (C) Distribution of estimated copy numbers per cell determined for mitochondrial and non-mitochondrial (Non-mito) proteins extracted from yeast grown on glucose (Glu), galactose (Gal) and glycerol (Gly). Classification of proteins as non-mitochondrial, exclusively mitochondrial (Mito only) or mitochondrial and other subcellular localizations (multiply loc.) was based on GO cellular component annotations (see Table S1).

(D) K-means clustering of proteins with altered expression in yeast grown on galactose or glycerol in relation to glucose. Bar chart indicates the number of proteins per cluster. \*, clusters in which mainly mitochondria-related terms are enriched as determined in (E).

(E) GO term enrichment analysis. For clusters C07-C14, no GO term was significantly enriched. Cyto., cytochrome; SDH, succinate dehydrogenase; TM, transmembrane.

(F) Biochemical confirmation of carbon source-dependent effects on mitochondrial protein expression levels revealed by MS-based copy number estimation. Mitochondria were isolated from YPH499  $\Delta arg4$  cells that were grown in the presence of the different carbon sources glycerol, glucose or galactose in SILAC medium. 10, 20, and 40 µg of mitochondria (protein amount) were lysed, subjected to SDS-PAGE and analyzed by immunoblotting. For direct comparison, immunoblot results are shown together with the corresponding copy numbers. Mito, mitochondria.

(G) Percentage of total protein copy numbers per cell determined for all mitochondrial proteins and mitochondrial proteins of distinct submitochondrial categories quantified in cells grown on different carbon sources as indicated.

Mito, mitochondrial; OM/IM, mitochondrial outer/inner membrane; IMS, intermembrane space; Mito DNA and RNA, associated with mitochondrial DNA and RNA biology; Fe/S biog., iron-sulfur cluster biogenesis.

| A Dpi8            |                                   | Fvv4         | Fmp33                                          | Fmp16                            | Lcl3                     | Mco12<br>(Ykl018c-a)            | Mco76<br>(Ypl109c)           | Mlo1<br>(Ymr252c                        | (Ylr281c          | ) Sfh5                                               |
|-------------------|-----------------------------------|--------------|------------------------------------------------|----------------------------------|--------------------------|---------------------------------|------------------------------|-----------------------------------------|-------------------|------------------------------------------------------|
| 3.10              |                                   | 6.050        | 52                                             |                                  |                          |                                 |                              |                                         |                   |                                                      |
| B<br>Aim1         | <mark>Dpi29</mark><br>1 (Ynr040w) | Fsf1         | <mark>lai11</mark><br>(Ybl059w)                | <mark>Mco6</mark><br>(Yjl127c-b) | Mrx11                    | <mark>Rci37</mark><br>(Yil077c) | Rci50<br>(Ykl133c)           | Tmh11<br>(Yjr085c)                      | Tmh18<br>(Ypr098c | <b>C</b><br>:) Tom5                                  |
| 02<br>6<br>6      |                                   | 20 B 000     | 10,00                                          | 1000<br>1000<br>1000             | 320                      | 1. 56                           | 100 0<br>000 0<br>000 0      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 100               | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                |
| D                 | Aim11 <sub>ProtA</sub>            | Coq          | SN 001<br>M 1001<br>21 <sub>ProtA</sub> (Ybr23 | 0w-a) C                          | Mito ProtA               | 0<br>2<br>5<br>Ylr307c-a)       | SNA<br>Dpc7 <sub>Prot/</sub> | 0012 0015<br>(Ykl065w-a)                | ) Dpc1            | 2 0 0 0 0<br>₩ 6 0<br>3 <sub>ProtA</sub> (Ygl041w-a) |
| ProtA_            |                                   | ProtA-       |                                                | ProtA-                           |                          | Pro                             | otA-                         |                                         | ProtA -           | •                                                    |
| Iom/0 –<br>Pgk1 – |                                   | Sss1-        |                                                | - Sss1                           |                          | Ss                              | s1_                          |                                         | Sss1 -            | and the second second                                |
| 0                 |                                   | Pgk1 –       |                                                | Pgk1 -                           | y ·                      | — 🖵 Pg                          | k1 – 🥌                       |                                         | Pgk1 –            |                                                      |
| C                 | 0pc25 <sub>ProtA</sub> (Ypl107w   | ) Dp         | c29 <sub>ProtA</sub> (Ygr02                    | 21w)                             | Dpi8 <sub>ProtA</sub> (Y | jl133c-a)                       | Dpi29 <sub>Pro</sub>         | (Ynr040w)                               | Dpi3              | <sup>34</sup> ProtA(Yor114w)                         |
| ProtA –           | ==                                | ProtA -      |                                                | ProtA-                           |                          | Pro                             | otA                          | -                                       | ProtA –           |                                                      |
| Sss1 -            |                                   | Sss1-        |                                                | - Sss1                           | ~                        | Ss                              | s1_                          |                                         | Sec61 -           | -                                                    |
| Pgk1 –            |                                   | Pgk1-        | U                                              | Pgk1 -                           |                          | Pg                              | k1 – 🦳                       |                                         | Pgk1 -            | -                                                    |
| D                 | pi35 <sub>ProtA</sub> (Ymr130w    | /)           | Ecm19 <sub>ProtA</sub>                         |                                  | Fmp16                    | ProtA                           | Fy                           | v4 <sub>ProtA</sub>                     | lai11             | ProtA(Ybl059w)                                       |
| ProtA-            |                                   | ProtA-       |                                                | ProtA-                           | +-                       | Pro                             | otA – 🗕 –                    | •                                       | ProtA – 🐱         |                                                      |
| Tom70 –           | -                                 | Tom70 –      |                                                | Tom70 -                          |                          | Tom                             | 70                           |                                         | Tim10 –           | 1000                                                 |
| Sss1 –            |                                   | Sss1-        | C Ritter                                       | Sss1 -<br>Pak1                   | 5                        | Ss<br>Pa                        | s1 –<br>k1 –                 |                                         | Sec61 -           |                                                      |
| Pgk1 –            | ) _)                              | Pgk1 –       | v v                                            | - I gki-                         |                          |                                 |                              |                                         | i gki –           | -                                                    |
| N                 | Aco8 <sub>ProtA</sub> (Yil156w-b  | ) Mco        | 10 <sub>ProtA</sub> (Yor02                     | 0w-a) M                          | co13 <sub>ProtA</sub> (\ | /dr381c-a)                      | Mco14 <sub>Pro</sub>         | otA(Yhl018w)                            | Mco               | 32 <sub>ProtA</sub> (Ygr053c)                        |
| ProtA_            | -                                 | ProtA-       | 1-                                             | ProtA-                           |                          | Pro                             | otA                          |                                         | ProtA –           |                                                      |
| Sss1-             |                                   | Sss1-        |                                                | Tom70 -                          | -                        | Ss                              | s1 – 🦱 –                     |                                         | 1om/0 -<br>Sss1 - |                                                      |
| Pgk1 –            |                                   | Pgk1 –       |                                                | Sss1 -<br>Pak1 -                 |                          | Pg                              | k1 – 🧡                       |                                         | Pgk1 – 🥿          |                                                      |
| N                 | 1gp12 <sub>ProtA</sub> (Ydr286c   | c) Mir       | 14 <sub>ProtA</sub> (Yml007                    | 7c-a)                            | Min6 <sub>HA</sub> (Yb   | l039w-b)                        | Min7 <sub>Prot4</sub>        | (Ybr201c-a)                             | Min8              | Prota(Ypr010c-a)                                     |
| ProtA_            |                                   | ProtA-       |                                                | HA-                              |                          | Pro                             | otA-                         |                                         | ProtA_            |                                                      |
| Tom70 -           | 10000 -                           | Tom70 –      |                                                | Tom70 -                          |                          | Tom                             | 70 – 🗕 –                     | -                                       | Tom70 –           |                                                      |
| SSS1 -<br>Pak1 -  |                                   | Sss1-        | ····                                           | Sss1 -                           | -                        | Ss                              | s1 –                         |                                         | Sss1-             | n                                                    |
| . 9               |                                   | Рдк1 –       |                                                | Pgk1 -                           | -                        | Pg                              | KI                           |                                         | Pgk1 – 🛏          |                                                      |
|                   | Min9 <sub>HA</sub> (Yki023c-a)    | Mir          | 110 <sub>ProtA</sub> (YfrU3                    | 2c-b)                            | MIO1 <sub>ProtA</sub> (Y | /mr252c)                        | MI050 <sub>Pr</sub>          | otA(YIr049C)                            | Drot              | Mtc3 <sub>ProtA</sub>                                |
| HA-<br>Tom70      |                                   | ProtA –      |                                                | Tom70 -                          |                          | Pro                             | otA-                         |                                         | Tom70 -           | -                                                    |
| Sec61 -           |                                   | Sec61        |                                                | Sss1-                            | ~                        | Ss                              | 70 –<br>s1 –                 | -                                       | Sss1 – 💊          | . ~                                                  |
| Pgk1 –            |                                   | Pak1 -       |                                                | Pgk1 -                           | <b>U</b>                 | - 🛩 Pg                          | k1 – 🏒 –                     |                                         | Pgk1 – 🥿          | ,                                                    |
|                   | Nce101                            | R            | ci37 <sub>Dect4</sub> (Yil07                   | 7c)                              | Rci50 <sub>Pret</sub>    | Ykl133c)                        | Rd                           | ll2 <sub>Drat</sub>                     |                   | Rrg9 <sub>Pret</sub>                                 |
| HA_               |                                   | ProtA-       | PIOLA                                          | <br>ProtA -                      | PIOLA                    | ′ Pro                           | otA-                         |                                         | ProtA –           |                                                      |
| Tom70 –           |                                   | Tom70 -      |                                                | Tom70 -                          |                          | Tom                             | 70                           |                                         | Tom70 –           |                                                      |
| Sss1 –            |                                   | Sss1-        | A press aller                                  | Sss1 -                           |                          | Ss                              | s1 –                         |                                         | Sss1 –            | a series and the series                              |
| Pgk1 –            | Y Y                               | 1 9KI -      |                                                | i yki-                           | -                        | Fy                              |                              |                                         | Pgk1 –            |                                                      |
| F                 | Rso55 <sub>ProtA</sub> (Ylr281c)  | ) <b>T</b> n | h11 <sub>ProtA</sub> (Yjr0                     | 85c)                             | Tmh18 <sub>ProtA</sub>   | (Ypr098c) <b>E</b>              | Cmi7 <sub>Prot</sub>         | <sub>A</sub> (Yil002w-a)                |                   | B <sub>ProtA</sub> (Ydr461c-a)                       |
| ProtA-            | -                                 | ProtA –      |                                                | ProtA-                           |                          | Pr                              | otA-                         | and the second                          | ProtA-            | -                                                    |
| Tom70 -           |                                   | Sss1-        |                                                | Sss1-                            |                          | Tom                             | 1/0 -                        | ==                                      | Sss1 -            |                                                      |
| Pgk1 –            |                                   | Pgk1 –       |                                                | Pgk1 -                           | <u> </u>                 | Pr                              | os I – 🥌                     |                                         | Pgk1 –            |                                                      |
| -                 |                                   |              |                                                |                                  |                          | . :                             |                              |                                         |                   |                                                      |

Figure S4

# Figure S4. Fluorescence microspopy and biochemical subcellular localization analysis of mitochondrial proteins

#### **Related to Figure 4**

(A-C) Fluorescent images of yeast cells expressing N' GFP-tagged proteins. Scale bar, 5 µm.

(D) Subcellular fractionation of yeast cells as described in Figure 4E. This supplementary figure shows the

fractionations from Figure 4E with the appropriate controls plus further experiments.

(E) Fractionation of two uncharacterized proteins that do not localize to mitochondria. Cmi7 has a negative mean  $\log_2$  ratio (pure/crude) and Cmi8 was not quantified.

PNS, post-nuclear supernatant; Mito, mitochondrial fraction; P100, microsomal fraction; S100, cytosolic fraction; MloX, Mitochondrially localized protein; CmiX, Cytosolic mini protein of ~X kDa.



Figure S5

#### Figure S5. MS-based subcellular localization analysis of mitochondrial proteins

#### **Related to Figure 4**

(A, B) Ratio-intensity plots as shown in Figures 4A and 4B highlighting individual proteins from Tables S4A and S4B. Bar charts represent from left to right the mean of normalized MS intensities of the indicated proteins for total cell lysate, the post mitochondrial supernatant, the mitochondrial fraction and gradient-purified mitochondria of wild-type yeast analyzed by LC-MS as shown in Figure 4E. Error bars indicate SEM for  $n \ge 3$  and the range for n = 2 (see Table S2A).



#### Figure S6. Submitochondrial profiling experiments

#### **Related to Figure 5**

(A) Multiscatter plots showing the reproducibility of protein abundance ratios across three biological replicates of MS-based global submitochondrial profiling experiments. Gradient-purified mitochondria (M) isolated from light or heavy SILAC-labeled yeast were mixed in equal ratio with mitochondria (S1), mitoplasts (S2) or lysed mitochondria (S3) that had been treated with proteases and were obtained from differentially SILAC-labeled yeast. Samples of three independent replicates were analyzed by SDS-PAGE followed by quantitative MS analysis (see Fig. S1C). For each of 24 gel slices per replicate, protein abundance ratios (S/M) were determined (Table S2H). For each protein quantified, the ratio of the slice with the highest MS intensity for M is plotted (Table S2G). Values in the upper left corner indicate the Pearson correlation coefficient between replicates. Rep, replicate.

(B) Western blots from Figures 5E and 5F together with the respective controls. Tom70, outer membrane protein; Tim10, intermembrane space protein; Tim23, intermembrane space-exposed inner membrane protein; Tim44, matrix protein peripherally attached to the inner membrane; Isd11, soluble matrix protein.

(C) Triton X-100 controls for indicated proteins. WT (for analysis of Tcd2, Pth2, Tim44) or Protein A-tagged strains were treated with 1% Triton X-100 in SEM buffer and incubated for 7 minutes on ice. Where indicated, samples were subjected to proteinase K (Prot. K) treatment at a final concentration of 7  $\mu$ g/mL for 15 minutes. Samples were subjected to SDS-PAGE and analyzed by immunoblotting. Tim44, matrix protein.

(D) Overlap of proteins identified in this study to be associated with the mitochondrial outer membrane (OM; left) or exposed to the intermembrane space (IMS; right) with previous proteomics studies targeting these submitochondrial proteomes. Numbers in parentheses indicate the number of proteins assigned to OM or IMS in our study or the work published by Zahedi et al. (2006) and Vögtle et al. (2012), respectively. Our study targets OM proteins exposed to the cytosol; Zahedi et al. (2006) detected OM proteins and a number of (precursor) proteins that are destined for internal mitochondrial compartments. Our study of IMS/IM includes soluble IMS proteins and membrane proteins (mostly of the inner membrane, IM) exposed to the IMS, whereas Vögtle et al. (2012) mainly analyzed soluble IMS proteins (and loosely membrane-attached proteins).



#### Figure S7. Mitochondrial protein interaction networks

#### **Related to Figure 7**

(A) Assembly of [ $^{35}$ S]-labeled mitochondrial proteins into high molecular weight complexes. The radiolabeled precursors were mixed with isolated mitochondria and incubated for 45 min at 30°C in the presence ( $+\Delta\psi$ ) or absence ( $-\Delta\psi$ ) of the membrane potential. Where indicated, mitochondria were subjected to proteinase K (Prot. K) treatment after import.

(B) SILAC mitochondria isolated from wild-type (WT) and Yor020w-a<sub>ProtA</sub> yeast strains were solubilized with 1% digitonin and subjected to IgG affinity chromatography, followed by elution of proteins specifically bound to Yor020w-a<sub>ProtA</sub> using TEV protease. Top, Ratio-versus-ratio plot visualizing the Mco10 (Yor020w-a) interaction network. Data were obtained in q-AP-MS experiments using Protein A-tagged Mco10 (Yor020w-a) as bait (Table S2J). Bottom, Samples were analyzed by SDS-PAGE and immunoblotting using the indicated antisera. Load, 0.5%; Elution, 100%.

(C) Reciprocal interaction networks of Iai11 (left) and its interaction partner Aim11 (right) obtained in q-AP-MS experiments of Protein A-tagged baits (Table S2J).

(D) Left (lanes 1-4), radiolabeled Tmh11 precursor was imported into isolated wild-type (WT) mitochondria. [ $^{35}$ S]Tmh11 was incubated with the reaction buffers for 10 min at 25°C followed by centrifugation for 10 min at 14,000 rpm. Import was started by the addition of 60 µg of mitochondria to pre-incubated samples and import reaction was allowed to proceed for the indicated time points at 25°C. Where indicated (- $\Delta\psi$ ), membrane potential was dissipated. Non-imported precursor was digested by the addition of proteinase K. Samples were analyzed by Blue-Native electrophoresis followed by autoradiography. Right (lanes 5-12), mitochondria from wild-type (WT) and <sub>HA</sub>Tmh11 were solubilized with 1% digitonin and incubated with anti-HA affinity matrix. After washing, a denaturing elution was performed and samples were subjected to SDS-PAGE and immunoblotting using antisera directed against the indicated proteins Load, 2%; Elution, 100%. Bottom, Sequence alignment of Tmh11 and the transmembrane protein 14A family members of higher eukaryotes. The conserved GxxxG transmembrane domain interaction motives are highlighted.

**Table S4. Mitochondrial proteins identified and validated in this study. Related to Figures 1 and 4.** (A) List of identified mitochondrial proteins that were not assigned to mitochondria previously. (B) List of mitochondrial proteins with annotation inferred from high-throughput studies without further verification. Proteins in bold were subjected to additional experimental validation of their mitochondrial localization (outlined in Figures 4, 5, 6, 7, S4, S5, S6, S7 plus Table S7 and summarized in Table S6). Coq21, COQ interacting protein; Dpa10, Delta-Psi dependent mitochondrial assembly, protein of 10 kDa; DpcX, Delta-psi ( $\Delta \psi$ )-dependent import and cleavage, protein of ~X kDa; DpiX, Delta-psi ( $\Delta \psi$ )-dependent import, protein of  $\sim$ X kDa; lai11, Interactor of Aim11; Mgp12, Mitochondrial glutaredoxin-like protein of 12 kDa; McoX, Mitochondrial class one protein of X kDa; MinX, Mini mitochondrial protein of  $\sim$ X kDa; Rso55, Mitochondrial protein related to spastic paraplegia with optic atrophy and neuropathy SPG55; Tmh11, TMEM14 homolog of 11 kDa; Tmh18, Mitochondrial TMEM205 homolog of 18 kDa; Tml25, Acyl-protein thioesterase with multiple localizations, protein of 25 kDa.

| A | Systematic<br>name | Gene<br>name | kDa   |
|---|--------------------|--------------|-------|--------------------|--------------|-------|--------------------|--------------|-------|--------------------|--------------|-------|
|   | YML050W            | AIM32        | 36.0  | YER145C            | FTR1         | 45.7  | YJR074W            | MOG1         | 24.3  | YDR201W            | SPC19        | 18.9  |
|   | YNL094W            | APP1         | 66.1  | YNL133C            | FYV6         | 20.0  | YJL205C            | NCE101       | 6.3   | YKR031C            | SPO14        | 195.2 |
|   | YGR230W            | BNS1         | 15.9  | YCL026C-B          | HBN1         | 21.0  | YJL126W            | NIT2         | 34.7  | YER046W            | SPO73        | 16.6  |
|   | YJL158C            | CIS3         | 23.2  | YKL101W            | HSL1         | 169.6 | YOR056C            | NOB1         | 51.7  | YGL169W            | SUA5         | 46.5  |
|   | YOR093C            | CMR2         | 186.9 | YPL015C            | HST2         | 40.0  | YNL129W            | NRK1         | 27.7  | YOR081C            | TGL5         | 84.7  |
|   | YBR230W-A          | COQ21        | 7.6   | YER092W            | IES5         | 14.3  | YGL111W            | NSA1         | 51.9  | YLR118C            | TML25        | 24.7  |
|   | YFL001W            | DEG1         | 50.9  | YNL106C            | INP52        | 133.3 | YBR060C            | ORC2         | 71.3  | YDR449C            | UTP6         | 52.4  |
|   | YLR307C-A          | DPA10        | 9.6   | YLL033W            | IRC19        | 27.4  | YHR063C            | PAN5         | 42.8  | YEL040W            | UTR2         | 49.9  |
|   | YKL065W-A          | DPC7         | 8.5   | YIL156W-B          | MCO8         | 8.2   | YLR151C            | PCD1         | 39.8  | YGR281W            | YOR1         | 166.7 |
|   | YGL041W-A          | DPC13        | 18.1  | YKL018C-A          | MCO12        | 11.8  | YGR087C            | PDC6         | 61.6  | YDR349C            | YPS7         | 64.5  |
|   | YOR114W            | DPI34        | 35.0  | YGR053C            | MCO32        | 32.2  | YMR087W            | PDL32        | 32.1  | YBL055C            |              | 47.4  |
|   | YMR130W            | DPI35        | 35.3  | YLR017W            | MEU1         | 37.9  | YDR406W            | PDR15        | 172.3 | YDL177C            |              | 19.1  |
|   | YDL219W            | DTD1         | 16.7  | YMR210W            | MGL2         | 51.4  | YBR022W            | POA1         | 19.9  | YHL012W            |              | 56.0  |
|   | YML080W            | DUS1         | 48.1  | YDR286C            | MGP12        | 13.4  | YCL047C            | POF1         | 9.7   | YJR149W            |              | 45.2  |
|   | YKL204W            | EAP1         | 69.8  | YMR182W-A          | MIN3         | 3.1   | YBR087W            | RFC5         | 39.9  | YKL071W            |              | 28.0  |
|   | YKR076W            | ECM4         | 43.3  | YBL039W-B          | MIN6         | 6.9   | YER047C            | SAP1         | 100.3 | YMR187C            |              | 50.3  |
|   | YGR200C            | ELP2         | 89.4  | YBR201C-A          | MIN7         | 7.7   | YLR022C            | SDO1         | 28.3  | YNL247W            |              | 87.5  |
|   | YDR512C            | EMI1         | 21.1  | YPR010C-A          | MIN8         | 7.9   | YMR059W            | SEN15        | 14.9  | YOR131C            |              | 24.8  |
|   | YDR261C            | EXG2         | 63.5  | YKL023C-A          | MIN9         | 8.5   | YJL145W            | SFH5         | 34.4  | YPL034W            |              | 18.9  |
|   | YMR113W            | FOL3         | 47.8  | YFR032C-B          | MIN10        | 10.0  | YKL051W            | SFK1         | 40.5  |                    |              |       |
|   | YHR049W            | FSH1         | 27.3  | YLR049C            | MLO50        | 49.5  | YNR015W            | SMM1         | 42.8  |                    |              |       |

| в | Systematic | Gene  | kDa   | Systematic<br>name | Gene  | kDa   | Systematic | Gene   | kDa   | Systematic | Gene  | kDa   |
|---|------------|-------|-------|--------------------|-------|-------|------------|--------|-------|------------|-------|-------|
|   | Hame       | name  |       | name               | Hame  |       | Itallie    | name   |       | liallie    | name  |       |
|   | YJL200C    | ACO2  | 86.6  | YFR044C            | DUG1  | 52.9  | YOR020W-A  | MCO10  | 9.6   | YDL104C    | QRI7  | 45.5  |
|   | YKL192C    | ACP1  | 13.9  | YDR125C            | ECM18 | 53.2  | YDR381C-A  | MCO13  | 12.7  | YLR084C    | RAX2  | 133.9 |
|   | YMR064W    | AEP1  | 59.8  | YLR390W            | ECM19 | 12.5  | YHL018W    | MCO14  | 14.0  | YIL077C    | RCI37 | 37.0  |
|   | YER080W    | AIM9  | 72.4  | YBR163W            | EXO5  | 67.6  | YPL109C    | MCO76  | 76.2  | YKL133C    | RCI50 | 54.5  |
|   | YER087W    | AIM10 | 65.9  | YFR019W            | FAB1  | 257.4 | YGR012W    | MCY1   | 42.8  | YOR286W    | RDL2  | 16.7  |
|   | YER093C-A  | AIM11 | 15.8  | YER183C            | FAU1  | 24.1  | YJL102W    | MEF2   | 91.3  | YDR065W    | RRG1  | 42.9  |
|   | YHL021C    | AIM17 | 53.1  | YDR070C            | FMP16 | 10.9  | YML007C-A  | MIN4   | 4.4   | YOR305W    | RRG7  | 28.0  |
|   | YHR198C    | AIM18 | 36.5  | YBR047W            | FMP23 | 20.5  | YMR252C    | MLO1   | 15.6  | YPR116W    | RRG8  | 31.1  |
|   | YJL131C    | AIM23 | 41.5  | YJL161W            | FMP33 | 20.2  | YJR039W    | MLO127 | 127.4 | YAR008W    | SEN34 | 31.3  |
|   | YJR100C    | AIM25 | 37.5  | YPL222W            | FMP40 | 78.3  | YIR021W    | MRS1   | 41.3  | YMR066W    | SOV1  | 104.8 |
|   | YMR003W    | AIM34 | 22.8  | YNL168C            | FMP41 | 28.8  | YER077C    | MRX1   | 79.6  | YGR236C    | SPG1  | 10.5  |
|   | YMR157C    | AIM36 | 29.1  | YKR049C            | FMP46 | 15.7  | YPL041C    | MRX11  | 24.2  | YLR389C    | STE23 | 117.6 |
|   | YOL053W    | AIM39 | 45.9  | YER004W            | FMP52 | 25.1  | YJR003C    | MRX12  | 59.8  | YLR305C    | STT4  | 214.6 |
|   | YOR215C    | AIM41 | 21.2  | YOR271C            | FSF1  | 35.4  | YPL168W    | MRX4   | 48.9  | YHR003C    | TCD1  | 48.9  |
|   | YHR199C    | AIM46 | 34.1  | YDR019C            | GCV1  | 44.5  | YJL147C    | MRX5   | 44.9  | YKL027W    | TCD2  | 50.3  |
|   | YER073W    | ALD5  | 56.7  | YMR189W            | GCV2  | 114.4 | YNL211C    | MRX7   | 10.7  | YJR019C    | TES1  | 40.3  |
|   | YKL157W    | APE2  | 107.8 | YLR091W            | GEP5  | 33.9  | YDL027C    | MRX9   | 48.3  | YJR085C    | TMH11 | 11.3  |
|   | YGR286C    | BIO2  | 41.9  | YGL057C            | GEP7  | 33.0  | YGL226W    | MTC3   | 14.5  | YPR098C    | TMH18 | 17.7  |
|   | YBL098W    | BNA4  | 52.4  | YDR305C            | HNT2  | 24.8  | YNL063W    | MTQ1   | 35.9  | YOR251C    | TUM1  | 34.2  |
|   | YKL208W    | CBT1  | 31.2  | YBL059W            | IAI11 | 22.3  | YAL029C    | MYO4   | 169.3 | YLL040C    | VPS13 | 357.8 |
|   | YER061C    | CEM1  | 47.6  | YER086W            | ILV1  | 63.8  | YPR155C    | NCA2   | 70.9  | YHL014C    | YLF2  | 45.7  |
|   | YGR207C    | CIR1  | 28.8  | YMR108W            | ILV2  | 74.9  | YOL042W    | NGL1   | 42.4  | YBR054W    | YRO2  | 38.7  |
|   | YCR005C    | CIT2  | 51.4  | YJR016C            | ILV3  | 62.9  | YLR351C    | NIT3   | 32.5  | YHR017W    | YSC83 | 44.2  |
|   | YLR087C    | CSF1  | 338.2 | YJL082W            | IML2  | 82.5  | YJR062C    | NTA1   | 51.9  | YDL157C    |       | 13.6  |
|   | YOR022C    | DDL1  | 81.8  | YGL085W            | LCL3  | 32.1  | YGR178C    | PBP1   | 78.8  | YDR061W    |       | 61.2  |
|   | YOR236W    | DFR1  | 24.3  | YLR239C            | LIP2  | 37.2  | YPR002W    | PDH1   | 57.7  | YGR015C    |       | 37.9  |
|   | YPL107W    | DPC25 | 28.6  | YOR196C            | LIP5  | 46.3  | YJL023C    | PET130 | 39.8  | YKL162C    |       | 46.5  |
|   | YGR021W    | DPC29 | 31.7  | YIL094C            | LYS12 | 40.1  | YHR189W    | PTH1   | 21.0  | YKR070W    |       | 39.4  |
|   | YJL133C-A  | DPI8  | 7.7   | YDR234W            | LYS4  | 75.2  | YBL057C    | PTH2   | 22.4  | YLR283W    |       | 36.6  |
|   | YNR040W    | DPI29 | 28.7  | YJL127C-B          | MCO6  | 6.0   | YJR111C    | PXP2   | 32.2  |            |       |       |

