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Description of the Full-Order Heat Shock Model

In building the heat-shock model, we made the following assumptions. Dur-
ing transcription initiation, RNA polymerase (RNAP) binds reversibly to the
promoter region. We assume that this process, in addition to the subsequent
formation of an open complex, achieves rapid equilibrium (1). Transcription
initiation is assumed to be a pseudofirst-order reaction with rate Ktr. Similarly,
translation initiation is assumed to proceed with a pseudofirst-order rate KTL.
For most Escherichia coli operons, initiation and elongation rates are such that
ribosome queuing does not occur (2). We therefore take each transcription and
translation initiation reaction to be independent. For exponential growth in
cell volume, proceeding as ekt, the dilution of species concentration is directly
incorporated in the degradation rate. The degradation of σ32 by the protease
FtsH in this model is implemented through its interaction with DnaK, and its
cochaperone DnaJ. Raising the temperature produces an increase in the cellular
levels of unfolded proteins that then titrate DnaK/J away from σ32, allowing
it to bind to RNAP (resulting in increased transcription) and stabilizing it in
the process (3). Other possible models favor the direct titration of proteases
by unfolded proteins as the mechanism underlying σ32 stabilization. We do not
expect qualitative alterations to the predictions of our model with this alterna-
tive scenario.
Based on these assumptions, the mathematical model that we propose to de-
scribe the dynamics of the heat shock response uses mass-action first order
kinetics to describe both the synthesis of new proteins (σ factors, chaperones,
and proteases), and the association/dissociation activity of molecules. This
modeling approach produces a set of ordinary differential equations. Upon sim-
ulation, those equations exhibited numerical stiffness. Usually, this behavior is
due to the interaction of some fast and slow dynamics and is a manifestation of
rate constants different by several orders of magnitude. The observed numerical
stiffness imposed the necessity of transforming the differential equations that de-
scribe the fast states into algebraic constraints through a singular perturbation
argument. It is a common practice to assume the binding rates (association and
dissociation) between proteins or between proteins and specific DNA promoters
are fast compared with the rate of synthesis and degradation of mRNAs and
proteins. Therefore, we assumed that the binding dynamics reach their steady
state very fast compared with other reactions in the system. We also used mass-
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balance equations to relate the total quantity of a species in the system to its
free concentration and the concentration of the different compounds where it
appears. The resulting model is a set of differential algebraic equations (DAEs),
which are of the form:

Ẋ(t) = F(t; X;Y) [1]
0 = G(t; X;Y) [2]

where X is an 11-dimensional vector whose elements are the differential vari-
ables, and Y is a 20-dimensional vector whose elements are algebraic variables.
This form is known as a semi-explicit DAE, with Eq. 2 being the constraint
equation. If we differentiate Eq. 2 with respect to time, we get the following:

0 = GX(t; X;Y)Ẋ + GY(t; X; Y)Ẏ + Gt(t; X; Y)

If GY(t, X,Y) = ∂G(t,X,Y)
∂Y is nonsingular, the system is an implicit set of or-

dinary differential equations. Therefore, the DAE system is of index one and
is solvable by backward differentiation formulas, as implemented in specialized
software packages such as DASSL (4).

Model Equations

Transcription and translation equations

fracd[mRNA(DnaK)]dt = Ktr1 .[σ
32: RNAP : ph]− αmRNA.[mRNA(DnaK)]

d[DnaKt]
dt

= KTL.[mRNA(DnaK)]− αprot.[DnaKt]

d[mRNA(FtsH)]
dt

= Ktr2 .[σ
32: RNAP : ph− αmRNA.[mRNA(FtsH)]

d[FtsHt]
dt

= KTL.[mRNA(FtsH)]− αprot.[FtsHt]

d[mRNA(protease)]
dt

= Ktr3 .[σ
32: RNAP : ph]− αmRNA.[mRNA(protease)]

d[proteaset]
dt

= KTL.[mRNA(protease)]− αprot.[proteaset]

d[mRNA(HslVU)]
dt

= Ktr4 .[σ
32: RNAP : ph]− αmRNA.[mRNA(HslVU)]

d[HslVUt]
dt

= KTL.[mRNA(HslVU)]− αprot.[HslVUt]

d[mRNA(σ32)]
dt

= Ktr5 .[σ
70: RNAP : pg]− αmRNA.[mRNA(σ32)]

d[σ32
t ]

dt
= KTL.η(T ).[mRNA(σ32)]− αprot.[σ32

f ]− αFtsH .[σ32: DnaK : FtsH]

− αprotease(T ).[σ32:DnaK:protease]− αHslV U (T ).[σ32 : HslV U ]
d[Pfolded]

dt
= Kfold.[Punfolded : DnaK]−K(T ).[Pfolded]



Algebraic binding equations

[σ70: RNAP] = K1.[σ70
f ].[RNAPf ]

[σ32: RNAP] = K2.[σ32
f ].[RNAPf ]

[RNAP : D] = K3.[RNAPf ].[Dt]
[σ32: DnaK : FtsH] = K4.[σ32: DnaK].[FtsHf ]

[σ32: DnaK] = K5.[σ32
f ].[DnaKf ]

[σ32 :DnaK : protease] = K6.[σ32 : DnaK].[proteasef ]

[σ32 : HslV U ] = K7.[σ32
f ].[HslV Uf ]

[Punfolded : DnaK] = K8.[Punfolded].[DnaKf ]
[σ32: RNAP : ph] = K9.[σ32: RNAP]([pht]− [σ32: RNAP : ph])
[σ70: RNAP : pg] = K10.[σ70: RNAP]([pgt]− [σ70: RNAP: pg])
[σ70: RNAP : D] = K11.[σ70: RNAP].[Dt]
[σ32: RNAP : D] = K12.[σ32: RNAP].[Dt]