#### Table S6: Mitochondrial proteins with localization validated in this study. Related to Figures 4-7 and S4-S7.

| Systematic<br>name | Gene<br>name  | Dual<br>loc. | kDa          | Subcell.<br>fractio-<br>nation | Δψ dependent<br>import into<br>mitochondria | Mitochon-<br>drial<br>GFP-signal | Submito.<br>fractionation MS<br>(exp. val. ✔) | Additional experiments performed in this study | Copy# Gly/Glc | Pred. no.<br>TM helices<br>(TMHMM) | Previous<br>studies | Name description                                                                                                    |
|--------------------|---------------|--------------|--------------|--------------------------------|---------------------------------------------|----------------------------------|-----------------------------------------------|------------------------------------------------|---------------|------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
| YER093C-A          | AIM11         |              | 15.8         | ~                              | import                                      | N-term                           | IMS/IM                                        | Co-IP (lai11, Mtc3, Gep7)                      |               | 2                                  | §                   | Altered inheritance rate of mitochondria                                                                            |
| YBR230W-A          | COQ21         |              | 7.6          | ~                              | import                                      |                                  | matrix/IM 🖌                                   | BN, Co-IP (Coqx, Cat5)                         |               |                                    |                     | COQ interacting protein                                                                                             |
| YFL001W            | DEG1          | ~            | 50.9         | ~                              | import                                      |                                  |                                               |                                                | 242/363       |                                    |                     | Depressed growth rate                                                                                               |
| YLR307C-A          | DPA10         |              | 9.6          | ~                              | assembly                                    |                                  |                                               | BN                                             |               |                                    |                     | Delta-Psi dependent mitochondrial assembly, protein of 10 kDa                                                       |
| YKL065W-A          | DPC7          |              | 8.5          | ~                              | import & cleavage                           | C-term                           | matrix/IM                                     | BN                                             | 7824/1704     | 1                                  |                     | Delta-Psi dependent mitochondrial import and cleavage, protein of 7 kDa                                             |
| YGL041W-A          | DPC13         |              | 18.1         | ~                              | import & cleavage                           | in-term                          | matrix/IVI V                                  | PN                                             | 089/525       |                                    | *                   | Delta-Psi dependent mitochondrial import and cleavage, protein of ~13 kDa                                           |
| YGR021W            | DPC20         |              | 20.0         | 2                              | import & cleavage                           |                                  | maun/iivi                                     | BN                                             | 595/231       |                                    | * <b>+</b> ¶        | Delta-Psi dependent mitochondrial import and cleavage, protein of ~25 kDa                                           |
| Y.II 133C-A        | DPI8          |              | 77           |                                | import                                      | N-term                           | matrix/IM 🖌                                   | BN                                             | 1139/554      |                                    | + II<br>+¶          | Delta-Psi dependent mitochondrial Import, protein of 8 kDa                                                          |
| YNR040W            | DPI29         |              | 28.7         | ~                              | import & assembly                           | N-term                           | matrix/IM                                     |                                                | 779/594       |                                    | *B <b>±</b> ¶       | Delta-Psi dependent mitochondrial Import, protein of 29 kDa                                                         |
| YOR114W            | DPI34         |              | 35.0         | ~                              | import & assembly                           |                                  |                                               |                                                |               |                                    |                     | Delta-Psi dependent mitochondrial Import, protein of ~34 kDa                                                        |
| YMR130W            | DPI35         |              | 35.2         | ~                              | import                                      |                                  | matrix/IM                                     |                                                | 363/467       |                                    |                     | Delta-Psi dependent mitochondrial Import, protein of 35 kDa                                                         |
| YKR076W            | ECM4          | ~            | 43.3         | ~                              |                                             |                                  |                                               |                                                | 7027/1368     |                                    |                     | Extracellular mutant                                                                                                |
| YLR390W            | ECM19         |              | 12.5         | ~                              | increased 0 when any                        | <b>N</b> 1 4                     | IMS/IM                                        | DN                                             | 844/598       | 1                                  | <b></b>             | Extracellular mutant                                                                                                |
| YDR070C            | EMD22         |              | 10.9         | ~                              | import & cleavage                           | N-term                           | matrix/IIVI V                                 | BIN                                            | 2720/1241     |                                    | *β <b>‡</b> ¶       | Found in mitochondrial proteome                                                                                     |
| YOR271C            | FIVIF 33      |              | 20.2         |                                |                                             | N-term                           | 111/13/111                                    |                                                | 8923/11250    | 4                                  | +q<br>8 <b>P+</b> * | Fundal sideroflevin 1                                                                                               |
| YHR059W            | FYV4          |              | 15.3         | ~                              |                                             | N-term                           | matrix/IM                                     |                                                | 391/201       | 7                                  | + II S              | Function required for veast viability                                                                               |
| YCL026C-B          | HBN1          | ~            | 21.0         |                                | import                                      |                                  | mannonn                                       |                                                | 4571/1469     |                                    | Ψ                   | Homologous to bacterial nitroreductases                                                                             |
| YBL059W            | IAI11         |              | 22.3         | ~                              |                                             | N-term                           | IMS/IM                                        | Co-IP (Aim11, Mtc3, Gep7)                      | 795/296       | 2                                  | *‡§                 | Interactor of Aim11                                                                                                 |
| YGL085W            | LCL3          |              | 32.0         |                                |                                             | N-term                           | matrix/IM                                     |                                                |               | 1                                  | *                   | Long chronological lifespan 3                                                                                       |
| YJL127C-B          | MCO6          |              | 6.0          |                                |                                             | N-term                           | OM                                            |                                                |               |                                    | §                   | Mitochondrial class one protein of 6 kDa                                                                            |
| YIL156W-B          | MCO8          |              | 8.2          | ~                              |                                             |                                  | IMS/IM 🖌                                      |                                                | 4789/2340     |                                    |                     | Mitochondrial class one protein of 8 kDa                                                                            |
| YOR020W-A          | MCO10         |              | 9.6          | ~                              |                                             | N torm                           | IMS/IM                                        | Co-IP (CV)                                     | 2788/853      | 1                                  | Ŧſ                  | Mitochondrial class one protein of 10 kDa                                                                           |
| YDR381C-A          | MCO12         |              | 12.7         |                                |                                             | N-term                           | IMS/IM                                        | BN                                             | 2555/1411     | 1                                  | +¶°                 | Mitochondrial class one protein of 12 kDa<br>Mitochondrial class one protein of 13 kDa                              |
| YHL018W            | MCO14         |              | 14.0         | ~                              | import & assembly                           |                                  | matrix/IM 🖌                                   | BN                                             | 165/117       |                                    | +                   | Mitochondrial class one protein of 14 kDa                                                                           |
| YGR053C            | MCO32         |              | 32.2         | ~                              |                                             |                                  | matrix/IM                                     | 511                                            | 10/3          |                                    |                     | Mitochondrial class one protein of 32 kDa                                                                           |
| YPL109C            | MCO76         |              | 76.1         |                                |                                             | N-term                           | IMS/IM                                        |                                                | 100/35        |                                    | *β‡                 | Mitochondrial class one protein of 76 kDa                                                                           |
| YLR017W            | MEU1          | ~            | 37.9         | ~                              | import                                      |                                  | matrix/IM                                     |                                                | 1852/3152     |                                    |                     | Multicopy enhancer of UAS2                                                                                          |
| YDR286C            | MGP12         |              | 13.4         | ~                              | import & cleavage                           |                                  |                                               |                                                | 989/828       |                                    |                     | Mitochondrial glutaredoxin-like protein of 12 kDa                                                                   |
| YMR182W-A          | MIN3          |              | 3.1          |                                |                                             | C-term                           |                                               |                                                |               | 1                                  |                     | Mini mitochondrial protein of 3 kDa                                                                                 |
| YML007C-A          | MIN4          |              | 4.4          |                                |                                             | 0.1                              | 014                                           | DN                                             |               |                                    | î                   | Mini mitochondrial protein of 4 kDa                                                                                 |
| VBR201C-A          | MINZ          |              | 0.9          | ~                              |                                             | C-term                           |                                               | DIN                                            |               | 1                                  |                     | Mini mitochondrial protein of ~6 kDa                                                                                |
| YPR010C-A          | MIN8          |              | 7.9          | ~                              |                                             |                                  | IMS/IM V                                      | BN                                             | 13017/2464    | 1                                  |                     | Mini mitochondrial protein of 8 kDa                                                                                 |
| YKL023C-A          | MIN9          |              | 8.5          | ~                              |                                             | C-term                           | matrix/IM                                     |                                                |               | 1                                  |                     | Mini mitochondrial protein of 9 kDa                                                                                 |
| YFR032C-B          | MIN10         |              | 10.0         | ~                              |                                             | C-term                           |                                               |                                                |               | 1                                  |                     | Mini mitochondrial protein of 10 kDa                                                                                |
| YMR252C            | MLO1          |              | 15.6         | ~                              |                                             | N-term                           |                                               |                                                |               |                                    | *                   | Mitochondrially localized protein                                                                                   |
| YLR049C            | MLO50         |              | 49.5         | ~                              |                                             |                                  |                                               |                                                |               |                                    |                     | Mitochondrially localized protein of 50 kDa                                                                         |
| YJR039W            | MLO127        |              | 127.4        | ~                              |                                             |                                  |                                               |                                                |               |                                    | β‡                  | Mitochondrially localized protein of 127 kDa                                                                        |
| YPL041C            | MRX11<br>MTC2 |              | 24.2         |                                |                                             | N-term                           | matrix/IM                                     |                                                | 1000/450      | 2                                  | \$<br>*¶            | Mitochondrial organization of gene expression (MIOREX)                                                              |
| Y II 205C          | NCE101        |              | 63           |                                |                                             |                                  | 11013/1101                                    |                                                | 931/389       | 1                                  | 1                   | Nonclassical export                                                                                                 |
| YMR087W            | PDL32         | ~            | 32.1         | ~                              |                                             |                                  | matrix/IM                                     |                                                | 221/139       |                                    |                     | Protein of dual localization, protein of 32 kDa                                                                     |
| YBL057C            | PTH2          |              | 22.4         |                                |                                             |                                  | OM 🖌                                          |                                                | 4545/6624     | 1                                  | β <b>±¶°</b>        | Peptidyl-trna hydrolase                                                                                             |
| YJR111C            | PXP2          | ~            | 32.2         | ~                              |                                             |                                  |                                               |                                                | 1786/1763     |                                    | *                   | Peroxisomal protein                                                                                                 |
| YIL077C            | RCI37         |              | 37.0         | ~                              | import & assembly                           | N-term                           | IMS/IM 🖌                                      | BN, Co-IP (CIII, CIV, m-AAA)                   | 540/258       | 2                                  | *‡                  | Respiratory chain interacting protein of 37 kDa                                                                     |
| YKL133C            | RCI50         |              | 54.5         | ~                              | import & cleavage                           | N-term                           | IMS/IM                                        | Co-IP (CIII, CIV, i-AAA)                       |               | 1                                  | §                   | Respiratory chain interacting protein of ~50 kDa                                                                    |
| YOR286W            | RDL2          |              | 16.7         | ~                              | import & cleavage                           |                                  |                                               | 51                                             | 6638/4974     |                                    | *β <b>±</b> ¶       | Rhodanese-like protein                                                                                              |
| YNL213C            | RRG9          |              | 25.3         | ~                              | import & cleavage                           | N torm                           | matrix/IM 🗸                                   | BN                                             |               |                                    | ‡Ω                  | Required for respiratory growth                                                                                     |
| Y.II 145W          | SEH5          |              | 34.4         | ~                              | import & cleavage                           | N-term                           | OM                                            | DIN                                            | 2441/2547     |                                    | φ                   | Ninochondrial protein related to spastic paraplegia with optic alrophy and neuropathy SPG55<br>Sec fourteen homolog |
| YNR015W            | SMM1          | ~            | 42.8         | ~                              | import                                      |                                  | matrix/IM                                     |                                                | 788/1081      |                                    |                     | Suppressor of mitochondrial mutation                                                                                |
| YGL169W            | SUA5          | ~            | 46.5         | ~                              |                                             |                                  | IMS/IM                                        |                                                | 784/699       |                                    |                     | Suppressor of upstream AUG                                                                                          |
| YKL027W            | TCD2          |              | 50.3         |                                |                                             |                                  | om 🖌                                          |                                                | 4295/3584     | 1                                  | *β <b>‡</b> ¶°      | tRNA Threonylcarbamoyladenosine dehydratase                                                                         |
| YJR019C            | TES1          | ~            | 40.3         |                                | import                                      |                                  | matrix/IM                                     |                                                | 10404/1398    |                                    | β <b>‡</b> ¶        | Thioesterase                                                                                                        |
| YJR085C            | TMH11         |              | 11.3         | ~                              | import                                      | N-term                           |                                               | BN, Co-IP (GxxxG-cont. prot.)                  | 1752/937      | 3                                  | β <b>‡</b>          | TMEM14 homolog of 11 kDa                                                                                            |
| YPR098C            | TMH18         |              | 17.7         |                                | innert                                      | N-term                           | OM                                            |                                                | 5832/2902     | 3                                  | * <b>‡</b> °        | Mitochondrial TMEM205 homolog of 18 kDa                                                                             |
| YOR251C            | TUM1          | 2            | 24.7<br>34.2 | 2                              | import                                      |                                  | matrix/IM                                     |                                                | 2030/2937     |                                    |                     | Acyt-protein infoesterase with multiple localizations, protein of 25 kDa                                            |
| 1012010            | 1 OIWI 1      | •            | J4.2         | •                              | import                                      |                                  | maunymm                                       |                                                | 1004/0424     |                                    |                     | mountaine mountaitoff                                                                                               |

\* Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91

Perocchi F, et al. (2006) Assessing Systems Properties of Yeast Mitochondria through an Interaction Map of the Organelle. PLoS Genet 2(10):e170
 β Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12
 ‡ Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteome: S. J Proteome Res 5(7):1543-54
 ¶ Renvoise M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50

Ω Wysocki R, et al. (1999) Disruption and basic phenotypic analysis of 18 novel genes from the yeast Saccharomyces cerevisiae. Yeast 15(2):165-71 § Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-8 ° Zahedi RP, et al. (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 17(3):1436-50

Table S7. Dual-localized mitochondrial proteins. Related to Figure 6. To identify soluble mitochondrial proteins with dual/multiple cellular localization, filtered high-confidence mitochondrial class 1 proteins were selected from Table S1 when they displayed a significant amount in the post mitochondrial supernatant (PNS/total > 0.5) and in both mitochondrial fractions (pure mito/crude mito > 0). α-helical membrane proteins (transmembrane helix TMHMM prediction) and β-barrel membrane proteins were removed. The list of 57 mitochondrial proteins with known (grey) dual/multiple cellular localizations, proteins validated in this study (green) and high-confidence candidates. Upon completion of this study we noticed that Tum1 was previously imported as y-rho into isolated mitochondria (Dubaquié et al., 1998) in full agreement with our study.

| Systematic<br>name | PMS/<br>Total | Gene<br>name | Mitochondrial<br>proteome<br>class 1 | Mitochondrial<br>localization<br>(other evidence) | Extra-mito.<br>annotation | Extra-mitochondrial localization | Gene description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|---------------|--------------|--------------------------------------|---------------------------------------------------|---------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YKL157W            | 1.42          | APE2         | ~                                    | HT                                                | Manual                    | Plasmamembrane                   | Aminopeptidase yscII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YMR098C            | 0.87          | ATP25        | ~                                    | Manual                                            |                           |                                  | Mito. protein required for Oli1p ring formation and stability of Oli1p (Atp9p) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YJL060W            | 0.67          | BNA3         | ~                                    | Manual                                            | Manual                    | Cytosol                          | Kynurenine aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| YMR038C            | 1.60          | CCS1         | ~                                    | Manual                                            | Manual                    | Cytosol, Nucleus                 | Copper chaperone for superoxide dismutase Sod1p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YDL164C            | 0.99          | CDC9         | <b>v</b>                             | Manual                                            | Manual                    | Nucleus                          | DNA ligase I found in nucleus and mitochondria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| YGR255C            | 5.90          | COQ6         | ~                                    | Manual                                            |                           |                                  | Flavin-dependent monooxygenase involved in ubiquinone biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| YFL001W            | 1.13          | DEG1         | <b>v</b>                             | This study                                        | Manual                    | Cytosol (this study), Nucleus    | tRNA:pseudouridine synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| YHR011W            | 6.21          | DIA4         | ~                                    | Manual                                            | Manual                    | Cytosol                          | Probable mitochondrial seryl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| YFR044C            | 1.26          | DUG1         | ~                                    | HT                                                |                           |                                  | Cys-Gly metallo-di-peptidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| YKR076W            | 1.16          | ECM4         |                                      | This study                                        | Manual                    | Cytosol & Microsome (this study) | S-glutathionyi-(chloro)hydroquinone reductase (GS-HQR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| YILU98C            | 2.45          | FINC1        | <b>v</b>                             | Manual                                            |                           |                                  | Million matrix protein that is required for assembly or stability at high temperature of the F1 sector or mitochondrial F1F0 ATP synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | 0.67          | FOLI         |                                      | Mariuai                                           |                           |                                  | Muninuncuorial enzyme or the folic acid biosynthesis partimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 0.55          | FOL3         |                                      |                                                   | υт                        | Cutoplasm Nuclous                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VHR100C            | 0.02          | GEPA         |                                      | Manual                                            |                           | Cytopiasin, Nucleus              | r utalive semie injuliose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| YPI 091W           | 1 16          | GLR1         | ~                                    | Manual                                            | Manual                    | Cytosol Nucleus                  | Cytosolic and mitochondrial dutathinge oxidered urase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| YOL059W            | 1.37          | GPD2         | ~                                    | Manual                                            | Manual                    | Cytosol                          | NAD-dependent diverol 3-phosphate debydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YCL026C-B          | 1.10          | HBN1         | <i>v</i>                             | This study                                        | HT                        | Cvtosol, Nucleus                 | Protein of unknown function that is similar to bacterial nitroreductases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| YMR207C            | 1.22          | HEA1         | ×                                    | Manual                                            |                           | -,                               | Mitochondrial acetyl-coepzyme A carboxylase that catalyzes production of malonyl-CoA in mitochondrial fatty acid biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| YDR305C            | 1.20          | HNT2         | v                                    | HT                                                | НТ                        | Cvtoplasm, Nucleus               | Dinucleoside triphosphate hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YPR033C            | 1.15          | HTS1         | ~                                    | Manual                                            | Manual                    | Cytosol                          | Cytoplasmic and mitochondrial histidine tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| YPR083W            | 0.66          | MDM36        | ~                                    | Manual                                            |                           | ,                                | Component of the mitochondria-ER-cortex-ancor (MECA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YLR017W            | 3.05          | MEU1         | <ul> <li>✓</li> </ul>                | This study                                        | Manual                    | Cytosol (this study)             | Methylthioadenosine phosphorylase (MTAP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| YMR002W            | 0.88          | MIX17        | <b>v</b>                             | Manual                                            | HT                        | Cytoplasm, Nucleus               | Mitochondrial intermembrane space protein that is required for normal oxygen consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| YOR274W            | 0.71          | MOD5         | ~                                    | Manual                                            | Manual                    | Cytosol, Nucleus                 | Delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| YNL306W            | 1.70          | MRPS18       | ~                                    | Manual                                            |                           |                                  | Mitochondrial ribosomal protein of the small subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YBR251W            | 2.15          | MRPS5        | ~                                    | Manual                                            |                           |                                  | Mitochondrial ribosomal protein of the small subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YPL104W            | 0.62          | MSD1         | ~                                    | Manual                                            |                           |                                  | Mitochondrial aspartyl-tRNA synthetase that is required for acylation of aspartyl-tRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| YCL033C            | 1.21          | MXR2         | ~                                    | Manual                                            |                           |                                  | Methionine-R-sulfoxide reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| YAL029C            | 0.87          | MYO4         | <b>v</b>                             | HT                                                |                           |                                  | Type V myosin motor involved in actin-based transport of cargos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YGL221C            | 1.19          | NIF3         | ~                                    | Manual                                            | Manual                    | Cytosol                          | Protein of unknown function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| YLR351C            | 1.36          | NIT3         |                                      | HT                                                |                           |                                  | Nit protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| YGR178C            | 0.58          | PBP1         | V                                    | HI<br>This study                                  | Manual                    | Cytopiasm, Nucleus (HT)          | Component or glucose deprivation induced stress granules that is involved in P-body-dependent granule assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 1.02          | PDL32        |                                      | Manual                                            | Manual                    | Cytosol (this study)             | Zine motilleandenentidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VNL 202W           | 1.25          | PRDI         |                                      | Manual                                            | Manual                    | Cytopiasin, Goigi, Vacuole       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIR111C            | 0.66          | PXP2         |                                      | This study                                        | Manual                    | Cutosol (this study) Perovisome  | a seducinalitie synthese by a structure of the promoter set of the |
| YKI 113C           | 1 41          | RAD27        | ~                                    | Manual                                            | Manual                    | Cytosol Nucleus                  | Fito 3 expanded so / 5 fan endonuclease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| YI R059C           | 1.37          | REX2         | ~                                    | Manual                                            | Mandai                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YBR087W            | 1.85          | RFC5         | ~                                    | mandai                                            | Manual                    | Nucleus                          | Subunit of heteropentameric Replication factor C (RF-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| YLR139C            | 2.31          | SLS1         | · ·                                  | Manual                                            |                           |                                  | Mitochondrial membrane protein that coordinates this studyression of mitochondrially-encoded genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| YNR015W            | 0.97          | SMM1         | V                                    | This study                                        | HT                        | Cytosol (this study), Nucleus    | Dihydrouridine synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| YMR066W            | 8.73          | SOV1         | <b>v</b>                             | HT                                                |                           |                                  | Mitochondrial protein of unknown function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| YLR389C            | 1.32          | STE23        | ~                                    | HT                                                |                           |                                  | Metalloprotease that is involved in N-terminal processing of pro-a-factor to mature form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| YLR305C            | 2.13          | STT4         | ~                                    | HT                                                | Manual                    | Plasmamembrane                   | Phosphatidylinositol-4-kinase that functions in the Pkc1p protein kinase pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| YGL169W            | 2.41          | SUA5         | <b>v</b>                             | This study                                        | HT                        | Cytosol (this study)             | Protein involved in threonylcarbamoyl adenosine biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| YGR046W            | 2.90          | TAM41        | ~                                    | Manual                                            |                           |                                  | _Mitochondrial phosphatidate cytidylyltransferase (CDP-DAG synthase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YJR019C            | 0.58          | TES1         | <b>v</b>                             | This study                                        | Manual                    | Peroxisome                       | Peroxisomal acyl-CoA thioesterase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| YLR118C            | 0.97          | TML25        | <b>v</b>                             | This study                                        | Manual                    | Cytosol (this study)             | Acyl-protein thioesterase responsible for depalmitoylation of Gpa1p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YHR070W            | 4.83          | TRM5         | V                                    | Manual                                            | Manual                    | Cytoplasm                        | IRNA(m(1)G37)methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| YOR251C            | 0.87          | TUM1         | <b>v</b>                             | This study                                        | Manual                    | Cytosol (this study)             | Rhodanese domain sulfur transferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YGR094W            | 1.12          | VAS1         | ~                                    | Manual                                            | Manual                    | Cytoplasm                        | Mitochondrial and cytoplasmic valyI-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YLLU40C            | 1.02          | VPS13        | <b>v</b>                             | ні                                                | Manual                    | Golgi, Vacuole                   | Protein invoivea in prospore membrane morphogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TBL055C            | 1.33          | TBL055C      | v                                    | Monual                                            | Manual                    | Cutapol                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 0.01          |              | 4                                    | wanuar                                            | wanuar                    | Cytosol                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YNL247W            | 2.43<br>1.26  | YNL247W      | ~                                    |                                                   |                           |                                  | Cysteinyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### SUPPLEMENTAL EXPERIMENTAL PROCEDURES

#### Media, growth conditions and metabolic labeling

Yeast cells were grown at 30°C and 160 rpm in in YPG (1% [w/v] yeast extract, 2% [w/v] peptone, 3% [v/v] glycerol), YPD (1% [w/v] yeast extract, 2% [w/v] peptone, 2% [w/v] glucose), or SC medium (0.17% [w/v] yeast nitrogen base [YNB] without amino acids, 0.5% [w/v] ammonium sulfate, 3% [v/v] glycerol, 20 mg/L of L-histidine, L-tryptophan, L-methionine, adenine and uracil, 23 mg/L of L-arginine and L-lysine, 30 mg/L of L-isoleucine and L-tyrosine, 50 mg/L of L-phenylalanine, 100 mg/L of L-leucine, 150 mg/L of L-valine, and 200 mg/L of L-threonine and proline). To assess differences in protein expression levels in YPH499 $\Delta arg4$  after growth on different carbon sources, cells were grown in SC medium containing 3% (w/v) glycerol, 2% (w/v) galactose or 2% (w/v) glucose. For metabolic labeling of yeast, media were supplemented with stable isotope-coded amino acids (Euriso-Top GmbH), i.e. 'heavy' arginine ( ${}^{13}C_{6}/{}^{15}N_4$ ) and lysine ( ${}^{13}C_{6}/{}^{15}N_2$ ) or 'medium-heavy' arginine ( ${}^{13}C_{6}/{}^{14}N_2$ ) and lysine ( ${}^{4}H_2$ ) instead of the respective 'light' amino acids. To ensure complete incorporation of isotopically labeled amino acids, cells were grown for at least five cell doublings in precultures and four doublings in main cultures. Cells were generally harvested during exponential growth phase.

For selection of yeast strains on solid media, YPD plates (1% [w/v] yeast extract, 2% [w/v] peptone, 2% [w/v] glucose, 2.5% [w/v] Bacto<sup>TM</sup> Agar) containing antibiotics or minimal medium plates (0.67% [w/v] YNB without amino acids [Becton, Dickinson and Company Inc.], appropriate amino acid drop-out mix [MP Biomedicals LLC], 2% [w/v] glucose, 2.5% Bacto<sup>TM</sup> Agar [Becton, Dickinson and Company Inc.]) lacking the amino acid used as selection marker were used.

#### Generation of yeast strains

All Saccharomyces cerevisiae strains used in this study have been derived from the wild type strains BY4741 (*MATa*,  $his3\Delta 1$ ,  $leu2\Delta 0$ ,  $met15\Delta 0$ ,  $ura3\Delta 0$ ), BY4742 (*Mata*,  $his3\Delta 1$ ,  $leu2\Delta 0$ ,  $met15\Delta 0$ ,  $ura3\Delta 0$ ,  $lys2\Delta 0$ ) or YPH499 (*MATa*, ura3-52, lys2-801, ade2-101,  $trp1-\Delta 63$ ,  $his3-\Delta 200$ ,  $leu2-\Delta 1$ ).

C-terminal Protein A-, HA- or EGFP-tagging of chromosomal genes was performed by introducing the genetic information for the respective tag, followed by a selection marker, in front of the stop codon of the respective gene. In this study, the *kanMX4*, *kanMX6*, *HIS3MX6* (Knop et al., 1999), and *hphNT1* cassettes (Janke et al., 2004) served as selection markers. Chromosomal deletions were obtained by substitution of the respective gene by a *kanMX6* cassette (Longtine et al., 1998). For generation of YPH499  $\Delta arg4$  strain, the *kanMX4* selection marker was

introduced (von der Malsburg et al., 2011). Yeast cells were transformed as previously described (Gietz and Woods, 2002) and transformants were selected on minimal medium -HIS plates. Selections of strains containing an antibiotics resistance cassette were performed on YPD plates supplemented with 200 µM KP<sub>i</sub> and 200 mg/L G418 (Enzo Biochem Inc.; ALX-380-013-G005) for selection of strains containing a kanMX6 cassette or 300 mg/L hygromycin B (Carl Roth GmbH + Co. KG; CP13.3) for selection of strains containing a *hphNT1* cassette. Chromosomal insertion of *hphNT1* and *kanMX6* cassettes at the correct position was confirmed by colony PCR and/or immunoblotting of whole cell yeast extracts using antibodies raised against the Protein A, HA or GFP epitope tag. For colony PCR, a tiny number of cells was transferred with a toothpick to 10 µL of a 1 mg/mL Zymolyase solution (Zymolyase<sup>®</sup>-20T, Nacalai Tesque Inc.) and incubated for 10 min at 25°C. Afterwards, forward and reverse primers that bind to the 5'-UTR and 3'-UTR of the respective open reading frame were added. For some of the Protein A-tagged strains a reverse primer was employed that binds to the linker region of the Protein A tag. RedMastermix (2X) (Genaxxon Bioscience GmbH; M3029.0500) was used for amplification of DNA fragments. For the generation of N-terminal GFP-tagged proteins, strain BY4741 was genomically transformed to tag proteins at their start codon with GFP under the control of the constitutive NOP1 gene promoter. Using the SWAT approach, excision of the selection cassette and NOP1 promoter resulted in restoration of the gene's endogenous promoter (Yofe et al., 2016). Tagging was verified using a genomic PCR check.

The pRS425-<sub>HA</sub>YJR085C plasmid was generated as follows: the YJR085C open reading frame including 537 nucleotides upstream (containing the endogenous promoter) and 369 nucleotides downstream (comprising the endogenous terminator) was amplified from yeast genomic DNA. At their 5'-ends, the forward (YJR085C\_pRS425\_FW) and reverse (YJR085C\_pRS425\_REV) primers were fused to a HindIII or BamHI cleavage site, respectively. The resulting HindIII-P<sub>YJR085C</sub>-YJR085C (*S. cerevisiae*)-T<sub>YJR085C</sub>-BamHI PCR fragment was cloned into pRS425 plasmid using HindIII and BamHI restriction enzymes. Site-directed mutagenesis was employed to introduce the N-terminal HA-tag in front of YJR085C. To this end the forward and reverse primers NHA\_YJR085C\_FW and NHA\_YJR085C\_Rev as well as the QuikChange<sup>™</sup> Site-Directed Mutagenesis Kit (Agilent Technologies Inc.) were used.

 $_{\rm HA}$ YJR085C and its corresponding wild-type strain (YPH499 + *pRS425*) were generated by transforming YPH499 cells with the pRS425 plasmid encoding for the  $_{\rm HA}$ YJR085C protein (under control of its endogenous promoter and terminator) or the empty plasmid followed by several rounds of selection on minimal medium plates depleted from leucine.

To generate the pFA6a-TEV-ProtA-7His-hphNT1 plasmid, the TEV-ProtA-7His module was amplified from pYM10 plasmid (Knop et al., 1999) using TEV-ProtA\_fwd and TEV-ProtA\_rev primers and cloned into pFA6a-hphNT1 plasmid (Janke et al., 2004) using HindIII and XmaI restriction sites.

To generate the BY4741  $\Delta arg4$  strain, BY4741 and BY4742  $\Delta arg4$  (Euroscarf) were crossed and several tetrads were dissected. Correct genotype (*MATa*; *ura3* $\Delta$ 0, *leu2* $\Delta$ 0, his3 $\Delta$ 1, *lys2* $\Delta$ 0, *met15* $\Delta$ 0, *arg4::kanMX4*) was selected by replica plating. To this end, minimal media devoid of either arginine, methionine or lysine were used. Mating type was determined by colony PCR using the primers MATlocus\_fw, Mat(a)\_rv and Mat(alpha)\_rv (Huxley et al., 1990).

#### Preparation of cell lysates, subcellular fractionation, and isolation of mitochondria

Subcellular fractionation and isolation of mitochondria for quantitative MS experiments were performed as described before (Meisinger et al., 2000) with slight modifications. Differentially SILAC-labeled cells were harvested by centrifugation for 5 min at 3,000 x g and RT, washed with deionized water, and incubated for 20 min at 160 rpm and 30°C in 2 mL of DTT buffer (100 mM Tris-H<sub>2</sub>SO<sub>4</sub> [pH 9.4], 10 mM DTT) per g wet weight (ww). Following centrifugation (5 min, 3,000 x g, RT), cells were washed with 7 mL/g ww zymolyase buffer (1.2 M sorbitol, 20 mM  $K_3PO_4$  [pH 7.4]) and incubated for 45 min at 160 rpm and 30°C in 7 mL/g ww zymolyase buffer containing 3 mg/g ww Zymolyase 20-T (MP Biomedicals Life Sciences) to digest cell walls. Spheroplasts were harvested by centrifugation (5 min, 3,000 x g, 4°C) and homogenized in 7 mL/g ww ice-cold homogenization buffer (0.6 M sorbitol, 10 mM Tris-HCl [pH 7.4], 1 mM PMSF [dissolved in isopropanol]) containing 1 mM EDTA using a glass-Teflon potter (15 strokes). Cell debris and nuclei were removed from the homogenate (referred to as 'cell lysate' in this work) by centrifugation for 5 min at 1,500 x g and 4°C followed by centrifugation of the supernatants for 5 min at 4,000 x g and 4°C. Crude mitochondrial fractions were pelleted from the resulting postnuclear supernatants (PNS) by centrifugation for 15 min at 12,000 x g and 4°C. The post-mitochondrial supernatants (PMS) were taken off and the pellets were resuspended in SEM buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS-KOH [pH 7.2]). To obtain mitochondrial fractions of higher purity, crude mitochondria were loaded onto sucrose density gradients consisting of 2 mL of 60%, 6 mL of 32%, 2 mL of 23%, and 2 mL of 15% (w/v each) sucrose in EM buffer (10 mM MOPS-KOH [pH 7.2], 1 mM EDTA). Following centrifugation for 1 h at 134,000 x g and 2°C, pure mitochondrial fractions were collected from the interface between 60% and 32% sucrose, diluted with the two-fold volume of SEM buffer, pelleted for 10 min at 12,000 x g and 2°C, resuspended in 100  $\mu$ L/g ww of SEM buffer, shock-frozen in liquid nitrogen, and stored at -80°C until further use.

To reveal differences in protein abundance between crude mitochondrial fractions and gradient-purified mitochondria and, thus, identify putative mitochondrial proteins, crude and pure mitochondria from differentially SILAC-labeled cells were mixed in equal ratios based on protein concentration and analyzed by LC-MS following different protein and peptide fractionation methods. This experiment (referred to as 'pure/crude' experiment in this work) was performed in four biological replicates including label-switch (see Figure S1A). For subcellular profiling experiments, performed to verify the mitochondrial localization of candidate proteins, aliquots of subcellular fractions (i.e., cell lysates, the post-mitochondrial supernatant PMS, crude and gradient-purified mitochondria; n = 4) generated during pure/crude experiments were analyzed separately by LC-MS following tryptic in-solution digestion. To absolutely quantify the yeast proteome and determine protein copy numbers, cell lysates were prepared from light, medium-heavy, and heavy SILAC-labeled, mixed in 1:1:1 ratios, and analyzed by LC-MS in three biological replicates including a label switch (see Figure S1B).

For medium-scale preparations of mitochondria from up to 20 yeast strains in parallel, performed for validation experiments, the protocol was as follows: S. cerevisiae strains were grown to mid-logarithmic phase in 360 mL of YPG medium in a 1-L flask. 400 OD<sub>600</sub> of cells were pelleted by centrifugation (3,000 x g, 5 min, 25°C, SLA-300 rotor [Sorvall<sup>TM</sup>, Thermo Fisher Scientific Inc.]). Yeast pellets were washed with dH<sub>2</sub>O in 50 mL concial tubes, suspended in 3.5 mL of DTT buffer and transferred to 5-mL Eppendorf Tubes<sup>®</sup> (Eppendorf AG). Samples were incubated at 30°C and 900 rpm for 20 min (ThermoMixer<sup>®</sup> C, Eppendorf AG) and collected by centrifugation at 3,000 x g for 5 min at 25°C (Rotor FA-45-20-17, Centrifuge 5804 R [Eppendorf AG]). Pellets were dissolved in 4.5 mL of zymolyase buffer, 30 mg Zymolyase<sup>®</sup>-20T (Nacalai Tesque Inc.) were added to each sample and samples were incubated for 45 min at 30°C. Spheroplasts were pelleted by centrifugation (1,500 x g, 5 min, 25°C), washed with 3.5 mL of 1.2 M sorbitol and dissolved in 4.5 mL homogenization buffer containing 0.2% (w/v) bovine serum albumin. Cells were opened on ice using an Omnifix<sup>®</sup> 10 mL LL syringe (B. Braun Melsungen AG, 4617100V) and a Sterican<sup>®</sup> 0.90 x 0.40 mm cannula (B. Braun Melsungen AG, 4657519) by 15-20 repetitions of drawing up the dissolved yeast cells through the cannula into the syringe and pushing the cells back to the 5 mL Eppendorf tube. Cell debris was removed by centrifugation  $(1,500 \text{ x g}, 5 \text{ min}, 4^{\circ}\text{C})$  and supernatant was transferred to a fresh 5 mL Eppendorf tube and subjected to two consecutive centrifugation steps at 3,000 x g for 5 min at 4°C. Afterwards mitochondria were pelleted by centrifugation at 20,913 x g for 5 min at 4°C. Mitochondrial pellet was suspended in 3.5 mL SEM buffer and subjected to a low-speed centrifugation (3,000 x g for 5 min at 4°C). Supernatant was transferred to a fresh 5 mL Eppendorf cup and mitochondria were collected by centrifugation at 20,913 x g for 5 min at 4°C. Mitochondria were dissolved in 200 μL of SEM buffer and protein concentration was determined using the Bradford assay. Afterwards, mitochondria were aliquoted, snap frozen in liquid nitrogen and stored at -80°C.

#### Subcellular fractionation for biochemical validation of subcellular protein localization

70  $OD_{600}$  of cells (corresponds to 70 mL of cultured cells grown to an  $OD_{600}$  of 1.0) were harvested by centrifugation at 3,000 x g for 5 min at 25°C. Cells were suspended in 2 mL DTT buffer and incubated for 20 min at 30°C. Afterwards, yeast cells were collected by centrifugation (3,000 x g, 5 min, 25°C) and suspended in 1 mL of zymolyase buffer containing 8 mg/mL Zymolyase<sup>®</sup>-20T (Nacalai Tesque Inc.). Spheroplasts were pelleted by centrifugation (1,500 x g, 5 min, 25°C) and suspended in 2 mL of homogenization buffer. Cells were opened by 20 strokes with a PTFE pestle (Sartorius, BBI-8542708) in a 5 mL Homogenizer Vessel (Sartorius, BBI-8542309) on ice. Cell debris, nuclei and intact cells were pelleted (1,500 x g, 5 min, 4°C) and supernatant (containing crude mitochondria) was subjected to another 10 strokes. Half of the post-nuclear supernatant (PNS) was precipitated with trichloroacetic acid (TCA) and dissolved in 2x SDS sample (120 mM Tris-HCl [pH 6.8], 4% [w/v] SDS, 20% [v/v] glycerol, 0.02% [w/v] bromphenolblue) supplemented with 10 mM DTT and 2 mM of PMSF. Mitochondria were isolated from the other half of the PNS by centrifugation at 13,000 x g for 10 min at  $4^{\circ}$ C. To remove loosely attached proteins of other cellular compartments from the surface of mitochondria, mitochondria were suspended in 200  $\mu$ L of SEM buffer, loaded onto 500  $\mu$ L of S<sub>500</sub>EM (500 mM sucrose, 1 mM EDTA, 10 mM MOPS-KOH [pH 7.2]) and re-isolated by centrifugation (13,000 x g for 10 min at 4°C). The mitochondrial pellet (Mito) was dissolved in 200 µL of 2x SDS sample buffer supplemented with 10 mM DTT and 2 mM of PMSF. For isolation of microsomal fraction, the supernatant was subjected to ultracentrifugation at 100,000 x g for 1 h at 4°C. The microsomal pellet (P100) was suspended in 200 µL of 2x SDS sample buffer supplemented with 10 mM of DTT and 2 mM of PMSF whereas the supernatant (S100) was treated with trichloroacetic acid before addition of SDS sample buffer. 20 µL of PNS, 20 µL of Mito, 23 µL of P100 and 23 µL of S100 fractions were subjected to SDS-

PAGE.

#### Protease accessibility assay

For the global analysis of the suborganellar localization of mitochondrial proteins by quantitative MS, gradientpurified mitochondria (100 µg per replicate, 5 mg/mL) obtained from heavy SILAC-labeled (replicates 1 and 3) or unlabeled cells (replicate 2) were treated with (i) protease only (referred to as S1), (ii) protease following rupture of

the outer membrane (OM) using digitonin (S2), and (iii) protease following lysis of mitochondria using Triton X-100 (S3). Same amounts of mitochondria from differentially SILAC-labeled cells (replicates 1 and 3, unlabeled; replicate 2, heavy labeled) remained untreated and served as control (M). For the perforation of OM, mitochondria were incubated with digitonin (0.1% [w/v] final concentration) for 3 min at  $4^{\circ}$ C. Membrane perforation was stopped by adding the 14-fold volume of SEM buffer. To lyse mitochondria, Triton X-100 was added to a final concentration of 1% (w/v) and samples were incubated for 10 min at 4°C. Volumes of all samples were adjusted with SEM buffer to the volume of S2. For the digestion of accessible proteins in S1, S2, and S3, trypsin and proteinase K were added (final concentration of 5 µg/mL each) and samples were incubated for 15 min at 4°C. Proteases were inactivated by adding PMSF (1 mM final concentration) and incubation for 15 min at 4°C. Mitochondria (M, S1) and mitoplasts (S2) were collected by centrifugation (10 min, 12,000 x g, 4°C), layered with SEM buffer containing 1 mM PMSF to inactivate residual protease activity, and recollected by centrifugation (10 min, 12,000 x g, 4°C). Pellets were resuspended in 100 µL SDS sample buffer containing 50 mM DTT and 1 mM PMSF and boiled for 20 min at 94°C. Proteins in S3 were precipitated by adding TCA (15% [w/v], final concentration) followed by incubation for 30 min at 4°C and centrifugation (15 min, 14,000 x g, 4°C). The resulting pellets were washed with 80% ice-cold acetone (v/v) and centrifuged again (15 min, 14,000 x g, 4°C). Supernatants were carefully removed and the pellets were resuspended in 100 µL SDS sample buffer containing 50 mM DTT and 1 mM PMSF and boiled for 20 min at 94°C. S1, S2, and S3 were each mixed with equal amounts of M for subsequent quantitative MS analysis (see Figure S1C). This experiment is referred to as 'submitochondrial profiling experiment' in this work.

#### Swelling assay for determination of submitochondrial protein localization

Crude mitochondria were suspended in SEM buffer and split into samples of equal volume (each sample containing 50-70  $\mu$ g of mitochondria). Half of the samples were subjected to hypoosmotic swelling by addition of 8 volumes of EM buffer. The other half of the samples were diluted with the same volume of SEM buffer (mitochondria were left intact). Where indicated, samples were treated with proteinase K (final concentration: 7  $\mu$ g/mL) for 15 min on ice. PMSF was added to all samples to a final concentration of 2.5 mM. Mitochondria were washed with SEM buffer and dissolved in 2x SDS sample buffer supplemented with 2% (v/v) of  $\beta$ -mercaptoethanol and 2 mM of PMSF. Samples were analyzed by SDS-PAGE and immunoblotting. To control for protein aggregates, 70  $\mu$ g of mitochondria were suspended in 50  $\mu$ L of 1% Triton X-100 (diluted in SEM buffer) and incubated on ice for 7 minutes. Where indicated, samples were subjected to proteinase K treatment for 15 min at a final concentration of 7  $\mu$ g/mL. Protease

was inhibited by the addition of PMSF to a final concentration of 2 mM. After addition of SDS sample buffer, samples were separated by SDS-PAGE and analyzed by immuoblotting.

#### Purification of mitochondrial protein complexes using IgG and HA affinity chromatography

Two milligram of wild-type and Protein A-tagged mitochondria, respectively, were suspended in 2 mL of solubilization buffer (1% [w/v] digitonin, 20 mM Tris-HCl [pH 7.4], 50 mM NaCl, 10% glycerol, 0.1 mM EDTA) supplemented with 1.5 mM PMSF and 1x cOmplete<sup>TM</sup>, EDTA-free Protease Inhibitor Cocktail (F. Hoffmann-La Roche AG). Mitochondria were incubated end-over-end for 30 min at 4°C. Non-solubilized material was removed by centrifugation. Afterwards, 50  $\mu$ L of solubilized mitochondria were mixed with 12.5  $\mu$ L of 4x SDS sample buffer containing 4% (v/v)  $\beta$ -mercaptoethanol and 4 mM PMSF (Load fraction).

For co-immunoprecipitation of Protein A-tagged mitochondrial proteins, 150 µL of 50% slurry human IgG-coupled Sepharose beads were equilibrated with solubilization buffer, mixed with solubilized mitochondria and incubated end-over-end for 2 h at 4°C. After binding of Protein A-tagged proteins to IgG, beads were re-collected by centrifugation (100 x g, 1 min, 4°C) and transferred to Mobicol Mini-Columns. To remove unspecifically-bound proteins beads were washed 12 times with 500 µL of wash buffer (0.1-0.3% [w/v] digitonin, 20 mM Tris-HCl [pH 7.4], 60 mM NaCl, 10% glycerol, 0.5 mM EDTA) supplemented with 1.5 mM PMSF and 1x cOmplete<sup>TM</sup>, EDTAfree Protease Inhibitor Cocktail (F. Hoffmann-La Roche AG). Specifically bound proteins were eluted by the addition of 10 µL of AcTEV Protease (Thermo Fisher Scientific Inc.) in 150 µL of wash buffer, followed by vigorous shaking at 4°C for 16 h. For removal of His-tagged AcTEV protease from elution mixture, 10 µL of Ni-NTA agarose (Qiagen N.V.) were equilibrated with wash buffer and added to eluate, followed by vigorous shaking for 30 min at 4°C. Eluted mitochondrial proteins were collected by centrifugation (200 x g, 1 min, 4°C). To remove residual proteins, another 50 µL of wash buffer was added to the IgG-coupled Sepharose beads and collected by centrifugation yielding a total of 215  $\mu$ L of eluate. 115  $\mu$ L of eluate were mixed with 30  $\mu$ L of 4x SDS sample buffer. For the analysis of protein complexes by SILAC-based quantitative MS, 100 µL of eluates obtained from differentially labeled wild-type cells and cells expressing the Protein A-tagged bait were mixed and analyzed by LC-MS.

For co-immunoprecipitation from <sub>HA</sub>Tmh11 and corresponding wild-type mitochondria one milligram of mitochondria were used per strain. They were suspended in 1 mL of solubilization buffer (supplemented with 1 mM PMSF) and incubated end-over-end for 30 min at 4°C. After removal of non-solubilized material by centrifugation,

20  $\mu$ L of supernatant were mixed with 20  $\mu$ L of 2x SDS sample buffer containing 2% (v/v)  $\beta$ -mercaptoethanol and 2 mM PMSF (Load fraction). HA-tagged proteins were bound to 100  $\mu$ L of pre-equilibrated anti-HA Affinity Matrix slurry (F. Hoffmann-La Roche AG, 11815016001) by incubation end-over-end for 1 h at 4°C. Samples were washed 10 times with 600  $\mu$ L of HA wash buffer (0.1% [w/v] digitonin, 20 mM Tris-HCl [pH 7.4], 50 mM NaCl, 10% glycerol, 0.1 mM EDTA, 1 mM PMSF) and proteins were eluted in 200  $\mu$ L of 1x SDS sample buffer and afterwards supplemented with 1% (v/v) of  $\beta$ -mercaptoethanol.

#### SDS-PAGE and tryptic in-gel digestion

Mixtures of crude mitochondrial fractions and gradient-purified mitochondria obtained in pure/crude experiments (n = 4) were boiled in SDS sample buffer for 5 min at 94°C. Proteins (25  $\mu$ g each per gel lane) were separated on 4 - 12% NuPAGE<sup>TM</sup> Bis-Tris and Novex<sup>TM</sup> 16% Tricine gels (Thermo Fisher Scientific) according to the manufacturer's protocol. Following visualization of proteins using colloidal Coomassie Brilliant Blue, gel lanes were cut into 18 slices of equal size. Slices were washed and destained by alternatingly incubating them with 10 mM NH<sub>4</sub>HCO<sub>3</sub> and 50% (v/v) acetonitrile (ACN)/10 mM NH<sub>4</sub>HCO<sub>3</sub> (10 min at RT each). Cysteine residues were reduced (10 mM DTT/10 mM NH<sub>4</sub>HCO<sub>3</sub>, 30 min at 56°C) and alkylated (50 mM iodoacetamide/10 mM NH<sub>4</sub>HCO<sub>3</sub>; 30 min at RT in the dark) followed by proteolytic digestion of proteins using trypsin (60 ng per slice; overnight at 37°C). Peptides were eluted with 0.05% (v/v) trifluoroacetic acid (TFA)/50% (v/v) ACN, dried *in vacuo* and resuspended in 15  $\mu$ L 0.1% TFA prior to LC-MS analysis. Samples obtained in submitochondrial profiling experiments (n = 3; 25  $\mu$ g of mixed treated and untreated mitochondria per gel lane) were separated using 4 - 12% NuPAGE Bis-Tris gradient gels and processed as described above except that lanes were cut into 24 slices each.

#### **Proteolytic in-solution digestion**

Proteins of pure/crude, subcellular profiling, and q-AP-MS experiments were acetone-precipitated and resuspended in 8 M urea/50 mM NH<sub>4</sub>HCO<sub>3</sub>. Samples of the absolute quantification experiment were adjusted to 8 M urea and 50 mM NH<sub>4</sub>HCO<sub>3</sub> by directly adding the required amounts of the chemicals to the samples. Cysteine residues were reduced with 5 mM Tris(2-carboxyethyl)phosphine (30 min, 37°C) and free thiol groups were subsequently alkylated with 50 mM iodoacetamide/50 mM NH<sub>4</sub>HCO<sub>3</sub> (30 min at RT in the dark). The alkylation reaction was quenched by adding DTT to a final concentration of 25 mM. For proteolytic digestion, urea concentration was adjusted to 4 M (LysC), 1.6 M (trypsin), or 1 M (AspN, chymotrypsin, GluC) using 50 mM NH<sub>4</sub>HCO<sub>3</sub>. Proteases were added at a protease-to-protein ratio of 1:50 for trypsin, 1:100 for chymotrypsin, LysC, and GluC, or 1:150 for AspN. Proteins were digested overnight at 37°C. In case of LysC/trypsin double-digestion, incubation with LysC was performed for 4 h (37°C) followed by incubation with trypsin overnight (37°C). Proteolysis was stopped by acidifying the samples with 100% TFA. For the direct analysis (i.e. without further sample fractionation, referred to as '1-shot' analysis) of peptides from pure/crude and subcellular profiling experiments, 10  $\mu$ g of protein were digested. Acidified peptides were cleared by centrifugation (5 min, 12,000 x g, RT) and one-fifth of each digest was analyzed by LC-MS. For the analysis of peptide samples that were further fractionated by strong cation exchange chromatography (SCX) or high pH reversed-phase (RP) chromatography, 300  $\mu$ g of protein were digested and peptides were desalted using C18 cartridges (3M Empore, St. Paul, USA) according to the manufacturer's protocol and dried *in vacuo*.

#### Strong cation exchange chromatography

Dried peptides of tryptic, chymotryptic, AspN, LysC, and GluC digests of differentially SILAC-labeled, mixed crude and gradient-purified mitochondria from pure/crude experiments (n = 4) were resuspended in 500  $\mu$ L SCX buffer (10 mM KH<sub>2</sub>PO<sub>4</sub> [pH 3.0], 25% [v/v] ACN) and loaded onto cation exchange mini-columns (POROS<sup>TM</sup> 50 HS strong cation exchange resin; 4 x 15 mm; particle size, 50  $\mu$ m; AB Sciex) equilibrated with SCX buffer. Peptides were eluted step-wise with 35, 55, 75, 100, 125, 150, 200, 250 and 350 mM KCl in SCX buffer (500  $\mu$ L each). The resulting nine fractions were lyophylized. Peptides were resuspended in 500  $\mu$ L 0.5% (v/v) acetic acid, desalted using StageTips, dried in vacuo, and resuspended in 60  $\mu$ L of 0.1% TFA, of which 15  $\mu$ L were analyzed by LC-MS.

#### High pH reversed-phase chromatography

High pH RP chromatography (Delmotte et al., 2007; Lasaosa et al., 2009) was used for the fractionation of peptides derived from pure/crude samples and from samples of the absolute quantification experiment. Tryptic peptides of mitochondrial fractions were resuspended in 99% solvent A (72 mM triethylamine, 52 mM acetic acid, pH 10) and 1% solvent B (72 mM triethylamine and 52 mM acetic acid in ACN) and loaded onto a Gemini-NX column (150 mm x 2 mm inner diameter, particle size 3 µm, pore size 110 Å; Phenomenex, Aschaffenburg, Germany) using an Ultimate 3000 HPLC system (Thermo Fisher Scientific, Dreieich, Germany) at a flow rate of 200 µL/min and a column temperature of 40°C. For peptide separation, a gradient of 1 - 55% solvent B (starting after 5 min) in 55 min followed by 55 - 70% B in 2 min and 2 min at 70% B was used. Fractions were collected in 30 s intervals starting at minute 8.5 and ending at minute 56.5 and pooled into 30 non-contiguously concatenated fractions by combining

every 30st fraction. Peptides of mixed cell lysates, generated by a LysC/trypsin double digestion, were resuspended in 99% solvent A' (10 mM NH<sub>4</sub>OH, pH 10) and 1% solvent B' (10 mM NH<sub>4</sub>OH in 90% [v/v] ACN) and loaded onto a Gemini-NX column as described above. Peptides were eluted by applying a gradient of 1 - 54% solvent B' (starting after 5 min) in 53 min followed by 54 - 78% B' in 5 min, 5 min at 78% B', and 78 - 1% B' in 7 min. Fractions were collected in 40 s intervals between minute 1 and minute 73 in a non-contiguous, concatenated way resulting in a total of 12 fractions. Peptides of all high pH RP chromatography experiments were lyophylized, washed with 70% (v/v) ACN, dried again *in vacuo*, and resuspended in 60  $\mu$ L (pure/crude experiments) or 150  $\mu$ L (absolute quantification experiments) of 0.1% TFA, of which 15  $\mu$ L were analyzed by LC-MS.

#### LC-MS analysis

Peptide mixtures were analyzed by nano-HPLC-ESI-MS/MS using an LTQ Orbitrap XL, an Orbitrap Elite, or a Q Exactive instrument (Thermo Fisher Scientific, Bremen, Germany) each directly coupled to an UltiMate 3000 RSLCnano HPLC system (Thermo Fisher Scientific, Dreieich, Germany). Peptides were washed and preconcentrated on PepMap<sup>TM</sup> C18 precolumns (5 mm x 300 µm inner diameter; Thermo Scientific) and separated using AcclaimPepMap<sup>TM</sup> RSLC columns (50 cm x 75 µm inner diameter; pore size, 100 Å; particle size, 2 µm) at a flow rate of 250 nl/min and 40 - 43°C. For peptide elution, binary solvent systems were used consisting of (i) 0.1% (v/v) formic acid (FA)/4% (v/v) DMSO (solvent A) and 0.1% (v/v) FA/4% (v/v) DMSO/48% (v/v) methanol/30% (v/v) ACN (solvent B) for LC-MS analyses using the LTQ Orbitrap XL and Orbitrap Elite or (ii) 0.1% (v/v) FA (solvent A') and 0.1% (v/v) FA/86% (v/v) ACN (solvent B') for measurements using the Q Exactive. Length and slope of the gradients were adjusted according to the complexity of individual samples. Peptide mixtures of pure/crude experiments, obtained following various protein and peptide fractionation methods, were analyzed at the Orbitrap Elite using the LC gradients detailed in the following. Tryptic peptides, analyzed without fractionation, were eluted with a gradient of 5 - 25% solvent B in 115 min followed by 25 - 45% in 110 min, 45 - 60% in 50 min, 60 - 80% in 20 min, 80 - 99% in 10 min, and 5 min at 99%. Peptides derived from tryptic in-gel digests were separated with 1 -65% solvent B in 50 min, 65 - 95% in 5 min and 5 min at 95%. For the separation of peptides collected by high pH RP chromatography, a gradient ranging from 1 - 67.5% solvent B in 50 min, 67.5 - 95% in 5 min, and 5 min at 95% was applied, and peptides of SCX samples were eluted with 1 - 40% solvent B in 55 min followed by 40 - 70% in 30 min, 70 - 99% in 10 min, and 5 min at 99%. Separation of tryptic peptides of absolute quantification experiments, analyzed at the Q Exactive, was performed using a gradient of 4 - 39% solvent B' in 195 min, 39 - 54% in 15 min, 54

- 95% in 5 min, and 5 min at 95%'. Tryptic peptides of subcellular profiling experiments, analyzed without fractionation at the Orbitrap Elite, were separated by applying a gradient ranging from 1 - 25% solvent B in 115 min, 25 - 45% in 110 min, 45 - 60% in 50 min, 60 - 80% in 20 min, 80 - 99% in 10 min, and 5 min at 99%. Tryptic peptides derived from submitochondrial profiling experiments were eluted with a gradient ranging from 1 - 65% solvent B in 70 min, 65 - 95% in 5 min, and 5 min 95% followed by MS analysis at the Orbitrap Elite (replicates 1 and 2) or with 4 - 40% solvent B' in 50 min, 40 - 95% in 5 min and 5 min at 95% when analyzed at the Q Exactive (replicate 3). For the separation of peptides from q-AP-MS experiments, a gradient of 1 - 30% solvent B in 65 min, 30 - 45% in 30 min, 45 - 70% in 25 min, 70 - 99% in 15 min, and 5 min at 99% was applied followed by MS analysis at the Orbitrap Elite (Aim11, Coq21, Iai11, Rci37 and Rcf3 complexes) or the LTQ Orbitrap XL (Mco10 and Rci50 complexes). Replicate 1 of Coq21, Rci37, and Rcf3 complexes were analyzed in two technical replicates. Mass spectrometers were equipped with a Nanospray Flex ion source with DirectJunction (Thermo Scientific; Q Exactive and Orbitrap Elite) or a Finnigan Nanospray ion source with dynamic NSI probe (Thermo Scientific; LTQ-Orbitrap XL) and stainless steel (Thermo Scientific) or fused silica emitters (New Objective, Woburn, USA). MS instruments were externally calibrated using standard compounds. The Orbitrap Elite was operated with the following mass spectrometric parameters: MS survey scans ranging from m/z 370 - 1,700 were acquired in the orbitrap at a resolution (R) of 120,000 (at m/z 400). Automatic gain control (AGC) was set to 1 x 10<sup>6</sup> ions and the maximum injection time (IT) to 200 ms. A TOP15 (samples of pure/crude experiments fractionated by SDS-PAGE), TOP20 (pure/crude samples fractionated by high pH RP and samples of submitochondrial profiling experiments), or TOP25 method (all other samples) was used for low energy collision-induced dissociation (CID) of multiply charged precursor peptides in the linear ion trap applying a normalized collision energy (NCE) of 35%, an activation q of 0.25, an activation time of 10 ms, an AGC of 5 x  $10^3$ , and a max. IT of 150 ms. Singly charged precursor peptides were generally rejected from fragmentation, except for the analysis of samples derived from SCX experiments, which were additionally analyzed allowing fragmentation of singly charged precursor peptides to increase the likelihood to identify small mitochondrial proteins. The dynamic exclusion time (DE) for previously fragmented precursors was set to 45 s. For analyses at the Q Exactive, the following parameters were applied: MS scans, m/z 375 - 1,700; R, 70,000 (at *m/z* 200); AGC, 3 x 10<sup>6</sup> ions; max. IT, 60 ms; TOP12 (samples of submitochondrial profiling experiments) or TOP15 method (samples of absolute quantification experiments) for higher energy collisional dissociation (HCD) of precursor peptides ( $z \ge 2$ ) in the orbitrap; NCE, 28%; AGC, 1 x 10<sup>5</sup> ions, max. IT, 120 ms; DE, 45 s. LTQ Orbitrap XL parameters were as follows: MS scans, m/z 370 - 1,700; R, 60,000 (at m/z 400); AGC, 5

x 10<sup>5</sup> ions; max. IT, 500 ms; TOP5 CID method for fragmentation of precursor peptides ( $z \ge 2$ ); NCE, 35%; activation q, 0.25; activation time, 30 ms; AGC, 1 x 10<sup>4</sup> ions, max. IT, 100 ms; DE, 45 s.

#### MS data analysis

For peptide and protein identification and quantification, mass spectrometric raw data were processed using the MaxQuant software package (version 1.5.3.12) with its integrated search engine Andromeda (Cox and Mann, 2008; Cox et al., 2011). MS/MS data of different experiments (i.e., pure/crude, absolute quantification, subcellular and submitochondrial profiling, and q-AP-MS experiments) were searched separately against a custom-made protein database containing all entries of the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/, downloaded 02/04/2016; 6,726 entries including protein sequences of verified, uncharacterized, and dubious open reading frames [ORFs]) and 47 entries for putative small ORFs reported by Smith et al. (2014). Data were also correlated with a list of common contaminants provided by MaxQuant. Database searches were performed with mass tolerances of 4.5 ppm for precursor and 0.5 Da (CID data) or 20 ppm (HCD data) for fragment ions and the appropriate enzymatic specificity allowing two (AspN), three (trypsin/P, LysC), or four missed cleavages (chymotrypsin, GluC). The cleavage sites for chymotrypsin were defined as C-terminal to tyrosine, phenylalanine, tryptophan, leucine, and methionine. Acetylation of protein N-termini and oxidation of methionine were considered as variable and carbamidomethylation of cysteine residues as fixed modification. Arg10 and Lys8 were set as heavy labels and Arg6/Lys4 as medium-heavy labels. The options 'requantify', 'match between runs' (match from and to), and 'iBAQ' were generally enabled except for the analysis of data from subcellular profiling experiments ('requantify' disabled) and submitochondrial profiling experiments ('match between runs' and 'iBAQ' disabled). For the analysis of data from submitochondrial profiling experiments, which were analyzed following a gel-based approach, each gel slice (n = 24 per replicate; 3 replicates) was defined as individual 'experiment' in the experimental design template. Proteins were identified based on at least one unique peptide with a length of six amino acids and a maximum mass of 4,600 Da or 6,000 Da (for data from pure/crude experiments only). Lists of peptides and proteins identified by MaxQuant were filtered applying a false discovery rate of 0.01. Proteins identified by the same set of peptides were combined to a single protein group by MaxQuant. For SILAC-based protein quantification, at least one unique peptide and a minimum ratio count of one were required. Lists of all proteins identified and quantified in individual experiments are provided in Table S2A (subcellular profiling), S2B and S2C (pure/crude data), S2D and S2E

(absolute proteome quantification under fermentable and non-fermentable growth conditions), S2F - S2H (submitochondrial profiling), and S2I (q-AP-MS data).

Mean protein abundance ratios for pure/crude experiments (n = 4) were calculated based on normalized peptide SILAC ratios determined by MaxQuant. For each replicate, the logarithmic pure/crude ratio (normalized) for a protein was computed as the median of log2 peptide ratios across values obtained for all different fractionation techniques. Ratios for two of the four replicates were inverted to account for the label switch. MaxQuant additionally reports non-normalized peptide ratios. In cases when the major population of proteins remains unchanged in abundance, the normalization may compensate for slight differences in the mixing of differentially SILAC-labeled samples by shifting the values to a median logarithmic ratio of zero per experiment. In the pure/crude experiment, however, the distribution of logarithmic ratios is not unimodal and includes a major population reflecting proteins of higher abundance in crude mitochondrial fractions compared to gradient-purified mitochondria with log pure/crude ratios < 0 (see *'Classification of proteins of the pure/crude dataset'* in 'Bioinformatics and statistics'). To take into account the bimodal distribution of the values, log pure/crude protein ratios based on normalized protein ratios for each replicate and subtracting the mean of that differences determined across all replicates.

For visualization of pure/crude data, mean  $\log_2$  ratios (pure/crude) were plotted against mean  $\log_2$  iBAQ values. Only proteins that were quantified in all four biological replicates with at least two fractionation techniques were considered for subsequent statistical and bioinformatics data analyses.

Protein copy numbers for cells grown on galactose, glycerin, or glucose were determined based on the MS intensities for light, medium-heavy, and heavy SILAC-labeled proteins according to the 'Proteomic Ruler' strategy (Wiśniewski et al., 2014) using Perseus (Tyanova et al., 2016) with the 'protemic ruler' plugin.

The analysis of data obtained in subcellular profiling experiments was based on MS intensities determined for proteins identified in cell lysates, the non-mitochondrial fraction PMS, crude and gradient-purified mitochondria. MS intensities of proteins in distinct subcellular fractions were normalized to the total intensity per fraction. For each protein and fraction, the mean of the normalized intensities across all replicates (n = 2 - 4) was determined. For visualization, the value of the subcellular fraction with the highest mean normalized intensity was set to one (see Figures 1B, 4E, and S5).

The setup of the MaxQuant analysis of data derived from submitochondrial profiling experiments enabled the quantification of each protein in each of the 24 gel slices per replicate. For each protein, the slice with the highest intensity for M (i.e., untreated gradient-purified mitochondria, serving as control) was determined and the SILAC

ratio for this slice was used for further data processing. In case a protein was missing from treated mitochondria in S1, S2, and S3 due to digestion by the proteases added to the sample and, thus, an S/M protein ratio could not be calculated for a slice, the ratio for this protein was set to 0.01. Mean SILAC ratios across all replicates (n = 2 - 3) were determined. For this, only ratios from adjacent gel slices were taken into account. For further bioinformatics analyses, proteins were required to exhibit ratios for all three experimental conditions in at least two replicates. Data used to analyze the topology of membrane proteins were derived from the MaxQuant peptides.txt results file. Putative membrane proteins were determined based on TMHMM predictions (information was retrieved from the SGD). For each peptide of these proteins, the intensities for each S1, S2, S3, and M across all gel slices were summed up and mean S/M intensity ratios per replicate were determined. In case a peptide intensity was given for M but missing for S, the S/M ratio was set to 0.01. For peptides quantified in at least two replicates, mean S/M intensity ratios across replicates were calculated. In peptide plots, the highest value was set to 1.3 (see Figures 5E and 5F).

#### **Bioinformatics and statistics**

*Gene Ontology annotations*. GO annotations for the domains 'biological process' (BP), 'cellular component' (CC) and 'molecular function' (MF) including child terms were downloaded from the SGD (date of download: 12/08/2016). To compile a list of proteins annotated as mitochondrial in the SGD, all entries of the database were searched for the GOCC term 'mitochondrion' (GO:0005739) including its child terms. The resulting list contained 1,178 proteins. To obtain information about mitochondrial subproteomes, we retrieved proteins annotated as OM (GO:0005741; 107 proteins), intermembrane space (IMS; GO:0005758; 61), inner membrane (IM; GO:0005743; 253), and matrix proteins (GO:0005759; 226). To compare the protein composition of crude mitochondrial fractions (Mito) and gradient-purified mitochondria (pMito), proteins identified in pure/crude experiments were assigned to a distinct subcellular localization based on GOCC terms (see Fig. 2B, Table S2B). Intensity-based absolute quantification (iBAQ) values, calculated by MaxQuant, were used as a measure for the abundance of proteins in crude and pure mitochondria. For each protein and replicate (n = 4), iBAQ values determined for different fractionation strategies were averaged and the mean across the replicates was calculated for pure and crude mitochondria. Mean iBAQ values of all proteins assigned to a distinct subcellular localization based to a distinct subcellular localization were summed up and the percentage of the overall iBAQ value in crude or pure mitochondria was determined.

*Classification of proteins of the pure/crude dataset.* Proteins quantified with at least two different fractionation techniques in all four replicates of pure/crude experiments (i.e., 3,365 proteins) were classified based on their

pure/crude SILAC ratios (log<sub>2</sub> values). To test for multimodal distribution of the pure/crude data, the 'Hartigan's dip test' was performed (using the 'bimodalitytest' package for R) and revealed two distributions with centers at mean log<sub>2</sub> (pure/crude) of -1.47 for distribution 1 (d1) and 0.31 for d2 (see Fig. S2H). The standard deviation was 0.83 for d1 and 0.08 for d2. For each distribution, 1,000,000 theoretical values were generated taking into account the respective standard deviations. We next determined for each protein present in the dataset to which of the two distributions it belongs using a two-sample two-sided equivalence test (R package 'equivalence') with a significance threshold (p value) of < 0.01. As a result, 544 proteins were assigned to d1 and 812 proteins to d2 (see Table S2B). The remaining proteins were classified based on a two-sample two-sided t test (p value < 0.01; R package 'stats'). 34 of these proteins were determined to be outliers of d1 only and, thus, assigned to d2. Vice versa, 1,515 proteins were outliers of d2 only and assigned to d1. 460 proteins were outliers of both d1 and d2. These proteins were distributed at ratios < d1 (referred to as OL1), between d1 and d2 (OL2), and at ratios > d2 (OL3). Based on this classification, four distinct classes were defined for the pure/crude dataset: proteins of d2 and OL3 were combined to class 1 and proteins of OL2, d1, and OL1 are defined as class 2, class 3, and class 4, respectively. Proteins of class 1 were further filtered based on sequence coverage and standard deviation calculated for mean  $\log_2$  (pure/crude) abundance ratios across all replicates, i.e. proteins with a sequence coverage of < 20% and a standard deviation of > 0.75 were removed (i.e., 113 proteins).

*Clustering analysis*. Data obtained in absolute quantification and submitochondrial profiling experiments (see Figs. 3 and 5) were subjected to *k*-means clustering to group proteins showing similar characteristics and low variance in the respective experiment. For absolute quantification experiments, clustering was based on absolute protein copy numbers determined for yeast grown on galactose (Gal), glycerin (Gly), or glucose (Glc). Only proteins for which copy numbers were determined for all carbon sources in all replicates (n = 3) were considered. For each protein, ratios of mean log<sub>2</sub> copy numbers Gal/Glc and Gly/Glc were calculated. To reveal proteins with significant carbon source-dependent changes in copy numbers, an analysis of variance (ANOVA) test was performed between the Gal/Glc and Gly/Glc data (R package 'stats'). 1,576 proteins showed significant differences (p value  $\geq 0.05$ ) in protein copy numbers and were used for the *k*-means clustering analysis ('stats' package). The Davies-Bouldin index was used to determine the optimal number of clusters for this dataset (i.e., k = 14). Information about the proteins present in the clusters are provided in Table S2D. The clustering analysis of data from submitochondrial profiling experiments was based on SILAC ratios determined in protease accessibility assays for proteins of gradient-purified mitochondria treated with proteases (S1), digitonin and proteases (S2), or Triton X-100 and proteases (S3) versus

untreated mitochondria (M). For clustering, only proteins of class 1 as determined in pure/crude experiments that had S/M ratios for all three experimental conditions (i.e., S1 - S3) in at least two replicates (n = 3) were considered. Furthermore, proteins were required to (i) exhibit mean S/M ratios  $\leq 1.1$  (since due to the experimental design S/M ratios should not exceed a value of 1) and (ii) be decreased in abundance with increasing protease-accessibility of proteins (S3 > S2 > S1) with a tolerance of  $\pm 0.2$ . A total of 624 proteins met all criteria and were subjected to *k*-means clustering into 5 clusters, which was determined to be the optimal cluster number for this dataset. Information about the proteins present in the clusters are provided in Table S2F. Clusters defined for both absolute quantification and submitochondrial profiling experiments were further clustered by hierarchical clustering using the mean ratio of each cluster to reveal (dis)similarities between individual clusters ('stats' package).

*Gene Ontology overrepresentation analysis.* GO term overrepresentation analyses were based on GO terms retrieved from the SGD and were performed with an in-house developed script using all proteins quantified in the respective dataset as background. The two-sided Fisher's exact test was used to calculate mid p values. Raw mid p values were corrected for multiple testing by Benjamini-Hochberg adjustment and GO terms with a corrected mid p value of < 0.05 were considered enriched.

*Principal component analysis.* Proteins present in the OM, IMS/IM, and matrix/IMS clusters of the submitochondrial profiling experiment (see Fig. 5C) and further proteins meeting the criteria for signature plots (i.e. S1/M < 0.25 for OM proteins; S1/M > 0.25 and S2/M < 0.25 IMS/IM proteins; S1/M and S2/M > 0.25, S3/M < 0.25 for matrix/IM proteins) were subjected to principal component analysis. To this end, S1/M, S2/M, and S3/M protein ratios were  $log_2$ -transformed, analyzed using the R package 'stats' with the parameters 'center' and 'scale.' set to 'true', and visualized in two-dimensional scores plots depicting the two principal components providing the best visual separation of protein clusters on the x- and y-axes.

*Further bioinformatics tools*. An in-house developed software based on R was used to process MaxQuant result files, visualize data, and subsequently analyze the data using statistical and bioinformatics means as described. The following R packages were used: base, bimodalitytest, Biobase, clusterSim, clustpro, convert, curl, data.table, datasets, Deducer, devtools, diptest, dplyr, equivalence, flux, gage, GGally, ggbiplot, ggplot2, gplots, graphics, grDevices, grid, gtools, Hmisc, lattice, methods, outliers, pastecs, plotrix, reshape, reshape2, ROCR, scales, silvermantest, stats, stringr, utils, VennDiagram, Vennerable and xtable. Prediction of N-terminal mitochondrial targeting sequences was performed using MitoFates (Fukasawa et al., 2015). For sequence homology searches the HMMER web server was employed (Fin et al., 2015).

#### Subcellular in vivo localization of uncharacterized GFP-tagged proteins

C-terminally GFP-tagged yeast strains were grown over night in 50 mL YPD medium at 30°C to an OD<sub>600</sub> of 1.0. Subsequently, 2 OD<sub>600</sub> of yeast cells were harvested, washed with dH<sub>2</sub>O and suspended in 500 µL dH<sub>2</sub>O. 3 µL of yeast cell solution was dispersed on a microscope slide (Diagonal), covered with a microscope cover glass (Diagonal) and samples were analyzed immediately. Fluorescence microscopy was performed using the Olympus BX61 microscope (Olympus K.K.) equipped with the immersion oil objective UPLFLN 100x/1.3 (Olympus K.K.). Visualization of GFP was carried out using the 470/40 nm bandpass excitation filter, a 495 nm dichromatic mirror and a 525/50 nm bandpass emission filter. All digital recordings of cells were taken with the F-view CCD camera (Olympus Soft-Imaging Solutions GmbH) controlled by the Cell-P software (Olympus K.K.). Strains expressing N-terminally GFP-tagged mitochondrial proteins under the control of their native or the *sp*NOP1 promoter were grown in synthetic defined (SD) complete or SD -URA medium. Imaging of the strains was performed using a wide-field epi-fluorescent Olympus microscope with a 60X air objective (excitation, 490/20 nm; emission, 535/50 nm).

#### In vitro import of radiolabeled precursor proteins into mitochondria

[<sup>35</sup>S]-labeled precursor proteins were synthesized using the TnT<sup>®</sup> Quick Coupled Transcription/Translation System (Promega GmbH) or the Flexi<sup>®</sup> Rabbit Reticulocyte Lysate System (Promega GmbH). To this end, a PCR template encoding the respective ORF under the SP6 promoter was generated from yeast chromosomal DNA using forward primers containing the SP6 promoter followed by a sequence that corresponds to the 5'-UTR of the respective ORF and reverse primers that bind to the 3'-end of the ORF. The *TMH11* ORF was amplified from yeast chromosomal DNA and cloned into pGEM-4Z plasmid (Promega) using EcoRI and HindIII restriction enzymes. Transcription of respective ORFs from PCR templates was performed using the mMESSAGE mMACHINE<sup>®</sup> SP6 Transcription Kit (Thermo Fisher Scientific Inc.) and RNA was purified using the MEGAclear<sup>TM</sup> Transcription Clean-Up Kit (Thermo Fisher Scientific Inc.). The RNA served as template for *in vitro* translation reactions. For generation of [<sup>35</sup>S]Ybl039w-b, [<sup>35</sup>S]Ykl023c-a, [<sup>35</sup>S]Ykl065w-a, [<sup>35</sup>S]Yor114w and [<sup>35</sup>S]Yjr085c the PCR templates or the pGEM-4Z-Yjr085c plasmid were directly added to the TnT<sup>®</sup> Quick Coupled Transcription/Translation System. For import of radiolabeled precursor proteins, mitochondria were suspended in import buffer (3% [w/v] bovine serum albumin, 250 mM sucrose, 80 mM KCl, 5 mM MgCl<sub>2</sub>, 5 mM methionine, 2 mM KP<sub>i</sub>, 10 mM MOPS-KOH [pH 7.2]) supplemented with 4 mM ATP, 4 mM NADH and an ATP regenerating system (200 µg/mL creatine kinase, 10 mM creatine phosphate). Where indicated, membrane potential across the inner mitochondrial membrane was dissipated prior to import ( $-\Delta\psi$ ). To this end, import buffer was instead supplemented with 4 mM ATP, 1 µM valinomycin, 8 µM antimycin A, and 20 µM oligomycin (final concentrations). Import reaction was started by the addition of 5-10% [v/v] of *in vitro* translation/lysate system. If not stated otherwise, import in the presence of membrane potential ( $+\Delta\psi$ ) was stopped after 30 min by the addition of 1 µM valinomycin, 8 µM antimycin A, and 20 µM oligomycin (final concentrations). Mitochondria were pelleted by centrifugation, washed with SEM buffer and suspended in 48 µL of SEM buffer. Where indicated, mitochondria were subjected to hypoosmotic swelling and/or protease treatment (7 µg/mL in SEM or EM buffer, see above). After inhibition of proteinase K activity by 2 mM PMSF, mitochondria were re-isolated and analyzed by SDS-PAGE or blue native gel electrophoresis and digital autoradiography.

#### Analysis of protein complexes by Blue Native gel electrophoresis

Mitochondria were solubilized in 1% digitonin buffer (20 mM Tris-HCl [pH 7.4], 0.1 mM EDTA, 50 mM NaCl, 10% [v/v] glycerol, 1% [w/v] digitonin, 1 mM PMSF) and incubated for 15 min on ice. Non-solubilized material was removed by centrifugation, blue native loading dye was added (final concentration: 100 mM Bis-Tris-HCl [pH 7.0], 50 mM  $\varepsilon$ -amino n-caproic acid, 0.5% [w/v] Coomassie G-250) and samples were subjected to 6–16.5 or 3–13% discontinuous polyacrylamide gels.

#### Generation of whole yeast cell extracts of S. cerevisiae

S. cerevisiae cells were grown overnight in 5-7 mL of YPG or YPD medium in 13 mL cell culture tubes (Sarstedt AG & Co. KG, 62.515.006). 2.5 OD<sub>600</sub> of cells were pelleted (4,000 x g for 2 min at 25°C) and suspended in 200  $\mu$ L of 100 mM NaOH, followed by 5 min incubation at 25°C (Kushnirov, 2000). Cells were collected by centrifugation (4,000 x g for 2 min at 25°C), suspended in 75-150  $\mu$ L of 2x SDS sample buffer supplemented with 2% (v/v)  $\beta$ -mercaptoethanol and incubated at 95°C for 3 min. Samples were centrifuged at 13,000 x g for 5 min at 25°C and a fraction of the supernatant was subjected to SDS-PAGE.

#### Miscellaneous

Radiolabeled proteins that had been separated by blue native gel electrophoresis or SDS-PAGE were visualized by autoradiography using the FLA-9000 (Fujifilm Holdings K.K.) and Typhoon FLA 7000 (GE Healthcare AG) image scanners as well as the Multi Gauge (Fujifilm) or ImageJ 1.49v software.

# PCR primers used in this study

| Name         | Sequence $(5' \rightarrow 3')$                                                              | Description                                                                                                                                                                                                                          |  |  |
|--------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S3-Aim11_fw  | TAAGCAATTGCAAGACCTCCTGT<br>CGAGCGAAAACAACAAGCGTAC<br>GCTGCAGGTCGAC                          | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N-terminal overhang for 3'-end of<br><i>AIM11</i> ORF and C-terminal overhang<br>for <i>AIM11</i> terminator                             |  |  |
| S2-Aim11_rv  | CATTATTTACAGTTTAAAGAGAT<br>TAAGCCAATGCGTAGTGATCGAT<br>GAATTCGAGCTCG                         |                                                                                                                                                                                                                                      |  |  |
| S3-DEG1_fw   | ATGGAACCTGTCGAAGTTGTTAA<br>TGCTAAATACTCCAAGAAAAAGA<br>ACAACAAAAATAAGCGTACGCTG<br>CAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                               |  |  |
| S2-DEG1_rv   | AGCACGTGATGAAAAGAAATATA<br>GTCTTCAAGGTTATATTATA                                             | terminal overhang for 3'-end of <i>DEG1</i><br>ORF and C-terminal overhang for<br><i>DEG1</i> terminator                                                                                                                             |  |  |
| S3-ECM4_fw   | ACAAGGATCAACCCCTTGGGAAT<br>TACGCCCCTGGGACCCAAGCCAG<br>ATATTCGTCCTTTACGTACGCTGC<br>AGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                               |  |  |
| S2-ECM4_rv   | GTATAGAAAAAGAGGCAACTCA<br>GGGAGATTATAGACATTTGATTA<br>TTTAATTACAGCTTGATCGATGA<br>ATTCGAGCTCG | terminal overhang for 3'-end of <i>ECM4</i><br>ORF and C-terminal overhang for<br><i>ECM4</i> terminator                                                                                                                             |  |  |
| S3-ECM19_fwd | TTATCATCCACACCAGCTGCACC<br>ACCTACACCACCTACACCTCCTA<br>CTCCACCACAACAGCGTACGCTG<br>CAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of<br><i>ECM19</i> ORF and C-terminal overhang<br>for <i>ECM19</i> terminator |  |  |
| S2-ECM19_rev | TTTACTATTGATGCTATATACAGG<br>AAAAGAAAGTATAGAGGTATTTT<br>CTAGTACGCTTCCATCGATGAAT<br>TCGAGCTCG |                                                                                                                                                                                                                                      |  |  |
| S3-FMP16_fw  | TTGAAAAAAAAAGGGAGATGACG<br>CTAGAATCGAACAAAACAGGCCA<br>GATGACGGTGTTTATCGTACGCT<br>GCAGGTCGAC | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid                                                                                                                                                  |  |  |
| S2-FMP16_rv  | GAATATAGATATGTGTATGACAG<br>AAACTACATGCATATACGAGTTT<br>GTACCAAGTGCTTCATCGATGAA<br>TTCGAGCTCG | <i>FMP16</i> ORF and C-terminal overhang for <i>FMP16</i> terminator                                                                                                                                                                 |  |  |
| S3-FYV4_fwd  | TTTGGTGGTGAGAGGAAGAGAAA<br>GGCATTTACTGCTAAATGGAAAG<br>CTGAAAACAAGCAACGTACGCTG<br>CAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                               |  |  |
| S2-FYV4_rev  | TATGGAGTATAATGTGAACATAT<br>ACGTATACATGTATATATTGAGA<br>TCTTGCGAAAGCGTATCGATGAA<br>TTCGAGCTCG | terminal overhang for 3'-end of <i>FYV4</i><br>ORF and C-terminal overhang for<br><i>FYV4</i> terminator                                                                                                                             |  |  |
| S3-MEU1_fw   | CCAGAGGCTATGTCCAAGGAAAC<br>CTTAGAAAGACTAAGATACTTAT<br>TTCCAAACTATTGGCGTACGCTG<br>CAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of <i>MEU1</i>                                                                |  |  |
| S2-MEU1_rv   | TTCCATAGCTATATATGTTTTCTC<br>TCCTATTTATATTTTACATATGAT                                        | ORF and C-terminal overhang for <i>MEU1</i> terminator                                                                                                                                                                               |  |  |

|              | TAGCGGCAACCAATCGATGAATT<br>CGAGCTCG                                                          |                                                                                                                                                                                                                                    |  |  |
|--------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S3-MLO1_fwd  | AATATGAAATCGGGTAGTAGGTT<br>CAGTCACCCCAGCTTTAAACAAT<br>TGTTAATACAGAAGCGTACGCTG<br>CAGGTCGAC   | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                             |  |  |
| S2-MLO1_rev  | ATGATCGGAAGAAACGGTGTGCG<br>CGGCGGAGGGAAGCGAAAAATT<br>GGGAAACGGAAGCAAATCGATG<br>AATTCGAGCTCG  | terminal overhang for 3'-end of <i>MLO1</i><br>ORF and C-terminal overhang for<br><i>MLO1</i> terminator                                                                                                                           |  |  |
| S3-MTC3_fwd  | ACTGCATTTTATAATTGGAAACA<br>AGATAAAAAGCTAGAGGAACAA<br>TTAAGGGATCTTGTACGTACGCT<br>GCAGGTCGAC   | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                             |  |  |
| S2-MTC3_rev  | AAATGAATAGAACGTACTCTGCG<br>CAAGCGCATATATATATATACTA<br>TTGTTGCTTCCAATATCGATGAAT<br>TCGAGCTCG  | terminal overhang for 3'-end of <i>MTC3</i><br>ORF and C-terminal overhang for<br><i>MTC3</i> terminator                                                                                                                           |  |  |
| S3-NCE101_fw | TTTACACGAGCTCATAAAGAAGC<br>GATGGGACGATCGCAAACGTACG<br>CTGCAGGTCGAC                           | Amplification of <i>3HA-kanMX6</i><br>fragment from pYM1 plasmid with N-<br>terminal everypage for 2 <sup>2</sup> and of                                                                                                           |  |  |
| S2-NCE101_rv | ATCGCCAGAAACTTATATATACT<br>CCCCTCACGCCGGATTAATCGAT<br>GAATTCGAGCTCG                          | terminal overhang for 3'-end of <i>FMP16</i> ORF and C-terminal overhang for <i>FMP16</i> terminator                                                                                                                               |  |  |
| S3-PXP2_fw   | TTGGCTATACTAATATCTCAGTG<br>GTGTGGTGTTAGTTGGAAATCTG<br>GTGTTGTAAAATTGCGTACGCTG<br>CAGGTCGAC   | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of <i>PXP2</i><br>ORF and C-terminal overhang for<br><i>PXP2</i> terminator |  |  |
| S2-PXP2_rv   | TTTTAATGAATAAGGGTACATAT<br>ATTATGAGCATAACGAGTGGCCG<br>ATCGGCAAAGGGGCATCGATGAA<br>TTCGAGCTCG  |                                                                                                                                                                                                                                    |  |  |
| S3-RDL2_fwd  | TATCCTGGTTCTATTACTGAGTGG<br>TTAGCTAAAGGTGGTGCTGACGT<br>TAAGCCCAAAAAACGTACGCTGC<br>AGGTCGAC   | Amplification of <i>TEV-ProtA-7HIS-</i><br>kanMX6 fragment from pYM9 plasmid                                                                                                                                                       |  |  |
| S2-RDL2_rev  | GAAATACACAAAAGGTTGTCTAT<br>ATACAGGATATATCGATTATACT<br>TGTTTCTTTTTGGCATCGATGAAT<br>TCGAGCTCG  | <i>RDL2</i> ORF and C-terminal overhang<br>for <i>RDL2</i> terminator                                                                                                                                                              |  |  |
| S3-Rrg9_fwd  | CAACAAACTATACATTTTGAAGC<br>ATTTGGGCTCGAAACAACGTACG<br>CTGCAGGTCGAC                           | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal overhang for 3 <sup>2</sup> and of                                                                                          |  |  |
| S2-Rrg9_rev  | ACAAGAAGTTTCGTAATAATATA<br>TAAATCCCTCAAAAGTGATCGAT<br>GAATTCGAGCTCG                          | <i>RRG9</i> ORF and C-terminal overhang<br>for <i>RRG9</i> terminator                                                                                                                                                              |  |  |
| S3-SMM1_fw   | ACCGATCACATAGGCAGTGACAC<br>TAAAAAGCAAAAGGTTGTACCCC<br>TTCCCACAGATATACGTACGCTG<br>CAGGTCGAC   | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                             |  |  |
| S2-SMM1_rv   | CATACATATATATATATATGCGCG<br>TTTTCTTTCATAATCCGTTCTTTTT<br>ACTTAGAATATAATCGATGAATT<br>CGAGCTCG | terminal overhang for 3'-end of <i>SMM1</i><br>ORF and C-terminal overhang for<br><i>SMM1</i> terminator                                                                                                                           |  |  |
| S3-SUA5_fw   | GAAGGATTAGCTGTTATGAACAG<br>ATTGCGAAAGGCGGCTGCAAATA                                           | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-                                                                                                                                                  |  |  |

|                 | ATTGTATACAGTTTCGTACGCTGC<br>AGGTCGAC                                                           | ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of <i>SUA5</i>                                                          |  |  |
|-----------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S2-SUA5_rv      | CTAGATATAAAATCTCCGTAATC<br>AGTGGTTATGATTTTCAAAAGTT<br>AATCACAGTTTTATATCGATGAA<br>TTCGAGCTCG    | ORF and C-terminal overhang for <i>SUA5</i> terminator                                                                                    |  |  |
| S3-TUM1_fw      | GGATCCTGGACCGAGTGGGTCTT<br>GAAATCCGGGCCCGAGTGGATTG<br>CTGAAAACAGAGATCGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                    |  |  |
| S2-TUM1_rv      | AGATAGATAATTAATATATGTAG<br>CTAAATAAATCGACTTGTCAAGA<br>ATATATTTCTCTTAATCGATGAAT<br>TCGAGCTCG    | terminal overhang for 3'-end of <i>TUM1</i><br>ORF and C-terminal overhang for<br><i>TUM1</i> terminator                                  |  |  |
| S3-YBL039W-B_f  | AATCGACTTCAACTCGAAGAGTA<br>AGAAAAAAAATGATAAACGTAC<br>GCTGCAGGTCGAC                             | Amplification of <i>3HA-kanMX6</i><br>fragment from pYM1 plasmid with N-                                                                  |  |  |
| S2-YBL039W-B_r  | TTTCCATGGCGTGCTTTTACCAAA<br>GTACTGAACAGGGAGAATCGATG<br>AATTCGAGCTCG                            | <i>YBL039W-B</i> ORF and C-terminal<br>overhang for <i>YBL039W-B</i> terminator                                                           |  |  |
| S3-YBL059W_f    | AAAAGAAGCCAGCAAGTAGTGG<br>ACAGCTTAGTTAAGACACACAAT<br>TCATCTCTTTGTAAACGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                    |  |  |
| S2-YBL059W_r    | ATGCGGGTAACACATATAAGTAG<br>TGGAATATATTATTGAAACTACT<br>ACTATGGTATAACAATCGATGAA<br>TTCGAGCTCG    | terminal overhang for 3'-end of<br><i>YBL059W</i> ORF and C-terminal<br>overhang for <i>YBL059W</i> terminator                            |  |  |
| S3-YBR201C-A_f  | TACTACAAGGACGAATTTTGTTC<br>TCAACGATCATACACCAGGTTTC<br>GTACGCTGCAGGTCGAC                        | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N-terminal overhang for 3'-end of             |  |  |
| S2-YBR201C-A_r  | CTCGGTAATTTTCTCCCTAATGAT<br>AACCCATATTTCGAAAGACTAT<br>CGATGAATTCGAGCTCG                        | <i>YBR201C-A</i> ORF and C-terminal overhang for <i>YBR201C-A</i> terminator                                                              |  |  |
| S3-YBR230W-A_fw | GGCCCTATCACAACGGGTCAAGA<br>AAGAGTATGCCGCCAATCGTACG<br>CTGCAGGTCGAC                             | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal overhang for 3 <sup>2</sup> and of |  |  |
| S2-YBR230W-A_rv | CCAAATATGTAAGTATATAAAAT<br>ATATGTATGTGTGTGCAATCGAT<br>GAATTCGAGCTCG                            | <i>YBR230W-A</i> ORF and C-terminal<br>overhang for <i>YBR230W-A</i> terminator                                                           |  |  |
| S3-YDR286C_f    | GAAGAAGACGATATCAGTGATAA<br>AATAAGGAGAATGCAATCTAGAC<br>GTACGCTGCAGGTCGAC                        | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal overhang for 3 <sup>2</sup> and of |  |  |
| S2-YDR286C_r    | TTATAAATATTTACAGTGTTGTAA<br>CTCTAGTAAAAAAAAAA                                                  | <i>YDR286C</i> ORF and C-terminal<br>overhang for <i>YDR286C</i> terminator                                                               |  |  |
| S3-YDR381C-A_f  | AGTGCTGTAACAAGAAAAAGAG<br>GTGACAAATTAGGTTTTTTAGAT<br>AGGAGGAGAAACGAGCGTACGC<br>TGCAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N-terminal overhang for 3'-end of             |  |  |
| S2-YDR381C-A_r  | GATGAATATATATATATACATAATA<br>CTGCATTGAAAAAAATGGATAGGT<br>TGATTAAACGTGTGATCGATGAA<br>TTCGAGCTCG | <i>YDR381C-A</i> ORF and C-terminal overhang for <i>YDR381C-A</i> terminator                                                              |  |  |
| S3-YDR461C-A_fw | CCGCATCCAAGATCCCACAAGGG<br>ATATCCGGGTGCGAAGACCCTTA                                             | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-                                                         |  |  |

|                 | CATATACTTCACGGCGTACGCTG<br>CAGGTCGAC                                                          | ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of                                                               |  |  |
|-----------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S2-YDR461C-A_rv | ACACGCTCATATATATATATATA<br>TATATATATGTATATGTACATA<br>TACCGCTTACCACATCGATGAAT<br>TCGAGCTCG     | <i>YDR461C-A</i> ORF and C-terminal overhang for <i>YDR461C-A</i> terminator                                                       |  |  |
| S3-YGL041W-A_f  | CAGTTAGGACCTGAACAACTGGC<br>CCCGCTAATGACCGTTTTAGGCC<br>TTGAGAAGAAAAAACGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid                                                |  |  |
| S2-YGL041W-A_r  | ATATTTATACACGGAAGGCGCTA<br>GTAAGACAGATAGGTAATGTTTT<br>TTTACTTTCACCTCATCGATGAAT<br>TCGAGCTCG   | <i>YGL041W-A</i> ORF and C-terminal overhang for <i>YGL041W-A</i> terminator                                                       |  |  |
| S3-YGR021W_f    | ACCACAGCGCTCGAGGACATCGA<br>CGAAGTGACGTCGTTGTACACTA<br>ACGCTAGCAACGCTCGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-             |  |  |
| S2-YGR021W_r    | TGTTTGTTTAGTATATACAGGTAT<br>TTGTGGTATTGATTATTTATTAC<br>GGTTTGGTTGGAATCGATGAATT<br>CGAGCTCG    | terminal overhang for 3'-end of<br>YGR021W ORF and C-terminal<br>overhang for YGR021W terminator                                   |  |  |
| S3-YGR053C_f    | GAAGATGTTGAACTGATCCATTA<br>CGAGAAGAAAATTGCCACTCGCG<br>GTGCATTTGCATGTCGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-             |  |  |
| S2-YGR053C_r    | TTTATGATGGTGTGTGTTTATTATTT<br>ACAAATAAAGATGCTATCTAATT<br>CTTGTATATCGTAATCGATGAATT<br>CGAGCTCG | terminal overhang for 3'-end of<br>YGR053C ORF and C-terminal<br>overhang for YGR053C terminator                                   |  |  |
| S3-YHL018W_f    | AGCGATATAGACGTCCGGATGGC<br>CAAGAGAATAGATTCCTACATCG<br>ATGAGATGACAACTCGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid                                                |  |  |
| S2-YHL018W_r    | AAAATCGATAGGAAAAAAAAA<br>TGGAAAGAGCAATAGCCTTTTAG<br>ACCTGCCCTGC                               | <i>YHL018W</i> ORF and C-terminal overhang for <i>YHL018W</i> or <i>YHL018W</i> terminator                                         |  |  |
| S3-YIL002W-A_fw | GTTCAGTTAGAAGATCTACACAG<br>GGACAACAATGATTTGGCAAAAA<br>GTTCCAGCCAAAAACGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His.hphNT1 plasmid with N              |  |  |
| S2-YIL002W-A_rv | AGATTATATATATAAATATATTTATT<br>TAGCGTTCCTTCCCTATGCGGCTG<br>TGAGCGTACTCTATCGATGAATT<br>CGAGCTCG | terminal overhang for 3'-end of<br><i>YIL002W-A</i> ORF and C-terminal<br>overhang for <i>YIL002W-A</i> terminator                 |  |  |
| S3-YIL077C_fw   | TCTTCTGATGACAAATATCAGCG<br>TTTACTGCAGAGCGGGAGATATG<br>GTGGGAACCGCTCCCGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br>kanMX6 fragment from pYM9 plasmid<br>with N terminal overhang for 2 <sup>2</sup> and of |  |  |
| S2-YIL077C_rv   | TTGGCCCAAACATATACCTATAT<br>ACAAATTAGTGACCATACGCTAT<br>TATTACTCCGTCGTATCGATGAAT<br>TCGAGCTCG   | <i>YIL077C</i> ORF and C-terminal overhang for <i>YIL077C</i> terminator                                                           |  |  |
| S3-YIL156W-B_fw | TGTTGCCACTTGTGGCTCCTCGAC<br>GTATTTCGCTAGGAAACGTACGC                                           | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid                                                |  |  |

|                 | TGCAGGTCGAC                                                                                    | with N-terminal overhang for 3'-end of                                                                                                                                                                              |  |
|-----------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S2-YIL156W-B_rv | TATACAAAATATTATCAACATAT<br>ATAGAATATAAACGTACATCGAT<br>GAATTCGAGCTCG                            | <i>YIL156W-B</i> ORF and C-terminal overhang for <i>YIL156W-B</i> terminator                                                                                                                                        |  |
| S3-YJL133C_f    | TATGGTCCCTTGAGTGCCTCACTA<br>GCTACCAGAAGACACTTGGCTCA<br>CGCGCCAAAGTTGCGTACGCTGC<br>AGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal overhang for 3 <sup>2</sup> and of                                                                           |  |
| S2-YJL133C_r    | ATAGGTTAAAGTCATCATCATTA<br>ATAAACCAGGAAAGAAAAGA                                                | <i>YJL133C</i> ORF and C-terminal overhang for <i>YJL133C</i> terminator                                                                                                                                            |  |
| S3-YJR085C_f    | ACAGCTTTGGGTGGGCTCGGCAG<br>TTACTACTATTATAACAAATACA<br>AGGAATTTTACCCTCGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal everyang for 2' and of                                                                                       |  |
| S2-YJR085C_r    | AGAATATCATATTATATATATAT<br>ATAGGGTCGTATATATATCGTGC<br>GTCTTCTTCCTTCTATCGATGAAT<br>TCGAGCTCG    | <i>YJR085C</i> ORF and C-terminal overhang for <i>YJR085C</i> terminator                                                                                                                                            |  |
| S3I-YKL065W-A_f | TTTATAAGAACGATAGCAAACAT<br>AGTGAAATTAAAAAGATATACCA<br>AAATGAGAAAAAAAATTCGTACGC<br>TGCAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-hphNT1</i> fragment from pFA6a-TEV-ProtA-7His-hphNT1 plasmid with N-terminal overhang for 3'-end of <i>YKL065W-A</i> ORF and C-terminal overhang for <i>YKL065W-A</i> terminator |  |
| S2l-YKL065W-A_r | GAGCTTCGTGACTCGGTTTACCA<br>TTCTGTGTTATATACGAAAACCCT<br>TATATAACAACTTTATCGATGAA<br>TTCGAGCTCG   |                                                                                                                                                                                                                     |  |
| S3-YKL133C_f    | TTTAATGAACTCATTGAGGAAGC<br>TCAACGTGAACTTAAAAAGGTTG<br>ATGGTACGCCTATACGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                              |  |
| S2-YKL133C_r    | TCTTTCGGCATTTCAACATATTGA<br>TGAAAATTTAGAAGAATATATAT<br>ACAAATGTAAGATATCGATGAAT<br>TCGAGCTCG    | terminal overhang for 3'-end of<br><i>YKL133C</i> ORF and C-terminal<br>overhang for <i>YKL133C</i> terminator                                                                                                      |  |
| S3-YLR049C_f    | AAAATCGATTGTGACTTAGTCAT<br>TCTGCTAGAAGATTTAAGGTCAC<br>GGATTGATTTAGATCGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                              |  |
| S2-YLR049C_r    | ACATATATATATATATATATATTCTT<br>CCAGGAGAAAATACCTGCCTTCTC<br>TCTTACCCCTTGCATCGATGAATT<br>CGAGCTCG | terminal overhang for 3'-end of <i>YLR049C</i> ORF and C-terminal overhang for <i>YLR049C</i> terminator                                                                                                            |  |
| S3-YLR118C_fw   | TCTACAGTTCCAGATGAATTAGA<br>AGACTTGGCTTCATTTATCAAGA<br>AGAGCTTATCATCACGTACGCTG<br>CAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                              |  |
| S2-YLR118C_rv   | ATAAATTATTTAACCAAGTATAA<br>TAGCGGTTAAATTGAACTCGCAA<br>TATTAGGAAAAGAGATCGATGAA<br>TTCGAGCTCG    | terminal overhang for 3'-end of<br><i>YLR118C</i> ORF and C-terminal<br>overhang for <i>YLR118C</i> terminator                                                                                                      |  |
| S3-YLR281C_f    | GTCGAAAAAGAGGAACGCGAGG<br>CCCGAGACAGAGAAATGGTGCGC<br>GAGTTATTCCGCCGGCGTACGCT<br>GCAGGTCGAC     | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of                                                           |  |

| S2-YLR281C_r   | AGTTACACTTTTTTTTTCATTTTTT<br>TTTTTCTTTTCTCCTCCATCTAATT<br>TCACCTGCGGATCGATGAATTCG<br>AGCTCG   | <i>YLR281C</i> ORF and C-terminal overhang for <i>YLR281C</i> terminator                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S3-YLR307C-A_f | CCAATTGTTATTTGCACTGACAA<br>CGAAGAGGTAGAGACTGTATCGG<br>AGCACGTAAAAGTACGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-hphNT1</i> fragment from pFA6a-TEV-ProtA-7His-hphNT1 plasmid with N-terminal overhang for 3'-end of <i>YLR307C-A</i> ORF and C-terminal overhang for <i>YLR307C-A</i> terminator                                                                                                                                                                                                                                            |  |
| S2-YLR307C-A_r | CTTTTAGCGTCAAAACGTTACAC<br>GTACATTTGAACAGTGTTAAGAG<br>TAGATTAATTCAAAATCGATGAA<br>TTCGAGCTCG   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| S3-YML007C-A_f | AGATTGGTGAGAAACCTCCAATA<br>CTTGCTGTTGCCGATAACTTCTTC<br>ATTGCTTTTTATACGTACGCTGCA<br>GGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                                                                                                                                                                                                                                                         |  |
| S2-YML007C-A_r | AATTACAAAGACGAATGGAAAG<br>AAAAAGAGAGAGCAGCAGAGGATA<br>GGAGAAAACACCCGAAATCGAT<br>GAATTCGAGCTCG | terminal overhang for 3'-end of<br><i>YML007C-A</i> ORF and C-terminal<br>overhang for <i>YML007C-A</i> terminator                                                                                                                                                                                                                                                                                                                                             |  |
| S3-YMR087W_fw  | AATGTAGAAAAAGATGCAATAG<br>AATTGCTCATTCCTAGAAGGATT<br>TTGACCTTGGATTTACGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of<br><i>YMR087W</i> ORF and C-terminal<br>overhang for <i>YMR087W</i> terminator<br>Amplification of <i>TEV-ProtA-7HIS-hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of<br><i>YMR130W</i> ORF and C-terminal<br>overhang for <i>YMR130W</i> terminator |  |
| S2-YMR087W_rv  | TACTTACAAACGTAGTTCAAGTT<br>CTTGAAAAATTGAAAATAGACTT<br>TATATTATAT                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| S3-YMR130W_f   | CAGTTGAGTGAAAGAAAGTACGT<br>TGTTTCGAATCTTGAGGTTTTAGA<br>GGAACTCTTTCCCCGTACGCTGC<br>AGGTCGAC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| S2-YMR130W_r   | TATTACTGGCGGATATGAATAAT<br>ATCTATCATACATATTTGTTACTG<br>TAACGTTAGGCGCATCGATGAAT<br>TCGAGCTCG   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| S3-YMR182W-A_f | GCATGTAACATAATATTTCTTCCC<br>CTCGTTAAGTGTGCATCAGCAAC<br>CATAATGCTGAATCGTACGCTGC<br>AGGTCGAC    | Amplification of <i>yEGFP-kanMX4</i> fragment from pYM12 plasmid with                                                                                                                                                                                                                                                                                                                                                                                          |  |
| S2-YMR182W-A_r | ATGCAGGAGAAAAGGGCGAGTTTT<br>GTTTATATGCGATCCTTTATGGTA<br>ACCTTTGCGGTTAATCGATGAAT<br>TCGAGCTCG  | <i>YMR182W-A</i> ORF and C-terminal overhang for <i>YMR182W-A</i> terminator                                                                                                                                                                                                                                                                                                                                                                                   |  |
| S3-YNR040W_f   | AAGACCCTATTTCACTCGGGGAA<br>TTCTAGATCATCCATCAAGAATA<br>TCGTGAAGCCCAAACGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                                                                                                                                                                                                                                                         |  |
| S2-YNR040W_r   | TGTTTAATTGTTCTTTTATTCGAT<br>TATTATTTACATGCATTCTTACGT<br>AGATGTCCGTACATCGATGAATT<br>CGAGCTCG   | terminal overhang for 3'-end of<br><i>YNR040W</i> ORF and C-terminal<br>overhang for <i>YNR040W</i> terminator                                                                                                                                                                                                                                                                                                                                                 |  |
| S3-YOR020W-A_f | AGTATTGAAGGATTTTTAAATGA<br>TTTAGAGAAAGATACGAGGCAGG<br>ATACGAAAGCCAACCGTACGCTG<br>CAGGTCGAC    | Amplification of <i>TEV-ProtA-7HIS-kanMX6</i> fragment from pYM9 plasmid with N-terminal overhang for 3'-end of <i>YOR020W-A</i> ORF and C-terminal                                                                                                                                                                                                                                                                                                            |  |

| S2-YOR020W-A_r  | CAGTGCATCCCTTCACTGAACGA<br>TGAAGAACACCACCATTTCAGAA<br>ATTTTTATACATAAATCGATGAA<br>TTCGAGCTCG | overhang for YOR020W-A terminator                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S3-YPL107W_f    | AAGAAAAGATTACAAAAAATTCG<br>CCGACAGGAAGAAATAAAAAAG<br>AGGACAGCTTTGGTTCGTACGCT<br>GCAGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| S2-YPL107W_r    | ACCAAGATCAAAGAAGACCGCA<br>AATATTGTACATAGGCTTTTCAAT<br>AATATATATTTGCTATCGATGAA<br>TTCGAGCTCG | terminal overhang for 3'-end of<br><i>YPL107W</i> ORF and C-terminal<br>overhang for <i>YPL107W</i> terminator                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| S3-YPR010C-A_fw | ATTATCTAGTTTAGATGAAGTCCT<br>TGCCAAAGATAAGGATCGTACGC<br>TGCAGGTCGAC                          | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>with N terminal everypage for 2 <sup>2</sup> and of                                                                                                                                                                                                                                                                                                                                                              |  |  |
| S2-YPR010C-A_rv | TAAGTGTAGATATTAATATAACA<br>AATCATCAACATGGTTTATCGAT<br>GAATTCGAGCTCG                         | with N-terminal overhang for 3'-end of <i>YPR010C-A</i> ORF and C-terminal overhang for <i>YPR010C-A</i> terminator                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| S3-YPR098C_f    | TGCGGGATGCTTGCGTACGGTGT<br>TTGTTTGTCAGGTGGTTTGTTAAG<br>AAAAATTCCAAAACGTACGCTGC<br>AGGTCGAC  | Amplification of <i>TEV-ProtA-7HIS-hphNT1</i> fragment from pFA6a-TEV-<br>ProtA-7His-hphNT1 plasmid with N-<br>terminal overhang for 3'-end of<br><i>YPR098C</i> ORF and C-terminal<br>overhang for <i>YPR098C</i> terminator<br>Amplification of $\gamma EGFP$ -kanMX4<br>fragment from pYM12 plasmid with<br>N-terminal overhang for 3'-end of<br><i>MEO1</i> ORF and C-terminal overhang<br>for <i>MEO1</i> terminator<br>Amplification of $\gamma EGFP$ -kanMX4<br>fragment from pYM12 plasmid with |  |  |
| S2-YPR098C_r    | ACCTTGGCAAAGGAATGACGAAA<br>AAATGATCTTGCATATATATATTT<br>ACTTGTAAAATAAATCGATGAAT<br>TCGAGCTCG |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Meo1_S3_fw      | GACCCAGAACAAAAAGAGCAAA<br>TCAAGCGTCTCCACCAGTTGGAC<br>GGCATTCCTCACGCTCGTACGCT<br>GCAGGTCGAC  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Meo1_S2_rv      | ATCCGTAATTGAAAAAAAAAAAA<br>GAAAAAGATCAAGGAACACATC<br>ACCCTGGGCACATCAATCGATGA<br>ATTCGAGCTCG |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| YBL039W-B_S3_fw | ATGTTCATGTCATCACCTACAATC<br>GACTTCAACTCGAAGAGTAAGAA<br>AAAAAATGATAAACGTACGCTGC<br>AGGTCGAC  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| YBL039W-B_S2_rv | AGGAAGTTCTAAATAATTTTCCA<br>TGGCGTGCTTTTACCAAAGTACT<br>GAACAGGGAGATTAATCGATGAA<br>TTCGAGCTCG | <i>YBL039W-B</i> ORF and C-terminal overhang for <i>YBL039W-B</i> terminator                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| YFR032C-B_S3_fw | ATTTTCCCTTCTCTCTTTTTTTTTT<br>TATATCCTCCACTATATGCCACTC<br>AGCGCACCTCAATCGATGAATTC<br>GAGCTCG | Amplification of <i>TEV-ProtA-7HIS-</i><br><i>kanMX6</i> fragment from pYM9 plasmid<br>and <i>yEGFP-kanMX4</i> fragment from<br>pYM12 plasmid with N-terminal                                                                                                                                                                                                                                                                                                                                           |  |  |
| YFR032C-B_S2_rv | AGTACGTTATATTATCATGAAGT<br>CCCCATTTCGCCCATTGGAAATG<br>CAGGTAGCCAAATCCGTACGCTG<br>CAGGTCGAC  | overhang for 3'-end of <i>YFR032C-B</i><br>ORF and C-terminal overhang for<br><i>YFR032C-B</i> terminator                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| YGL204C_S3_fw   | GAAATGTGGAAATATGCCTTTGC<br>TGTTTCGCTACTTCTTAATAGTTT<br>GGCACTATTTTTCGTACGCTGCA<br>GGTCGAC   | Amplification of <i>yEGFP-kanMX4</i><br>fragment from pYM12 plasmid with<br>N-terminal overhang for 3'-end of<br><i>YGL204C</i> ORF and C-terminal                                                                                                                                                                                                                                                                                                                                                      |  |  |
| YGL204C_S2_rv   | TATAAGGGAGGAGAAATGATGGT                                                                     | overhang for YGL204C terminator                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

|                      | GATATTAATATGCAGAAATATCG<br>ATTCCATTTTTTCAATCGATGAAT<br>TCGAGCTCG                            |                                                                                                                                                          |  |
|----------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| YKL023C-A_S3_forward | ATTTCGGTAAACTATCAAAAGAA<br>CGAACCAGTTGAATTTCTTGAAC<br>GTACGCTGCAGGTCGAC                     | Amplification of <i>3HA-kanMX6</i><br>fragment from pYM1 plasmid and<br><i>yEGFP-kanMX4</i> fragment from                                                |  |
| YKL023C-A_S2_reverse | GCGAGAAAGCTGGCTGTGATGTA<br>GTGGCAGCTGTCATTTGTCTTAAT<br>CGATGAATTCGAGCTCG                    | pYM12 plasmid with N-terminal<br>overhang for 3'-end of <i>YKL023C-A</i><br>ORF and C-terminal overhang for<br><i>YKL023C-A</i> terminator               |  |
| YKL065w-a_fw         | TATAAGAACGATAGCAAACATAG<br>TGAAATTAAAAAGATATACCAAA<br>ATGAGAAAAAAATTCGTACGCTG<br>CAGGTCGAC  | Amplification of <i>3HA-kanMX6</i><br>fragment from pYM1 plasmid and<br><i>yEGFP-kanMX4</i> fragment from                                                |  |
| YKL065w-a_rv         | TTCGTGACTCGGTTTACCATTCTG<br>TGTTATATACGAAAACCCTTATA<br>TAACAACTTTTTAATCGATGAATT<br>CGAGCTCG | <ul> <li>pYM12 plasmid with N-terminal<br/>overhang for 3'-end of YKL065W-A</li> <li>ORF and C-terminal overhang for<br/>YKL065W-A terminator</li> </ul> |  |
| YOR114W_S3_fw        | CACGATACAAATACACAAACCAAA<br>TAATATTCTTCCCATGACGTACCT<br>ACTAAAAAAGAAACGTACGCTGC<br>AGGTCGAC | Amplification of <i>TEV-ProtA-7HIS-</i><br>kanMX6 fragment from pYM9 plasmid<br>with N-terminal overhang for 3'-end of                                   |  |
| YOR114W_S2_fv        | TCTTTATGATAGTGAAGTGCTTTC<br>GTGGACTCTTCTTAAAGCCCTAA<br>AAGTCTATTGTCAATCGATGAAT<br>TCGAGCTCG | <i>YOR114W</i> ORF and C-terminal overhang for <i>YOR114W</i> terminator                                                                                 |  |
| AIM11_seq_fwd        | GGATGGGGAACTTGATTC                                                                          | Analysis of genomic integration of                                                                                                                       |  |
| AIM11_seq_rev        | CGGCTCGTAGTTATACC                                                                           | ProtA tag behind AIM11 ORF                                                                                                                               |  |
| DEG1_SP6_f           | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCACATGCAATC<br>TTTACTGC                              | Analysis of genomic integration of<br>ProtA tag behind <i>DEG1</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                  |  |
| ECM4_SP6_f           | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCTTACCATCAC<br>TACAGTG                               | Analysis of genomic integration of<br>ProtA tag behind <i>ECM4</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                  |  |
| ECM19_seq_fwd        | CTTCTTCTATCTTTTCCGC                                                                         | Analysis of genomic integration of<br>ProtA tag behind <i>ECM19</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)                              |  |
| FMP16_seq_fwd        | CTTGTTCCTACAATACTCC                                                                         | Analysis of genomic integration of                                                                                                                       |  |
| FMP16_seq_rev        | GACTAAATACGATAGGACC                                                                         | ProtA tag behind FMP16 ORF                                                                                                                               |  |
| FYV4_seq_fwd         | CCATCTTCAAACAAGAGC                                                                          | Analysis of genomic integration of<br>ProtA tag behind <i>FYV4</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                  |  |
| MATlocus_fw          | AGTCACATCAAGATCGTTTATGG                                                                     | Discrimination between mating types                                                                                                                      |  |
| Mat(a)_rv            | ACTCCACTTCAAGTAAGAGTTTG                                                                     | MATa and MATα                                                                                                                                            |  |
| Mat(alpha)_rv        | GCACGGAATATGGGACTACTTCG                                                                     | Huxley et al., 1990                                                                                                                                      |  |
| MEU1_SP6_f           | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCTTTATTGTCAA<br>TTATGTGAAAAG                         | Analysis of genomic integration of<br>ProtA tag behind <i>MEU1</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                  |  |
| MLO1_seq_fwd         | .01_seq_fwd CCATATAAGCAGCAAAACG Analysis of genomic<br>with reverse primer:                 |                                                                                                                                                          |  |
| MTC3_seq_fwd         | GTACTTGCATCCTTCTTCG                                                                         | Analysis of genomic integration of<br>ProtA tag behind <i>MTC3</i> ORF (together                                                                         |  |

|                 |                                                                    | with reverse primer: ProtA_seq_rev)                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NCE101_seq_fwd  | GCATACAAATGTTCACTCC                                                | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| NCE101_seq_rev  | GTATAAAGGTAGATCCTAGG                                               | ProtA tag behind NCE101 ORF                                                                                                                                                                                                                                                                                                                                                              |  |
| ProtA_seq_rev   | TGGTGGGAATTCGCGTCTAC                                               | Reverse primer for the analysis of<br>genomic integration of ProtA tag<br>behind DEG1, ECM4, ECM19, FYV4,<br>MEU1, MLO1, MTC3, PXP2, SMM1,<br>SUA5, TUM1, YBL059W, YDR461C-A,<br>YGR021W, YGR053C, YHL018W-A,<br>YIL002W-A, YKL133C, YLR049C,<br>YLR118C, YLR281C, YML007C-A,<br>YMR087W, YMR130W, YNR040W,<br>YPL107W and YPR098C ORFs<br>(together with respective forward<br>primers) |  |
| PXP2_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCATATATACAA<br>GTGCCACAC    | Analysis of genomic integration of<br>ProtA tag behind <i>PXP2</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                                                                                                                                                                                                                                                  |  |
| RDL2_seq_fwd    | CTCTCAACAAATGGAAGCG                                                | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| RDL2_seq_rev    | GAATGAATCGGAGAGGTG                                                 | ProtA tag behind RDL2 ORF                                                                                                                                                                                                                                                                                                                                                                |  |
| RRG9_seq_fwd    | GACTTCCTTCTGAATCATTTG                                              | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| RRG9_seq_rev    | GTTCCACTAACGATATTACTG                                              | ProtA tag behind <i>RRG9</i> ORF                                                                                                                                                                                                                                                                                                                                                         |  |
| SMM1_seq_f      | CTATTTCATCCATCCAAGC                                                | Analysis of genomic integration of<br>ProtA tag behind <i>SMM1</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                                                                                                                                                                                                                                                  |  |
| SUA5_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGTTAACTTACC<br>ACTAAACCTG   | Analysis of genomic integration of<br>ProtA tag behind <i>SUA5</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                                                                                                                                                                                                                                                  |  |
| TUM1_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCATAAAGTTGT<br>GAAGAAAATTGC | Analysis of genomic integration of<br>ProtA tag behind <i>TUM1</i> ORF (together<br>with reverse primer: ProtA_seq_rev)                                                                                                                                                                                                                                                                  |  |
| YBL059W_seq_f   | GTTCAGCTTCTAACTGTG                                                 | Analysis of genomic integration of<br>ProtA tag behind <i>YBL059W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)                                                                                                                                                                                                                                                            |  |
| YBR201C-A_seq_f | CTGTGACAAGGCGAAAAC                                                 | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| YBR201C-A_seq_r | CCTGTCTCAAATGTATAAATG                                              | Tiota tag bennid TBR201C-A OKI                                                                                                                                                                                                                                                                                                                                                           |  |
| YBR230W-A_seq_f | AGGCAAGAACAGAGGAG                                                  | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| YBR230W-A_seq_r | GGAGAGATTCTATATACCAC                                               | ProtA tag behind YBR230W-A ORF                                                                                                                                                                                                                                                                                                                                                           |  |
| YDR286C_seq_f   | GTAGAGAGTTCGGAGTTG                                                 | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| YDR286C_seq_r   | CCTGCGTAAGAAGTATGC                                                 | ProtA tag behind <i>YDR286C</i> ORF                                                                                                                                                                                                                                                                                                                                                      |  |
| YDR381C-A_seq_f | CAATCTTCCTCCTTACAAAC                                               | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| YDR381C-A_seq_r | GGATAGGTTGATTAAACGTG                                               | ProtA tag behind YDR381C-A ORF                                                                                                                                                                                                                                                                                                                                                           |  |
| YDR461C-A_seq_f | GTGTTGAGTATTCAAAGCAC                                               | Analysis of genomic integration of<br>ProtA tag behind <i>YDR461C-A</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)                                                                                                                                                                                                                                                          |  |
| YGL041W-A_seq_f | GATGTAACAAAACCGACG                                                 | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |
| YGL041W-A_seq_r | GCTAGTAAGACAGATAGG                                                 | ProtA tag behind YGL041W-A ORF                                                                                                                                                                                                                                                                                                                                                           |  |
| YGR021W_seq_f   | GTACGCACGTACGCAAG                                                  | Analysis of genomic integration of                                                                                                                                                                                                                                                                                                                                                       |  |

|                 |                                                                    | ProtA tag behind YGR021W ORF<br>(together with reverse primer:<br>ProtA_seq_rev)                                                |  |
|-----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| YGR053C_seq_f   | GGATGACAGGTATGAGC                                                  | Analysis of genomic integration of<br>ProtA tag behind <i>YGR053C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YHL018W_SP6_f   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGCACAACAA<br>GATTGTTAGAAT | Analysis of genomic integration of<br>ProtA tag behind <i>YHL018W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YIL002W-A_seq_f | CAATTACTCTAGAGAAATCG                                               | Analysis of genomic integration of<br>ProtA tag behind <i>YIL002W-A</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
| YIL077C_seq_f   | GCAGCCTAATTTCAAGCG                                                 | Analysis of genomic integration of                                                                                              |  |
| YIL077C_seq_r   | CAAATTAGTGACCATACGC                                                | ProtA tag behind YIL077C ORF                                                                                                    |  |
| YIL156W-B_seq_f | CGGAGAGAAAGATCGAAC                                                 | Analysis of genomic integration of                                                                                              |  |
| YIL156W-B_seq_r | CTGGGTGCCGTTATACA                                                  | ProtA tag behind <i>YIL156W-B</i> ORF                                                                                           |  |
| YJL133C-A_seq_f | GTAGGGAGATGTTTAATGTG                                               | Analysis of genomic integration of                                                                                              |  |
| YJL133C-A_seq_r | CAGGACCCCAAAAGAAG                                                  | ProtA tag behind <i>YJL133C-A</i> ORF                                                                                           |  |
| YJR085C_seq_f   | GGAGACAAGACAGAAACG                                                 | Analysis of genomic integration of                                                                                              |  |
| YJR085_seq_r    | CGTATATATATCGTGCGTC                                                | ProtA tag behind <i>YJR085C</i> ORF                                                                                             |  |
| YKL065W-A_seq_f | GGACTTTGGACCTAACTC                                                 | Analysis of genomic integration of                                                                                              |  |
| YKL065W-A_seq_r | CCACAGAACCGACCATTA                                                 | ProtA tag behind YKL065W-A ORF                                                                                                  |  |
| YKL133C_seq_f   | GGCACAAAGTGAGAACG                                                  | Analysis of genomic integration of<br>ProtA tag behind <i>YKL133C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YLR049C_seq_f   | CGTTAGCCAAATTCTTTGG                                                | Analysis of genomic integration of<br>ProtA tag behind <i>YLR049C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YLR118C_SP6_f   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGAACACATACA<br>CTATATTTGC   | Analysis of genomic integration of<br>ProtA tag behind <i>YLR118C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YLR281C_seq_f   | CCAACCTACAAGCTATGC                                                 | Analysis of genomic integration of<br>ProtA tag behind <i>YLR281C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |
| YLR307C-A_seq_f | GACAGCCAAGTATACTTG                                                 | Analysis of genomic integration of                                                                                              |  |
| YLR307C-A_seq_r | CGTTACACGTACATTTGAAC                                               | ProtA tag behind YLR307C-A ORF                                                                                                  |  |
| YML007C-A_seq_f | GTAAACTGCTCCACTTCG                                                 | Analysis of genomic integration of<br>ProtA tag behind <i>YML007C-A</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
| YMR087W_SP6_f   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCATCTTCGTAA<br>TTTTGAACTG   | Analysis of genomic integration of<br>ProtA tag behind <i>YMR087W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev)   |  |

| YMR130W_seq_f   | CATCCACAGAAATTGGCTC                                                 | Analysis of genomic integration of<br>ProtA tag behind <i>YMR130W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
|-----------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| YNR040W_seq_f   | GTTATCTTATGTGGACTAGG                                                | Analysis of genomic integration of<br>ProtA tag behind <i>YNR040W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
| YOR020W-A_seq_f | GTAAGAAAGGTCGCTACTG                                                 | Analysis of genomic integration of                                                                                            |  |
| YOR020W-A_seq_r | GAAGAACACCACCATTTCA                                                 | ProtA tag behind YOR020W-A ORF                                                                                                |  |
| YPL107W_SP6_f   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCAGTCAGAGGG<br>TGCATG        | Analysis of genomic integration of<br>ProtA tag behind <i>YPL107W</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
| YPR010C-A_seq_f | GGTAGTTTCCTGAACGAC                                                  | Analysis of genomic integration of                                                                                            |  |
| YPR010C-A_seq_r | CGATTTGTTCCCGACAATT                                                 | ProtA tag behind <i>YPR010C-A</i> ORF                                                                                         |  |
| YPR098C_seq_f   | GGAGTTGTTTGATGATATAGG                                               | Analysis of genomic integration of<br>ProtA tag behind <i>YPR098C</i> ORF<br>(together with reverse primer:<br>ProtA_seq_rev) |  |
| AIM11_SP6_fwd   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGATCGAAGA<br>GAAGAAGG      | Synthesis of SP6-AIM11 PCR product<br>as template for subsequent RNA                                                          |  |
| AIM11_SP6_rev   | CTACTTGTTGTTTTCGCTC                                                 | generation                                                                                                                    |  |
| DEG1_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCACATGCAATC<br>TTTACTGC      | Synthesis of SP6-DEG1 PCR product as template for subsequent RNA                                                              |  |
| DEG1_rev        | TTACTTATTTTTGTTGTTGTTCTTTTTC<br>TTG                                 | generation                                                                                                                    |  |
| FMP16_SP6_fwd   | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGTTGAGAAC<br>CACTTTTTTG    | Synthesis of SP6-FMP16 PCR produc<br>as template for subsequent RNA                                                           |  |
| FMP16_SP6_rev   | CCAGATGACGGTGTTTATTAA                                               | generation                                                                                                                    |  |
| HBN1_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGTAGACTGAAG<br>TATCCTATATC   | Synthesis of SP6-HBN1 PCR product<br>as template for subsequent RNA                                                           |  |
| HBN1_rev        | TTAATTGAAGATTTCAACATCGTT                                            |                                                                                                                               |  |
| MEU1_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCTTTATTGTCAA<br>TTATGTGAAAAG | Synthesis of SP6-MEU1 PCR product as template for subsequent RNA                                                              |  |
| MEU1_rev        | TTACCAATAGTTTGGAAATAAGT<br>A                                        | generation                                                                                                                    |  |
| RDL2_SP6_f      | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGTTCAAGCA<br>TAGTACAGG     | Synthesis of SP6-RDL2 PCR product as template for subsequent RNA                                                              |  |
| RDL2_SP6_r      | TTACATTTTTTTGGGCTTAACGTC<br>AG                                      | generation                                                                                                                    |  |
| RRG9_SP6_fwd    | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGAACATTCT<br>GCGAATAGC     | Synthesis of SP6-RRG9 PCR product<br>as template for subsequent RNA                                                           |  |
| RRG9_SP6_rev    | TTATTGTTTCGAGCCCAAATG                                               | generation                                                                                                                    |  |
| SMM1_SP6_f      | TCGATTTAGGTGACACTATAGAA                                             | Synthesis of SP6-SMM1 PCR product                                                                                             |  |

|                  | TACGCCGCCGCCCTATTTCATCCA<br>TCCAAGC                                     | as template for subsequent RNA generation                                                                                                                                           |  |
|------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SMM1_rev         | TTATATATCTGTGGGAAGGG                                                    |                                                                                                                                                                                     |  |
| TES1_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCCTACAATGAA<br>AAACCACG          | Synthesis of SP6-TES1 PCR product<br>as template for subsequent RNA                                                                                                                 |  |
| TES1_rev         | TCAGAACTTGGCTCGAATG                                                     | generation                                                                                                                                                                          |  |
| TUM1_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCATAAAGTTGT<br>GAAGAAAATTGC      | Synthesis of SP6-TUM1 PCR product<br>as template for subsequent RNA                                                                                                                 |  |
| TUM1_rev         | TTAATCTCTGTTTTCAGCAATC                                                  | generation                                                                                                                                                                          |  |
| YBL039W-B_Sp6_fw | GATCGATTTAGGTGACACTATAG<br>AAGCGGCCACCATGGGCTTTTT<br>AACAATAATCCGGTAATT | Synthesis of SP6-YBL039W-B PCR<br>product as template for generation of<br>[ <sup>35</sup> S]Ybl039w-b using the TnT® Quick                                                         |  |
| YBL039W-B_Sp6_rv | GATCTTATTTATCATTTTTTTTTTT<br>ACTCTTCGA                                  | Coupled Transcription/Translation<br>System                                                                                                                                         |  |
| YBR230W-A_SP6_f  | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGAGAAACGA<br>ATTATACCAGT       | Synthesis of SP6-YBR230W-A PCR<br>product as template for subsequent                                                                                                                |  |
| YBR230W-A_SP6_r  | CTACATATTGGCGGCATACTCTTT                                                | KIVA generation                                                                                                                                                                     |  |
| YDR286C_SP6_f    | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGTTGAGAGC<br>GTTCCG            | Synthesis of SP6-YDR286C PCR product as template for subsequent                                                                                                                     |  |
| YDR286C_SP6_r    | TCACATTCTAGATTGCATTCTCCT<br>TATT                                        | RNA generation                                                                                                                                                                      |  |
| YGL041W-A_SP6_f  | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGCTAAGAGT<br>TATATGGAAG        | Synthesis of SP6-YGL041W-A PCR<br>product as template for subsequent                                                                                                                |  |
| YGL041W-A_SP6_r  | TCATTTTTTTTTTTTCTCAAGGCC                                                |                                                                                                                                                                                     |  |
| YGR021W_SP6_f    | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCAGCAAACTTG<br>GTATGAAC          | Synthesis of SP6-YGR021W PCR<br>product as template for subsequent                                                                                                                  |  |
| YGR021W_rev      | TTAAGCGTTGCTAGCGTTAG                                                    | KNA generation                                                                                                                                                                      |  |
| YHL018W_SP6_f    | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGCACAACAA<br>GATTGTTAGAAT      | Synthesis of SP6-YHL018W PCR<br>product as template for subsequent                                                                                                                  |  |
| YHL018W_SP6_r    | TCAAGTTGTCATCTCATCGA                                                    | KIVA generation                                                                                                                                                                     |  |
| YIL077C_SP6_f    | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGTTGGGAAA<br>AGAAGAAGAA        | Synthesis of SP6-YIL077C PCR<br>product as template for subsequent<br>RNA generation (eventually used for<br>generation of radiolabeled Yil077c                                     |  |
| YIL077C_SP6_r    | CTAGGAGCGGTTCCC                                                         | import and assembly under native<br>conditions; Fig. 6C, lanes 9-18)                                                                                                                |  |
| YIL077C SP6 fw   | GATCGATTTAGGTGACACTATAG<br>AAGCGGCCACCATGTTGGGAAAA<br>GAAGAAGAACAGC     | Synthesis of SP6-YIL077C PCR<br>product as template for subsequent<br>RNA generation (eventually used for<br>generation of radiolabeled Yil077c<br>precursor used for assessment of |  |
| YIL077C SP6 rv   | CTAGGAGCGGTTCCCACC                                                      | import under denaturing conditions;<br>Fig. S5, lanes 1-6)                                                                                                                          |  |
| YJL133C-A_SP6_f  | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCATGATCGCCCA<br>AAGTACC           | Synthesis of SP6-YJL133C-A PCR<br>product as template for subsequent<br>RNA generation                                                                                              |  |

| YJL133C-A_SP6_r     | L133C-A_SP6_r CTACATCAACTTTGGCGCGTGA                                     |                                                                                                                             |  |
|---------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| YKL023C-A_Sp6_fw    | GATCGATTTAGGTGACACTATAG<br>AAGCGGCCACCATGAATCCACGC<br>TACAGGTTTATA       | Synthesis of SP6-YKL023C-A PCR<br>product as template for generation of<br>[ <sup>35</sup> S]Ykl023c-a using the TnT® Quick |  |
| YKL023C-A_Sp6_rv    | GATCTTACATCATTTCAAGAAAT<br>TCAACTGGTTC                                   | Coupled Transcription/Translation<br>System                                                                                 |  |
| YKL065W-A_Sp6_fw    | GATCGATTTAGGTGACACTATAG<br>AAGCGGCCACCATGAGATCTAAT<br>ATTTTGAAATTA       | Synthesis of SP6-YKL065W-A PCR<br>product as template for generation of<br>[ <sup>35</sup> S]Ykl065w-a using the TnT® Quick |  |
| YKL065W-A_Sp6_rv    | GATCTTAAATTTTTTTTCTCATTTT<br>GGTA                                        | Coupled Transcription/Translation<br>System                                                                                 |  |
| YKL133C_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGTAATGAAGAA<br>ATTTATGCTCATTTAG   | Synthesis of SP6-YKL133C PCR<br>product as template for subsequent<br>RNA generation                                        |  |
| YKL133C_rev         | TTATATAGGCGTACCATCAAC                                                    |                                                                                                                             |  |
| YLR118C_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGAACACATACA<br>CTATATTTGC         | Synthesis of SP6-YLR118C PCR<br>product as template for subsequent<br>RNA generation                                        |  |
| YLR118C_rev         | CTATGATGATAAGCTCTTCTT                                                    | KIVA generation                                                                                                             |  |
| YLR281C_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCGCTATACGTTC<br>CTAGAAC            | Synthesis of SP6-YLR281C PCR<br>product as template for subsequent                                                          |  |
| YLR281C_rev         | TTACCGGCGGAATAACTC                                                       | KINA generation                                                                                                             |  |
| YMR130W_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCAGACTTTTGA<br>ACATCCAC           | Synthesis of SP6-YMR130W PCR<br>product as template for subsequent                                                          |  |
| YMR130W_rev         | TCAGGGAAAGAGTTCCTC                                                       | KINA generation                                                                                                             |  |
| YNR040W_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCATAAGAAGGT<br>GCATTTAGTTATC      | Synthesis of SP6-YNR040W PCR<br>product as template for subsequent                                                          |  |
| YNR040W_rev         | CTATTTGGGCTTCACGATATTC                                                   | KIVA generation                                                                                                             |  |
| YOR114W_Sp6_fw      | GATCGATTTAGGTGACACTATAG<br>AAGCGGCCACCATGAAGGCTACT<br>TTACTGTTGAAGGCCCAG | Synthesis of SP6-YOR114W PCR<br>product as template for generation of<br>[ <sup>35</sup> S]Yor114w using the TnT® Quick     |  |
| YOR114W_Sp6_rv      | GATCTCATTTCTTTTTAGTAGGT<br>ACGTCATGGG                                    | Coupled Transcription/Translation<br>System                                                                                 |  |
| YPL107W_SP6_f       | TCGATTTAGGTGACACTATAGAA<br>TACGCCGCCGCCCAGTCAGAGGG<br>TGCATG             | Synthesis of SP6-YPL107W PCR<br>product as template for subsequent                                                          |  |
| YPL107W_rev         | TCAAACCAAAGCTGTCCTC                                                      | KINA generation                                                                                                             |  |
| TEV-ProtA_fwd       | CCCAAGCTTGGGCGTACGCTGCA<br>GGTCGAC                                       | Generation of HindIII-TEV-ProtA-                                                                                            |  |
| TEV-ProtA_rev       | TCCCCCCGGGGGGGGACTAGGAATT<br>CGCGTCTAC                                   | into pFA6a-hphNT1plasmid                                                                                                    |  |
| YJR085C_pGEM-4Z_FW  | GGAATTCAGATCACACTATGGAA<br>CATCCA                                        | Generation of EcoRI-YJR085C (S.                                                                                             |  |
| YJR085C_pGEM-4Z_REV | CCCAAGCTTTCTTCTTCTTCTTCT<br>CTAAGGGTAA                                   | cloning into pGEM-4Z plasmid                                                                                                |  |
| YJR085C_pRS425_FW   | CCCAAGCTTATCAAACATTTAGA<br>GCCTGAAACAA                                   | Generation of HindIII-P <sub>YJR085C</sub> -<br>YJR085C ( <i>S. cerevisiae</i> )-T <sub>YJR085C</sub> -                     |  |
| YJR085C_pRS425_REV  | CGCGGATCCAGGTGGTCTTCACT<br>CGGTT                                         | BamHI PCR product for cloning into pRS425 plasmid                                                                           |  |

| NHA_YJR085C_FW                                                                                      | CATCAGATCACACTATGTACCCA<br>TACGATGTTCCAGATTACGCTGA<br>ACATCCAGCATATAC                         | Insertion of a single N-terminal HA-<br>tag behind the start codon of <i>YJR085C</i> |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| NHA_YJR085C_Rev                                                                                     | GTATATGCTGGATGTTCAGCGTA<br>ATCTGGAACATCGTATGGGTACA<br>TAGTGTGATCTGATG                         | in pRS425-YJR085C resulting in<br>pRS425- <sub>HA</sub> YJR085C plasmid              |  |
| AIM11 N' tag CHK R                                                                                  | TACAAACTCTCTTGCCGTTG                                                                          | Primer for checking N' tagging of the gene. AIM11                                    |  |
| AIM11 N' tag pYM F                                                                                  | TTAGTACGACTATCCTACTTCATC<br>AAGAAACGAAACTATGcgtacgctgca<br>ggtcgac                            | Primer for N' tagging of gene using pYM plasmids. AIM11                              |  |
| AIM11 N' tag pYM R                                                                                  | GAAGAACCCTGCGTTTCTTAAGT<br>TCCTTCTTCTCTCTCGATcatcgatgaatt<br>ctctgtcg                         | Primer for N' tagging of gene using pYM plasmids. AIM11                              |  |
| FMP16 N' tag CHK R                                                                                  | TTAATAAACACCGTCATCTGG                                                                         | Primer for checking N' tagging of the gene. FMP16                                    |  |
| FMP16 N' tag pYM F                                                                                  | AGTATCACATATATAATACACAG<br>GAATATATTTGATAATGcgtacgctgc<br>aggtcgac                            | Primer for N' tagging of gene using pYM plasmids. FMP16                              |  |
| FMP16 N' tag pYM R     GCATCAATTGTCTTGGAGTGCGC       AAAAAAGTGGTTCTCAAcatcgatgaa     ttctctgtcg     |                                                                                               | Primer for N' tagging of gene using pYM plasmids. FMP16                              |  |
| FMP33 N' tag CHK R                                                                                  | FMP33 N' tag CHK R   CCAAACAATCGAAAATTGAG                                                     |                                                                                      |  |
| FMP33 N' tag pYM F       AAATAAATCAAGTATATCATAGA         GTTCTTTCATTCATATGcgtacgctgca       ggtcgac |                                                                                               | Primer for N' tagging of gene using pYM plasmids. FMP33                              |  |
| FMP33 N' tag pYM R                                                                                  | MP33 N' tag pYM R TGGTGAATTGTGAGTTGTGACGT<br>AACAACCTTGTGTATAGcatcgatgaat<br>tctctgtcg        |                                                                                      |  |
| FSF1 N' tag CHK R TTTAGACCTAACGCAACACC                                                              |                                                                                               | Primer for checking N' tagging of the gene. FSF1                                     |  |
| FSF1 N' tag pYM F       CAGCATCGAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAA                                     |                                                                                               | Primer for N' tagging of gene using<br>pYM plasmids. FSF1                            |  |
| FSF1 N' tag pYM R                                                                                   | GGGATTCGGGCAAATCGATGGGC<br>CCTGGGACTGATGATGCcatcgatgaa<br>ttctctgtcg                          | Primer for N' tagging of gene using pYM plasmids. FSF1                               |  |
| FYV4 N' tag CHK R                                                                                   | AATGCCTTTCTCTTCCTCTC                                                                          | Primer for checking N' tagging of the gene. FYV4                                     |  |
| FYV4 N' tag pYM F                                                                                   | FYV4 N' tag pYM F     AAACAATAACAAACCTTCATTCA       ACACACGTTTTACTATGcgtacgctgc     aggtcgac  |                                                                                      |  |
| FYV4 N' tag pYM R                                                                                   | 'V4 N' tag pYM R     TTAAGAATAGAGGAAATTTGTGG       CTAATCCGGGAAGGTATcatcgatgaa     ttctctgtcg |                                                                                      |  |
| LCL3 N' tag CHK R                                                                                   | TTCAAGAACTGGCTTTTAGC                                                                          | Primer for checking N' tagging of the gene. LCL3                                     |  |
| LCL3 N' tag pYM F                                                                                   | LCL3 N' tag pYM F TTTTTCATAGCTATTAAGGGGGC<br>aggtcgac                                         |                                                                                      |  |
| CAACATCCGCAGATTTTTTGAAT<br>CCL3 N' tag pYM R TAGAATCACCTTCCCTcatcgatgaattc<br>tctgtcg               |                                                                                               | Primer for N' tagging of gene using pYM plasmids. LCL3                               |  |

| MNE1 N' tag CHK R                                                                                                                             | AGTGCAATTTTGTCATTTGC                                                   | Primer for checking N' tagging of the gene. MNE1               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|--|
| MNE1 N' tag pYM F                                                                                                                             | CGGCGAGAAAAAATGATAGTAGT<br>GTGCCAAGAAGAATATGcgtacgctg<br>caggtcgac     | Primer for N' tagging of gene using pYM plasmids. MNE1         |  |
| MNE1 N' tag pYM R                                                                                                                             | TACCAATATGACTAGACGAATAT<br>CTTTTAAAAAGTAACTTcatcgatgaat<br>tctctgtcg   | Primer for N' tagging of gene using pYM plasmids. MNE1         |  |
| MSS116 N' tag CHK R                                                                                                                           | AACATCATGGTCTTCACTGG                                                   | Primer for checking N' tagging of the gene. MSS116             |  |
| MSS116 N' tag pYM F                                                                                                                           | GGCAAGAAAATACCAGAGTTGCA<br>CGTTAGGCTGATAAATGcgtacgctgc<br>aggtcgac     | Primer for N' tagging of gene using pYM plasmids. MSS116       |  |
| MSS116 N' tag pYM R                                                                                                                           | CAAGAACAGGTGTGCGACCTTTT<br>ATCAATATAGAGGTCAAcatcgatgaa<br>ttctctgtcg   | Primer for N' tagging of gene using pYM plasmids. MSS116       |  |
| SFH5 N' tag CHK R                                                                                                                             | GTGACAGCCTTTTTATTTGC                                                   | Primer for checking N' tagging of the gene. SFH5               |  |
| SFH5 N' tag pYM F                                                                                                                             | CCAATCGTAATTAATTCACTAAA<br>TTAACATCCTTAAAATGcgtacgctgc<br>aggtcgac     | Primer for N' tagging of gene using pYM plasmids. SFH5         |  |
| SFH5 N' tag pYM R                                                                                                                             | GCTTATCGAAAACCTGCTTCTCA<br>CTGTCATTGTCGAATTTcatcgatgaatt<br>ctctgtcg   | Primer for N' tagging of gene using<br>pYM plasmids. SFH5      |  |
| TOM5 N' tag CHK R                                                                                                                             | ATTTCCATTGCTTTTTCACC                                                   | Primer for checking N' tagging of the gene. TOM5               |  |
| TOM5 N' tag pYM F                                                                                                                             | AGGCGTCCATTGGCATCAAATAA<br>CTAGATAGTATAAAATGcgtacgctgc<br>aggtcgac     | Primer for N' tagging of gene using pYM plasmids. TOM5         |  |
| TOM5 N' tag pYM R                                                                                                                             | TTTTCTCCTCTTCGGAGACTTCCT<br>GTTGAGGTAGACCAAAcatcgatgaatt<br>ctctgtcg   | Primer for N' tagging of gene using pYM plasmids. TOM5         |  |
| YBL059W N' tag CHK R                                                                                                                          | ACCTGCAAGACTCTTTTGTG                                                   | Primer for checking N' tagging of the gene. YBL059W            |  |
| YBL059W N' tag pYM F                                                                                                                          | ATCTTGCTTTTGTTCAACTGCACT<br>TGTAAATCAGTGAATGcgtacgctgca<br>ggtcgac     | Primer for N' tagging of gene using<br>pYM plasmids. YBL059W   |  |
| YBL059W N' tag pYM R                                                                                                                          | TAGAGAAAGACCTATTAAAAAAT<br>CGCTGCGCGCGTCCAATAAcatcgatgaa<br>ttctctgtcg | Primer for N' tagging of gene using pYM plasmids. YBL059W      |  |
| YGL041W-A N' tag CHK R                                                                                                                        | CGTGTCTCAGATCTCTGTCC                                                   | Primer for checking N' tagging of the gene. YGL041W-A          |  |
| YGL041W-A N' tag pYM F                                                                                                                        | CACAAGAAGCAGAAAGTAGATA<br>CTACAGCCACACATAATGcgtacgct<br>gcaggtcgac     | Primer for N' tagging of gene using<br>pYM plasmids. YGL041W-A |  |
| YGL041W-A N' tag pYM R                                                                                                                        | AACGAGTGACTCTGGAACTATGC<br>TTCCATATAACTCTTAGcatcgatgaatt<br>ctctgtcg   | Primer for N' tagging of gene using pYM plasmids. YGL041W-A    |  |
| YIL077C N' tag CHK R                                                                                                                          | GTACTGCCTTTGATTTCTCG                                                   | Primer for checking N' tagging of the gene. YIL077C            |  |
| YIL077C N' tag pYM F       TTAAGGAGCAGCCTAATTTCAAG<br>CGTAGAACAAGGTGATGcgtacgctg<br>caggtcgac       Primer for N' taggin<br>pYM plasmids. YIL |                                                                        | Primer for N' tagging of gene using pYM plasmids. YIL077C      |  |
| YIL077C N' tag pYM R                                                                                                                          | L077C N' tag pYM R TACCATTCTGGCCATATTGCTGTT                            |                                                                |  |

|                        | CTTCTTCTTTTCCCAAcatcgatgaattet<br>etgtcg                             | pYM plasmids. YIL077C                                          |  |
|------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| YJL127C-B N' tag CHK R | TACTGCACGTATTTCGATTG                                                 | Primer for checking N' tagging of the gene. YJL127C-B          |  |
| YJL127C-B N' tag pYM F | TGCAGCAGTGTACAGTTTACGCG<br>ACAATAAAGAAAGCATGcgtacgctg<br>caggtcgac   | Primer for N' tagging of gene using pYM plasmids. YJL127C-B    |  |
| YJL127C-B N' tag pYM R | AAGCTGTAAATATTGAACGGATC<br>TGGTTGAAAAAGAAAATcatcgatgaa<br>ttctctgtcg | Primer for N' tagging of gene using pYM plasmids. YJL127C-B    |  |
| YJL133C-A N' tag CHK R | CCATATGTCTTGGCATTTTC                                                 | Primer for checking N' tagging of the gene. YJL133C-A          |  |
| YJL133C-A N' tag pYM F | AATATTACATTCATAAGACAGTA<br>AATAAACGTATTAAATGcgtacgctgc<br>aggtcgac   | Primer for N' tagging of gene using pYM plasmids. YJL133C-A    |  |
| YJL133C-A N' tag pYM R | AAGAAGAGACGGCGGCGGCGAA<br>TCTGGTACTTTGGGCGATcatcgatga<br>attctctgtcg | Primer for N' tagging of gene using<br>pYM plasmids. YJL133C-A |  |
| YJR085C N' tag CHK R   | AGGGTAAAATTCCTTGTATTTG                                               | Primer for checking N' tagging of the gene. YJR085C            |  |
| YJR085C N' tag pYM F   | AAACGAAGTTTGAGAGAAAGGA<br>ACATCAGATCACACTATGcgtacgct<br>gcaggtcgac   | Primer for N' tagging of gene using<br>pYM plasmids. YJR085C   |  |
| YJR085C N' tag pYM R   | CGGCTGTAGTCAAAAGACTCAAT<br>GTATATGCTGGATGTTCcatcgatgaat<br>tctctgtcg | Primer for N' tagging of gene using pYM plasmids. YJR085C      |  |
| YKL018C-A N' tag CHK R | AGATTGATCTCTTCCCCTTC                                                 | Primer for checking N' tagging of the gene. YKL018C-A          |  |
| YKL018C-A N' tag pYM F | AAAAGAGAGTGAAGATCAGATC<br>GTAACATATTGCAAGATGcgtacgct<br>gcaggtcgac   | Primer for N' tagging of gene using pYM plasmids. YKL018C-A    |  |
| YKL018C-A N' tag pYM R | CTACCAACGTCCCCTCTACTACCC<br>ACCTTATCATTCCCAAcatcgatgaattc<br>tctgtcg | Primer for N' tagging of gene using pYM plasmids. YKL018C-A    |  |
| YKL044W N' tag CHK R   | TATAGGCTGGGAACTGAGG                                                  | Primer for checking N' tagging of the gene. YKL044W            |  |
| YKL044W N' tag pYM F   | CTGTGGCCCAGGTAGCGTAGGCA<br>AAATCAAGCTCAGAATGcgtacgctgc<br>aggtcgac   | Primer for N' tagging of gene using pYM plasmids. YKL044W      |  |
| YKL044W N' tag pYM R   | CTGACATCCTCGCACTCGAAAAC<br>GTCATAATTACGTAACCcatcgatgaat<br>tctctgtcg | Primer for N' tagging of gene using pYM plasmids. YKL044W      |  |
| YKL133C N' tag CHK R   | AAAGTAGATCCACGTTTTCG                                                 | Primer for checking N' tagging of the gene. YKL133C            |  |
| YKL133C N' tag pYM F   | AAAGATATTGTAATGAAGAAATT<br>TATGCTCATTTAGTATGcgtacgctgca<br>ggtcgac   | Primer for N' tagging of gene using pYM plasmids. YKL133C      |  |
| YKL133C N' tag pYM R   | CGGTCCCTTCATTTTTGACTGATC<br>TATGAAGGTATTTCCAcatcgatgaattc<br>tctgtcg | Primer for N' tagging of gene using pYM plasmids. YKL133C      |  |
| YLR281C N' tag CHK R   | CGTTCCTCTTTTTCGACTC                                                  | Primer for checking N' tagging of the gene. YLR281C            |  |
| YLR281C N' tag pYM F   | CTGGAAAAAGCGCAGAAGAATC<br>CGAGACTAGTAAACTATGcgtacgct                 | Primer for N' tagging of gene using pYM plasmids. YLR281C      |  |

| gcaggtcgac            |                                                                      |                                                              |  |
|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------|--|
| YLR281C N' tag pYM R  | CTGCGGCACTGCTGATTGACCTC<br>TTACTCGCTCCCCTCATcatcgatgaatt<br>ctctgtcg | Primer for N' tagging of gene using pYM plasmids. YLR281C    |  |
| YMR252C N' tag CHK R  | CTGGGGTGACTGAACCTAC                                                  | Primer for checking N' tagging of the gene. YMR252C          |  |
| YMR252C N' tag pYM F  | AAGCAGCAAAAACGAAGAAGATC<br>GAGTGTGAAGTGTTAATGcgtacgct<br>gcaggtcgac  | Primer for N' tagging of gene using<br>pYM plasmids. YMR252C |  |
| YMR252C N' tag pYM R  | CAATTCTTGTTCTGATGTAGCTTA<br>CGAAAACTTTACCAAAcatcgatgaatt<br>ctctgtcg | Primer for N' tagging of gene using<br>pYM plasmids. YMR252C |  |
| YNR040W N' tag CHK R  | CTCCCTCGTGATAGAAACTG                                                 | Primer for checking N' tagging of the gene. YNR040W          |  |
| YNR040W N' tag pYM F  | AAGAAGGTGCATTTAGTTATCTT<br>ATGTGGACTAGGGTATGcgtacgctgc<br>aggtcgac   | Primer for N' tagging of gene using pYM plasmids. YNR040W    |  |
| YNR040W N' tag pYM R  | AGCTGCTTCCTTTGAACTGATTCT<br>TGGCAGCCATGTTTGTcatcgatgaattc<br>tctgtcg | Primer for N' tagging of gene using pYM plasmids. YNR040W    |  |
| YPL041C N' tag CHK R  | CCAACAAATTTCTCCATAGC                                                 | Primer for checking N' tagging of the gene. YPL041C          |  |
| YPL041C N' tag pYM F  | GGATAAGTGTTACACCCAAGGCA<br>CCCTCACCAGGAACATGcgtacgctgc<br>aggtcgac   | Primer for N' tagging of gene using pYM plasmids. YPL041C    |  |
| YPL041C N' tag pYM R  | TCTGCAGTTGACAGGGCCTGAAG<br>AAAAGATTCATGACAGTcatcgatgaa<br>ttctctgtcg | Primer for N' tagging of gene using pYM plasmids. YPL041C    |  |
| YPL109C N' tag CHK R  | PL109C N' tag CHK R TTGGTGTCCGTAATTTTGAG                             |                                                              |  |
| YPL109C N' tag pYM F  | CAGAATAGAGATAAAGAACATC<br>AGAACCATCTGGGCAATGcgtacgct<br>gcaggtcgac   | Primer for N' tagging of gene using pYM plasmids. YPL109C    |  |
| YPL109C N' tag pYM R  | AGTATCGCCAAGAGTTTCTATAA<br>GCGAACTTTAAAAATGAcatcgatgaa<br>ttctctgtcg | Primer for N' tagging of gene using pYM plasmids. YPL109C    |  |
| YPR098C N' tag CHK R  | CGACTTGCCAAATTCTTTAC                                                 | Primer for checking N' tagging of the gene. YPR098C          |  |
| YPR098C N' tag pYM F  | ACTACGCTTTACAGTCCAGTAAA<br>CTTAACAACGAAAAATGcgtacgctgc<br>aggtcgac   | Primer for N' tagging of gene using<br>pYM plasmids. YPR098C |  |
| YPR098C N' tag pYM R  | AGGAATAAAAAAGCAAATGAGC<br>CGTAGTTTTGACTAAACAcatcgatga<br>attctctgtcg | Primer for N' tagging of gene using pYM plasmids. YPR098C    |  |
| S4 reverse complement | cgacagagaattcatcgatg                                                 | Primer for checking N' tagging of the genes.                 |  |

### Yeast strains used in this study

| Strain                 | Description                             | Genotype                                                                                                                | Source or<br>Reference           | Number |
|------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|
| Wild-type (WT)         | BY4741                                  | <i>MATa</i> ; $ura3\Delta 0$ , $leu2\Delta 0$ ,<br>his $3\Delta 1$ , $met15\Delta 0$                                    | Brachmann et al.,<br>1998        | 1354   |
| Wild-type (WT)         | BY4742 Δ <i>arg4</i>                    | MAT $\alpha$ ; ura3 $\Delta$ 0, leu2 $\Delta$ 0,<br>his3 $\Delta$ 1, lys2 $\Delta$ 0,<br>arg4::kanMX4                   | Euroscarf                        | 2708   |
| Wild-type (WT)         | BY4741 ∆lys2 ∆arg4                      | <i>MATa</i> ; $ura3\Delta 0$ , $leu2\Delta 0$ ,<br>his $3\Delta 1$ , $lys2\Delta 0$ , $met15\Delta 0$ ,<br>arg4::kanMX4 | this study                       | 3559   |
| Wild-type (WT)         | YPH499                                  | MATa; ura3-52, lys2-801,<br>ade2-101, trp1-∆63, his3-<br>∆200, leu2-∆1                                                  | Sikorski and<br>Hieter, 1989     | 1501   |
| Wild-type (WT)         | YPH499 Δ <i>arg4</i>                    | MATa; ura3-52, lys2-801,<br>ade2-101, trp1-∆63, his3-<br>∆200, leu2-∆1,<br>arg4::kanMX4                                 | von der Malsburg<br>et al., 2011 | 2799   |
| Wild-type (WT)         | YPH499<br>pRS425 (empty)                | YPH499 + <i>pRS425</i>                                                                                                  | this study                       | 4312   |
| Aim11 <sub>ProtA</sub> | Aim11 <sub>ProtA</sub><br>(chromosomal) | BY4741<br>aim11::AIM11-TEV-ProtA-<br>7HIS-kanMX6                                                                        | this study                       | 4950   |
| Deg1 <sub>ProtA</sub>  | Deg1 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>deg1::DEG1-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 5044   |
| Ecm4 <sub>ProtA</sub>  | Ecm4 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>ecm4::ECM4-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 5045   |
| Ecm19 <sub>ProtA</sub> | Ecm19 <sub>ProtA</sub><br>(chromosomal) | BY4741<br>ecm19::ECM19-TEV-ProtA-<br>7HIS-hphNT1                                                                        | this study                       | 4951   |
| Fmp16 <sub>ProtA</sub> | Fmp16 <sub>ProtA</sub><br>(chromosomal) | BY4741<br>fmp16::FMP16-TEV-ProtA-<br>7HIS-kanMX6                                                                        | this study                       | 4952   |
| Fyv4 <sub>ProtA</sub>  | Fyv4 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>fyv4::FYV4-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 4953   |
| Meo1 <sub>GFP</sub>    | Meo1 <sub>GFP</sub><br>(chromosomal)    | BY4741<br>meo1::MEO1-yEGFP-<br>kanMX4                                                                                   | this study                       | 4113   |
| Meu1 <sub>ProtA</sub>  | Meu1 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>meu1::MEU1-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 5046   |
| Mlo1 <sub>ProtA</sub>  | Mlo1 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>mlo1::MLO1-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 4954   |
| Mtc3 <sub>ProtA</sub>  | Mtc3 <sub>ProtA</sub><br>(chromosomal)  | BY4741<br>mtc3::MTC3-TEV-ProtA-<br>7HIS-hphNT1                                                                          | this study                       | 4955   |
| Nce101 <sub>HA</sub>   | Nce101 <sub>HA</sub>                    | BY4741<br>nce101::NCE101-3HA-                                                                                           | this study                       | 4956   |

|                               | (chromosomal)               | kanMX6                                         |            |              |
|-------------------------------|-----------------------------|------------------------------------------------|------------|--------------|
|                               | Dyn2                        | BY4741                                         |            |              |
| Pxp2 <sub>ProtA</sub>         | (chromosomal)               | pxp2::PXP2-TEV-ProtA-<br>7HIS-hphNT1           | this study | 5047         |
|                               | Rdl2                        | BY4741                                         |            |              |
| Rdl2 <sub>ProtA</sub>         | (chromosomal)               | rdl2::RDL2-TEV-ProtA-<br>7HIS-kanMX6           | this study | 4957         |
|                               | Rro9part A                  | BY4741                                         |            |              |
| Rrg9 <sub>ProtA</sub>         | (chromosomal)               | rrg9::RRG9-TEV-ProtA-<br>7HIS-kanMX6           | this study | 4958         |
|                               | Smm1 <sub>Prot</sub>        | BY4741                                         |            |              |
| Smm1 <sub>ProtA</sub>         | (chromosomal)               | smm1::SMM1-TEV-ProtA-<br>7HIS-hphNT1           | this study | 5048         |
|                               | Sua5 <sub>ProtA</sub>       | BY4741                                         |            |              |
| Sua5 <sub>ProtA</sub>         | (chromosomal)               | sua5::SUA5-TEV-ProtA-<br>7HIS-hphNT1           | this study | 5049         |
|                               | Tum <sub>1 Prot</sub>       | BY4741                                         |            |              |
| Tum1 <sub>ProtA</sub>         | (chromosomal)               | tum1::TUM1-TEV-ProtA-<br>7HIS-hphNT1           | this study | 5050         |
| VI-10201-                     | Yb1039w-b <sub>GFP</sub>    | BY4741                                         | this stude | 4112         |
| 101039w-0 <sub>GFP</sub>      | (chromosomal)               | yblos9w-b:<br>yEGFP-kanMX4                     | this study | 4112         |
|                               | Vb1020m b                   | BY4741                                         |            |              |
| Ybl039w-b <sub>HA</sub>       | (chromosomal)               | ybl039w-b::YBL039W-B-                          | this study | 4983         |
|                               | (enromosomar)               | 3HA-kanMX6                                     |            |              |
| Vh1050                        | Yb1059w <sub>ProtA</sub>    | BY4741                                         | this study | 4050         |
| I DI039w <sub>ProtA</sub>     | (chromosomal)               | ybl059w::YBL059W-TEV-<br>ProtA-7HIS-hphNT1     | uns study  | 7 <i>737</i> |
|                               | Vbr201a a                   | BY4741                                         |            |              |
| Ybr201c-a <sub>ProtA</sub>    | r br201c-a <sub>ProtA</sub> | ybr201c-a::YBR201C-A-                          | this study | 4960         |
|                               | (emomosomar)                | TEV-ProtA-7HIS-kanMX6                          |            |              |
| Vh-220                        | Ybr230w-a <sub>ProtA</sub>  | BY4741                                         | this stude | 4061         |
| Y Dr250W-a <sub>ProtA</sub>   | (chromosomal)               | ybr230w-a::YBR230W-A-<br>TEV ProtA 7HIS kanMY6 | this study | 4901         |
|                               | V1 00 C                     | BY4741                                         |            |              |
| Ydr286c <sub>ProtA</sub>      | $Y dr 286c_{ProtA}$         | vdr286c::YDR286C-TEV-                          | this study | 4962         |
|                               | (chromosomal)               | ProtA-7HIS-kanMX6                              |            |              |
|                               | Ydr381c-a <sub>ProtA</sub>  | BY4741                                         |            | 40.50        |
| Ydr381c-a <sub>ProtA</sub>    | (chromosomal)               | ydr381c-a::YDR381C-A-                          | this study | 4970         |
|                               |                             | IEV-ProtA-/HIS-KanMA0                          |            |              |
| Ydr461c-a <sub>ProtA</sub>    | Ydr461c-a <sub>ProtA</sub>  | vdr461c-a.··YDR461C-A-                         | this study | 4971         |
|                               | (chromosomal)               | TEV-ProtA-7HIS-hphNT1                          |            |              |
|                               | Yfr032c-b <sub>GFP</sub>    | BY4741                                         |            |              |
| Yfr032c-b <sub>GFP</sub>      | (chromosomal)               | yfr032c-b::YFR032C-B-                          | this study | 4118         |
|                               | N/C 022 1                   | BY4741                                         |            |              |
| Yfr032c-b <sub>ProtA</sub>    | Y tr032c-b <sub>ProtA</sub> | Yfr032c-b::YFR032C-B-TEV-                      | this study | 5054         |
|                               | (chromosomai)               | ProtA-7HIS-kanMX6                              |            |              |
| X-1041                        | Ygl041w-a <sub>ProtA</sub>  | BY4741                                         |            | 4072         |
| I giu4 I w-a <sub>ProtA</sub> | (chromosomal)               | ygl041w-a::YGL041W-A-<br>TEV-ProtA-7HIS-kanMX6 | tms study  | 4972         |

| Ygl204c <sub>GFP</sub>            | Ygl204c <sub>GFP</sub><br>(chromosomal)          | BY4741<br>Ygl204c::YGL204C-yEGFP-<br>kanMX4              | this study | 4117 |
|-----------------------------------|--------------------------------------------------|----------------------------------------------------------|------------|------|
| Ygr021w <sub>ProtA</sub>          | Ygr021w <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>ygr021w::YGR021W-TEV-<br>ProtA-7HIS-hphNT1     | this study | 4973 |
| Ygr053c <sub>ProtA</sub>          | Ygr053c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>ygr053c::YGR053C-TEV-<br>ProtA-7HIS-hphNT1     | this study | 4974 |
| Yhl018w <sub>ProtA</sub>          | Yhl018w <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>yhl018w::YHL018W-TEV-<br>ProtA-7HIS-kanMX6     | this study | 4975 |
| Yil002w-a <sub>ProtA</sub>        | Yil002w-a <sub>ProtA</sub><br>(chromosomal)      | BY4741<br>yil002w-a::YIL002W-A-TEV-<br>ProtA-7HIS-hphNT1 | this study | 4976 |
| yil077c∆                          | Deletion of <i>YIL007C</i> in BY4741 yeast cells | BY4741<br>yil077c::kanMX4                                | Euroscarf  | 3407 |
| Yil077c <sub>ProtA</sub>          | Yil077c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>yil077c::YIL077C-TEV-<br>ProtA-7HIS-kanMX6     | this study | 4977 |
| Yil156w-b <sub>ProtA</sub>        | Yil156w-b <sub>ProtA</sub><br>(chromosomal)      | BY4741<br>yil156w-b::YIL156W-B-TEV-<br>ProtA-7HIS-kanMX6 | this study | 4978 |
| Yjl133c-a <sub>ProtA</sub>        | Yjl133c-a <sub>ProtA</sub><br>(chromosomal)      | BY4741<br>yjl133c-a::YJL133C-A-TEV-<br>ProtA-7HIS-kanMX6 | this study | 4979 |
| <sub>HA</sub> YJR085C<br>(YPH499) | YPH499<br>pRS425- <sub>HA</sub> YJR085C          | ҮРН499 +<br><i>pRS425-<sub>HA</sub>YJR085C</i>           | this study | 4378 |
| Yjr085c <sub>ProtA</sub>          | Yjr085c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>yjr085c::YJR085C-TEV-<br>ProtA-7HIS-kanMX6     | this study | 4980 |
| Ykl023c-a <sub>GFP</sub>          | Ykl023c-a <sub>GFP</sub><br>(chromosomal)        | BY4741<br>ykl023c-a::YKL023C-A-<br>yEGFP-kanMX4          | this study | 4114 |
| Ykl023c-a <sub>HA</sub>           | Ykl023c-a <sub>HA</sub><br>(chromosomal)         | BY4741<br>ykl023c-a::YKL023C-A-3HA-<br>kanMX6            | this study | 4108 |
| Ykl065w-a <sub>GFP</sub>          | Ykl065w-a <sub>GFP</sub><br>(chromosomal)        | BY4741<br>ykl065w-a::YKL065W-A-<br>yEGFP-kanMX4          | this study | 4115 |
| Ykl065w-a <sub>ProtA</sub>        | Ykl065w-a <sub>ProtA</sub><br>(chromosomal)      | BY4741<br>ykl065w-a::YKL065W-A-<br>TEV-ProtA-7HIS-hphNT1 | this study | 4981 |
| Ykl133c <sub>ProtA</sub>          | Ykl133c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>ykl133c::YKL133C-TEV-<br>ProtA-7HIS-hphNT1     | this study | 4982 |
| Ylr049c <sub>ProtA</sub>          | Ylr049c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>ylr049c::YLR049C-TEV-<br>ProtA-7HIS-hphNT1     | this study | 4984 |
| Ylr118c <sub>ProtA</sub>          | Ylr118c <sub>ProtA</sub><br>(chromosomal)        | BY4741<br>ylr118c::YLR118C-TEV-<br>ProtA-7HIS-hphNT1     | this study | 5051 |

| Ylr281c <sub>ProtA</sub>   | Ylr281c <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ylr281c::YLR281C-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 4984 |
|----------------------------|---------------------------------------------|---------------------------------------------------------------------|-------------------|------|
| Ylr307c-a <sub>ProtA</sub> | Ylr307c-a <sub>ProtA</sub><br>(chromosomal) | BY4741<br>ylr307c-a::YLR307C-A-TEV-<br>ProtA-7HIS-hphNT1            | this study        | 4986 |
| Yml007c-a <sub>ProtA</sub> | Yml007c-a <sub>ProtA</sub><br>(chromosomal) | BY4741<br>yml007c-a::YML007C-A-<br>TEV-ProtA-7HIS-hphNT1            | this study        | 4987 |
| Ymr087w <sub>ProtA</sub>   | Ymr087w <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ymr087w::YMR087W-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 5052 |
| Ymr130w <sub>ProtA</sub>   | Ymr130w <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ymr130w::YMR130W-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 4988 |
| Ymr182w-a <sub>GFP</sub>   | Ymr182W-a <sub>GFP</sub><br>(chromosomal)   | BY4741<br>ymr182w-a::YMR182W-A-<br>yEGFP-kanMX4                     | this study        | 5055 |
| Ynr040w <sub>ProtA</sub>   | Ynr040w <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ynr040w::YNR040W-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 4989 |
| Yor020w-a <sub>ProtA</sub> | Yor020w-a <sub>ProtA</sub><br>(chromosomal) | BY4741<br>yor020w-a::YOR020W-A-<br>TEV-ProtA-7HIS-kanMX6            | this study        | 4990 |
| Yor114w <sub>ProtA</sub>   | Yor114w-a <sub>ProtA</sub><br>(chromosomal) | BY4741<br>yor114w::YOR114W-TEV-<br>ProtA-7HIS-kanMX6                | this study        | 5053 |
| Ypl107w <sub>ProtA</sub>   | Ypl107w <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ypl107w::YPL107W-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 4991 |
| Ypr010c-a <sub>ProtA</sub> | Ypr010c-a <sub>ProtA</sub><br>(chromosomal) | BY4741<br>ypr010c-a::YPR010C-A-<br>TEV-ProtA-7HIS-kanMX6            | this study        | 4992 |
| Ypr098c <sub>ProtA</sub>   | Ypr098c <sub>ProtA</sub><br>(chromosomal)   | BY4741<br>ypr098c::YPR098C-TEV-<br>ProtA-7HIS-hphNT1                | this study        | 4993 |
| NOP1pr-sfGFP-<br>Aim11     | NOP1pr-sfGFP-Aim11<br>(chromosomal)         | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Aim11 | this study        |      |
| NOP1pr-sfGFP-<br>Fsf1      | NOP1pr-sfGFP-Fsf1<br>(chromosomal)          | his3∆1 leu2∆0 met15∆0<br>ura3∆0 hph∆n::URA3::NOP1<br>pr-sfGFP-Fsf1  | this study        |      |
| NOP1pr-sfGFP-<br>Mmo1      | NOP1pr-sfGFP-Mmo1<br>(chromosomal)          | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Mmo1  | this study        |      |
| NOP1pr-sfGFP-<br>Mrx11     | NOP1pr-sfGFP-Mrx11<br>(chromosomal)         | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Mrx11 | this study        |      |
| NOP1pr-sfGFP-<br>Tom5      | NOP1pr-sfGFP-Tom5<br>(chromosomal)          | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Tom5  | Yofe et al., 2016 |      |
| NOP1pr-sfGFP-<br>Ybl059w   | NOP1pr-sfGFP-<br>Ybl059w (chromosomal)      | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1                   | this study        |      |

|                                 |                                                  | pr-sfGFP-Ybl059w                                                                                                                                                                             |            |  |
|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| NOP1pr-sfGFP-<br>Yil077c        | NOP1pr-sfGFP-Yil077c<br>(chromosomal)            | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Yil077c                                                                                                                        | this study |  |
| NOP1pr-sfGFP-<br>Yj1127c-b      | NOP1pr-sfGFP-<br>Yjl127c-b<br>(chromosomal)      | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Yj1127c-b                                                                                                                      | this study |  |
| NOP1pr-sfGFP-<br>Yjr085c        | NOP1pr-sfGFP-Yjr085c<br>(chromosomal)            | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Yjr085c                                                                                                                        | this study |  |
| NOP1pr-sfGFP-<br>Ykl133c        | NOP1pr-sfGFP-Ykl133c<br>(chromosomal)            | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Ykl133c                                                                                                                        | this study |  |
| NOP1pr-sfGFP-<br>Ynr040w        | NOP1pr-sfGFP-<br>Ynr040w<br>(chromosomal)        | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-Ynr040w                                                                                                                        | this study |  |
| NOP1pr-sfGFP-<br>YPR098C        | NOP1pr-sfGFP-<br>YPR098C<br>(chromosomal)        | his3Δ1 leu2Δ0 met15Δ0<br>ura3Δ0 hphΔn::URA3::NOP1<br>pr-sfGFP-YPR098C                                                                                                                        | this study |  |
| SFH5pr-sfGFP-<br>Sfh5           | SFH5pr-sfGFP-Sfh5<br>(chromosomal)               | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; SFH5pr-sfGFP-Sfh5               | this study |  |
| FMP16pr-sfGFP-<br>Fmp16         | FMP16pr-sfGFP-Fmp16<br>(chromosomal)             | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; FMP16pr-sfGFP-<br>Fmp16         | this study |  |
| MSS116pr-sfGFP-<br>Mss116       | MSS116pr-sfGFP-<br>Mss116 (chromosomal)          | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; MSS116pr-sfGFP-<br>Mss116       | this study |  |
| YGL041W-Apr-<br>sfGFP-Ygl041w-a | YGL041W-Apr-sfGFP-<br>Ygl041w-a<br>(chromosomal) | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; YGL041W-Apr-<br>sfGFP-Ygl041w-a | this study |  |
| FYV4pr-sfGFP-<br>Fyv4           | FYV4pr-sfGFP-Fyv4<br>(chromosomal)               | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>Sce1::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; FYV4pr-sfGFP-<br>Fyv4           | this study |  |
| YKL018C-Apr-<br>sfGFP-Ykl018c-a | YKL018C-Apr-sfGFP-<br>Ykl018c-a<br>(chromosomal) | his3A1 leu2A0 met15A0<br>ura3A0 lys+ can1A::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1A::STE3pr-<br>LEU2 ; YKL018C-Apr-<br>sfGFP-Ykl018c-a                                                       | this study |  |
| FMP33pr-sfGFP-<br>Fmp33         | FMP33pr-sfGFP-Fmp33<br>(chromosomal)             | his3∆1 leu2∆0 met15∆0<br>ura3∆0 lys+ can1∆::GAL1pr-<br>SceI::STE2pr-SpHIS5_                                                                                                                  | this study |  |

|                                 |                                                  | lyp1A::STE3pr-<br>LEU2 ; FMP33pr-sfGFP-<br>Fmp33                                                                                                                                             |            |
|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| LCL3pr-sfGFP-<br>Llc3           | LCL3pr-sfGFP-Llc3<br>(chromosomal)               | his3A1 leu2A0 met15A0<br>ura3A0 lys+ can1A::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1A::STE3pr-<br>LEU2 ; LCL3pr-sfGFP-Llc3                                                                     | this study |
| YLR281Cpr-<br>sfGFP-Ylr281c     | YLR281Cpr-sfGFP-<br>Ylr281c (chromosomal)        | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; YLR281Cpr-sfGFP-<br>Ylr281c     | this study |
| YMR252Cpr-<br>sfGFP-Ymr252c     | YMR252Cpr-sfGFP-<br>Ymr252c<br>(chromosomal)     | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; YMR252Cpr-sfGFP-<br>Ymr252c     | this study |
| MNE1pr-sfGFP-<br>Mne1           | MNE1pr-sfGFP-Mne1<br>(chromosomal)               | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>Sce1::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; MNE1pr-sfGFP-<br>Mne1           | this study |
| YPL109Cpr-sfGFP-<br>Yp1109c     | YPL109Cpr-sfGFP-<br>Ypl109c (chromosomal)        | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; YPL109Cpr-sfGFP-<br>Ypl109c     | this study |
| YJL133C-Apr-<br>sfGFP-Yjl133c-a | YJL133C-Apr-sfGFP-<br>Yjl133c-a<br>(chromosomal) | his3 $\Delta$ 1 leu2 $\Delta$ 0 met15 $\Delta$ 0<br>ura3 $\Delta$ 0 lys+ can1 $\Delta$ ::GAL1pr-<br>SceI::STE2pr-SpHIS5<br>lyp1 $\Delta$ ::STE3pr-<br>LEU2 ; YJL133C-Apr-<br>sfGFP-Yj1133c-a | this study |

# Plasmids used in this study

| Name                          | Description                                                                                                                                                                                                             | Source or<br>Reference    | Number |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|
| pYM1                          | template for amplification of <i>3HA-kanMX6</i> cassette                                                                                                                                                                | Knop et al.,<br>1999      | 1449   |
| pYM9                          | template for amplification of <i>TEV-</i><br><i>ProtA-7HIS-kanMX6</i> cassette                                                                                                                                          | Knop et al.,<br>1999      | 1457   |
| pYM10                         | template for amplification of <i>TEV-</i><br><i>ProtA-7HIS</i> cassette that was cloned<br>into pFA6a-hphNT1 vector to generate<br>pFA6a-TEV-ProtA-7His-hphNT1<br>plasmid.                                              | Knop et al.,<br>1999      | 1458   |
| pYM12                         | template for amplification of <i>yEGFP-kanMX4</i> cassette                                                                                                                                                              | Knop et al.,<br>1999      | 1460   |
| pFA6a-hphNT1                  | Target plasmid for TEV-ProtA-7His<br>module (that has been amplified from<br>pYM10 plasmid) for generation of<br>pFA6a-TEV-ProtA-7His-hphNT1<br>plasmid.                                                                | Janke et al.,<br>2004     | 2722   |
| pFA6a-TEV-ProtA-7His-hphNT1   | template for amplification of <i>TEV-</i><br><i>ProtA-7HIS-hphNT1</i> cassette                                                                                                                                          | this study                | 2723   |
| pGEM-4Z-YJR085C               | Backbone: pGEM-4Z<br>Insert: EcoRI-YJR085C ( <i>S. cerevisiae</i> )-<br>HindIII<br>template for in vitro synthesis of<br>[ <sup>35</sup> S]Yjr085c using the TnT® Quick<br>Coupled Transcription/ Translation<br>System | this study                | 2610   |
| pRS425                        | Vector used for overexpression of<br>proteins in <i>S. cerevisiae</i> .<br>origin of replication: 2µ<br>yeast selectable marker: LEU2                                                                                   | Christianson et al., 1992 | X30    |
| pRS425-YJR085C                | Backbone: pRS425<br>Insert: HindIII-P <sub>YJR085C</sub> -YJR085C ( <i>S. cerevisiae</i> )-T <sub>YJR085C</sub> -BamHI                                                                                                  | this study                | 2607   |
| pRS425- <sub>HA</sub> YJR085C | Backbone: pRS425<br>Insert: HindIII-P <sub>YJR085C</sub> -1HA-YJR085C<br>( <i>S. cerevisiae</i> )-T <sub>YJR085C</sub> -BamHI                                                                                           | this study                | 2608   |
| pST-N2                        | SWAT-GFP                                                                                                                                                                                                                | Yofe et al.,<br>2016      | 555    |
| pSD-N9                        | Seamless-GFP                                                                                                                                                                                                            | Yofe et al.,<br>2016      | 561    |

### Antibodies used in this study

| Antigen  | Dilution                | Number                                                          | Secondary<br>antibody |
|----------|-------------------------|-----------------------------------------------------------------|-----------------------|
| Abf2     | 1:200 TBS-T + 5% milk   | GR B2072                                                        | anti-rabbit           |
| Aco1     | 1:1000 TBS-T + 5% milk  | GR945-7                                                         | anti-rabbit           |
| Afg3     | 1:500 TBS-T + 5% milk   | GR1551-5                                                        | anti-rabbit           |
| Atp2     | 1:50 TBS-T + 5% milk    | GR863 affinity purified e4                                      | anti-rabbit           |
| Atp4     | 1:250 TBS-T + 5% milk   | GR1970-6                                                        | anti-rabbit           |
| Atp5     | 1:250 TBS-T + 5% milk   | GR1546-4                                                        | anti-rabbit           |
| Atp17    | 1:250 TBS-T + 5% milk   | GR1968-3                                                        | anti-rabbit           |
| Atp20    | 1:250 TBS-T + 5% milk   | GR1517-5                                                        | anti-rabbit           |
| Cdc48    | 1:250 TBS-T + 5% milk   | GR5015-4                                                        | anti-rabbit           |
| Cor1     | 1:300 TBS-T + 5% milk   | GR371-5                                                         | anti-rabbit           |
| Cox1     | 1:400 TBS-T + 5% milk   | GR1538-4                                                        | anti-rabbit           |
| Cox2     | 1:250 TBS-T + 5% milk   | GR1949-2                                                        | anti-rabbit           |
| Cox4     | 1:1000 TBS-T + 5% milk  | GR578-5                                                         | anti-rabbit           |
| Cox5a    | 1:400 TBS-T + 5% milk   | GR1540-5                                                        | anti-rabbit           |
| Cox6     | 1:250 TBS-T + 5% milk   | GR2015-2                                                        | anti-rabbit           |
| Cox8     | 1:300 TBS-T + 5% milk   | GR3609-5                                                        | anti-rabbit           |
| Cox9     | 1:250 TBS-T + 5% milk   | GR3612-3                                                        | anti-rabbit           |
| Cox13    | 1:250 TBS-T + 5% milk   | GR1542-4                                                        | anti-rabbit           |
| Cta1     | 1:20000 TBS-T + 5% milk | 12                                                              | anti-goat             |
| Cyt1     | 1:750 TBS-T + 5% milk   | GR541-6                                                         | anti-rabbit           |
| Dic1     | 1:200 TBS-T + 5% milk   | GR2054-5                                                        | anti-rabbit           |
| Erg6     | 1:500 TBS-T + 5% milk   | GR3034-6                                                        | anti-rabbit           |
| Fmp10    | 1:500 TBS-T + 5% milk   | GR3338-2                                                        | anti-rabbit           |
| GFP      | 1:1000 TBS-T + 5% milk  | GFP Antibody<br>(Novus Biologicals LLC; NB600-<br>308)          | anti-rabbit           |
| Goat IgG | 1:50000 TBS-T + 5% milk | Peroxidase antibody, rabbit (Sigma-<br>Aldrich Corp.; A8919)    | _                     |
| НА       | 1:1000 TBS              | Anti-HA-Peroxidase<br>(F. Hoffmann-La Roche AG;<br>11667475001) | _                     |
| Isd11    | 1:250 TBS-T + 5% milk   | 336-7                                                           | anti-rabbit           |
| Mdj1     | 1:500 TBS-T + 5% milk   | GR1839-6                                                        | anti-rabbit           |
| Mdl1     | 1:200 TBS-T + 5% milk   | GR1518-7                                                        | anti-rabbit           |
| Mdm38    | 1:1000 TBS-T + 5% milk  | 342-6                                                           | anti-rabbit           |
| Mge1     | 1:250 TBS-T + 5% milk   | GR1838-6                                                        | anti-rabbit           |
| Mgr2     | 1:250 TBS-T + 5% milk   | GR3121-3/4                                                      | anti-rabbit           |
| Mia40    | 1:750 TBS-T + 5% milk   | B315                                                            | anti-rabbit           |
| Mic10    | 1:500 TBS-T + 5% milk   | GR3343-2                                                        | anti-rabbit           |
| Mic19    | 1:400 TBS-T + 5% milk   | GR3358-2                                                        | anti-rabbit           |
| Mic26    | 1:250 TBS-T + 5% milk   | GR3335-2                                                        | anti-rabbit           |
| Mic27    | 1:250 TBS-T + 5% milk   | GR3357-2                                                        | anti-rabbit           |

| Mic60              | 1:500 TBS-T + 5% milk                          | GR857-5                                                                                                   | anti-rabbit |
|--------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|
| Ndi1               | 1:200 TBS-T + 5% milk                          | GR809-4                                                                                                   | anti-rabbit |
| Ola1               | 1:1000 TBS-T + 5% milk                         | 7173                                                                                                      | anti-rabbit |
| OM14               | 1:500 TBS-T + 5% milk                          | GR3040-1                                                                                                  | anti-rabbit |
| Pam16              | 1:200 TBS-T + 5% milk                          | GR750-6                                                                                                   | anti-rabbit |
| Pam18              | 1:500 TBS-T + 5% milk                          | GR752-3                                                                                                   | anti-rabbit |
| Pdi1               | 1:2000 TBS-T + 5% milk                         | GR1946                                                                                                    | anti-rabbit |
| Pgk1               | 1:5000 TBS-T + 5% milk                         | GR753-1                                                                                                   | anti-rabbit |
| Phb2               | 1:300 TBS-T + 5% milk                          | B295-10                                                                                                   | anti-rabbit |
| Por1               | 1:500 TBS-T + 5% milk                          | GR3622-3                                                                                                  | anti-rabbit |
| ProtA              | 1:200 TBS + 5% milk                            | Peroxidase Anti-Peroxidase Soluble<br>Complex antibody produced in rabbit<br>(Sigma-Aldrich Corp.; P1291) | _           |
| Pth2               | 1:500 TBS-T + 5% milk                          | GR797-3                                                                                                   | anti-rabbit |
| Qcr6               | 1:250 TBS-T + 5% milk                          | GR1054-6                                                                                                  | anti-rabbit |
| Qcr8               | 1:5000 TBS-T + 5% milk                         | GR1038-1                                                                                                  | anti-rabbit |
| Rcf2               | 1:2000 TBS-T + 5% milk                         | GR3113-1                                                                                                  | anti-rabbit |
| Rip1               | 1:500 TBS-T + 5% milk                          | GR543-5                                                                                                   | anti-rabbit |
| Rpl19              | 1:7000 TBS-T + 5% milk                         | 106                                                                                                       | anti-rabbit |
| Sac1               | 1:2500 TBS-T + 5% milk                         | GR1487-6                                                                                                  | anti-rabbit |
| Sam50              | 1:500 TBS-T + 5% milk                          | B312-14                                                                                                   | anti-rabbit |
| Scm4               | 1:500 TBS-T + 5% milk                          | GR1473-2                                                                                                  | anti-rabbit |
| Sdh1               | 1:1000 TBS-T + 5% milk                         | GR1849-3                                                                                                  | anti-rabbit |
| Sdh4               | 1:2000 TBS-T + 5% milk                         | GR1855-3                                                                                                  | anti-rabbit |
| Sec61              | 1:1000 TBS-T + 5% milk                         | GR759-2                                                                                                   | anti-rabbit |
| Ssa1               | 1:1000 TBS-T + 5% milk                         | GR1011-4                                                                                                  | anti-rabbit |
| Sss1               | 1:100 TBS-T + 5% milk                          | GR787-7 / GR788-1                                                                                         | anti-rabbit |
| Tcd2               | 1:500 TBS-T + 5% milk                          | GR1396-1                                                                                                  | anti-rabbit |
| Tim10              | 1:500 TBS-T + 5% milk<br>1:250 TBS-T + 5% milk | 217-8<br>GR2041-7                                                                                         | anti-rabbit |
| Tim11              | 1:400 TBS-T + 5% milk                          | 138-9                                                                                                     | anti-rabbit |
| Tim12              | 1:250 TBS-T + 5% milk                          | GR906-7                                                                                                   | anti-rabbit |
| Tim17              | 1:300 TBS-T + 5% milk                          | GR1845-3                                                                                                  | anti-rabbit |
| Tim21              | 1:500 TBS-T + 5% milk                          | GR3899-4                                                                                                  | anti-rabbit |
| Tim23              | 1:500 TBS-T + 5% milk                          | GR3878-4                                                                                                  | anti-rabbit |
| Tim44              | 1:200 TBS-T + 5% milk                          | GR1836-4                                                                                                  | anti-rabbit |
| Tim50              | 1:500 TBS-T + 5% milk                          | GR3881-1                                                                                                  | anti-rabbit |
| Tim54              | 1:1000 TBS-T + 5% milk                         | 215-6                                                                                                     | anti-rabbit |
| Tom7               | 1:250 TBS-T + 5% milk                          | 230-9                                                                                                     | anti-rabbit |
| Tom20              | 1:5000 TBS-T + 5% milk                         | GR3225                                                                                                    | anti-rabbit |
| Tom22              | 1:5000 TBS-T + 5% milk                         | GR3227                                                                                                    | anti-rabbit |
| Tom40              | 1:500 TBS-T + 5% milk                          | 168-4                                                                                                     | anti-rabbit |
| Tom70              | 1:500 TBS-T + 5% milk                          | GR657-4                                                                                                   | anti-rabbit |
| Yil077c<br>(Rci37) | 1:250 TBS-T + 5% milk                          | GR3731-5                                                                                                  | anti-rabbit |

| Yme1 1:400 1BS-1 + 5% milk GR1435-3 anti-rabbit | X7 1 | 1 400 TD C T . 50/ 11   | GD1425.2 | . 11.       |
|-------------------------------------------------|------|-------------------------|----------|-------------|
|                                                 | Ymel | 1:400  TBS-T + 5%  milk | GR1435-3 | anti-rabbit |

#### SUPPLEMENTAL REFERENCES

- Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast *14*, 115–132.
- Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., and Hieter, P. (1992). Multifunctional yeast high-copynumber shuttle vectors. Gene 110, 119–122.
- Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. *26*, 1367–1372.
- Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805.
- Delmotte, N., Lasaosa, M., Tholey, A., Heinzle, E., and Huber, C.G. (2007). Two-dimensional reversed-phase x ionpair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. J. Proteome Res. 6, 4363–4373.
- Dubaquié, Y., Looser, R., Fünfschilling, U., Jenö, P., Rospert, S. (1998). Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J. 17, 5868-5876.
- Fin, R.D., Clements, J., Arndt, W., Miller, B.L., Wheeler, T.J., Schreiber, F., Bateman, A., and Eddy, S.R. (2015). HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38.
- Fukasawa, Y., Tsuji, J., Fu, S.-C., Tomii, K., Horton, P., and Imai, K. (2015). MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14, 1113–1126.
- Gietz, R.D., and Woods, R.A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth. Enzymol. *350*, 87–96.
- Huxley, C., Green, E.D., and Dunham, I. (1990). Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 6, 236.
- Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.
- Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972.
- Kushnirov, V.V. (2000). Rapid and reliable protein extraction from yeast. Yeast 16, 857-860.
- Lasaosa, M., Delmotte, N., Huber, C.G., Melchior, K., Heinzle, E., and Tholey, A. (2009). A 2D reversed-phase x ion-pair reversed-phase HPLC-MALDI TOF/TOF-MS approach for shotgun proteome analysis. Anal. Bioanal. Chem. *393*, 1245–1256.
- Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.
- Meisinger, C., Sommer, T., and Pfanner, N. (2000). Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal. Biochem. 287, 339–342.
- Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics *122*, 19–27.
- Smith, J.E., Alvarez-Dominguez, J.R., Kline, N., Huynh, N.J., Geisler, S., Hu, W., Coller, J., Baker, K.E. 2014. Translation of Small Open Reading Frames within Unannotated RNA Transcripts in Saccharomyces cerevisiae. Cell Rep. 7, 1858-1866.
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods *13*, 731–740.
- von der Malsburg, K., Müller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21, 694–707.
- Wiśniewski, J.R., Ostasiewicz, P., Duś, K., Zielinska, D.F., Gnad, F., and Mann, M. (2012). Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol. Syst. Biol. 8, 611.
- Wysocki, R., Roganti, T., Van Dyck, E., de Kerchove D'Exaerde, A., Foury, F. 1999. Disruption and basic phenotypic analysis of 18 novel genes from the yeast Saccharomyces cerevisiae. Yeast 15, 165–171.