Mass balance equations

[RNAPt] = [RNAPf ] + [σ70: RNAP] + [σ32: RNAP] + [RNAP : D] + [σ70: RNAP : D]
+ [σ32: RNAP : D] + [σ70: RNAP : pg] + [σ32: RNAP : ph]

[σ70
t ] = [σ70

f ] + [σ70: RNAP] + [σ70: RNAP : D] + [σ70: RNAP : pg]

[σ32
t ] = [σ32

f ] + [σ32: DnaK : protease] + [σ32: RNAP] + [σ32: RNAP : D]

+ [σ32: DnaK : FtsH] + [σ32: DnaK] + [σ32: RNAP:ph] + [σ32 : HslV U ]
[DnaKt] = [DnaKf ] + [σ32: DnaK : FtsH] + [σ32: DnaK] + Punfolded : DnaK]

+ [σ32 : DnaK : protease]
[FtsHt] = [FtsHf ] + [σ32: DnaK : FtsH]

[HslVUt] = [HslVUf ] + [σ32: HslVU]
[proteaset] = [proteasef ] + [σ32: DnaK : protease]
[Proteint] = [Punfolded] + [Punfolded : DnaK] + [Pfolded]

Parameter values

The rate parameters used in the model equations were determined by using
various sources. The binding and degradation constants were taken from the
literature of the heat-shock response. The synthesis rates for different proteins,
σ factors, and chaperones were tuned to produce biologically plausible numbers
of these quantities in the cell in the wild-type heat shock. Those parameters are
given in Table 1. Initial values for the state variables are given in Table 2, and
other constants used are given in Table 3.



Sensitivity Analysis

To study the sensitivity of the model to parametric uncertainty characterized

by θ, we need to find the derivative of the solution
[

X
Y

]
with respect to each

parameter. Assuming that this solution exists and is uniquely defined on the
time interval of interest, we can write:

X(t, θ) = X0 +
∫ t

t0

F (s; X; Y ; θ)ds

0 = G(t; X; Y ; θ)

Differentiating with respect to θ, we get:

Xθ(t, θ) =
∫ t

t0

[
∂F

∂X
(s;X;Y ; θ)Xθ(s, θ) +

∂F

∂Y
(s; X; Y ; θ)Yθ(s, θ) +

∂F

∂θ
(s;X;Y ; θ)]ds

0 =
∂G

∂X
(t; X; Y ; θ)Xθ(t, θ) +

∂G

∂Y
(t;X;Y ; θ)Yθ(t, θ) +

∂G

∂θ
(t;X; Y ; θ)

Here, again Xθ(t, θ) = ∂X(t,θ)
∂θ and Yθ(t, θ) = ∂Y (t,θ)

∂θ .
Now, differentiating Xθ with respect to t, we obtain the following set of

differential equations:

Ẋθ(t, θ) =
∂F

∂X
(t; X; Y ; θ)Xθ(t, θ) +

∂F

∂Y
(t;X;Y ; θ)Yθ(t, θ) +

∂F

∂θ
(t; X; Y ; θ).

These equations, along with the algebraic constraint involving G produce an
additional set of (n + m) × q sensitivity equations, which together with the
original system yield:

Ẋ(t) = F (t; X; Y ; θ)

Ẋθ(t, θ) =
∂F

∂X
(t;X;Y ; θ)Xθ(t, θ) +

∂F

∂Y
(t; X; Y ; θ)Yθ(t, θ) +

∂F

∂θ
(t;X;Y ; θ)

0 = G(t; X; Y ; θ)

0 =
∂G

∂X
(t;X;Y ; θ)Xθ(t, θ) +

∂G

∂Y
(t; X; Y ; θ)Yθ(t, θ) +

∂G

∂θ
(t; X; Y ; θ)

X(t = t0) = X0(θ)

Y (t = t0) = Y0(θ)

Xθ(t0, θ) = 0

These equations form a new (n + m)× (q + 1) DAE, whose solution would give
the sensitivity to parameter variations along the trajectory of the system. It is
worth noting here that this type of sensitivity analysis is referred to as small
sensitivity and, as the name indicates, is applied to cases where the change in



parameters is small. The solution of the perturbed system is then approximated
by a Taylor series expansion of the form:

X(t, θ + ∆θ) = X(t, θ) + ∆θ
∂X(t, θ)

∂θ
+ higher-order terms.

For large parameter variations, one should adopt what is referred to as sensi-
tivity in the large, which is mainly a measure of the error between the nominal
and perturbed system trajectories.

Model Validation

The level, activity, and stability of σ32 are the key regulatory elements of the
heat-shock response. Upon exposure to heat, the time profile of the level of σ32

shows a fast but transient increase due to increased translation and stabilization
of the otherwise very unstable σ32 (Fig. 1). The transient stabilization of σ32

is a result of the large number of unfolded proteins that titrate σ32 away from
DnaK. The increased level of σ32 leads to the synthesis of large numbers of
molecular chaperones and proteases that in turn act as a negative feedback on
the level of σ32. This negative feedback leads to the decrease in the level of
σ32 until it reaches a steady state 3 to 4-fold larger than the value at a low
temperature.

To reproduce this behavior and validate our model, we adopted the following
strategy. We complemented the parameters picked from the literature by fitting
the unavailable parameters to reproduce the steady-state levels of σ32 and chap-
erones at low temperature. The parameter sets that reproduced both the typical
transient response and steady-state for chaperones and σ32 at high temperature
were kept and the other discarded. To discriminate among the remaining sets
of parameters, we simulated various heat-shock mutants. The set of parameters
that was finally kept corresponded to values of the unavailable parameters that
reproduced the steady state, the specific shape of the transient response, and
the various heat-shock mutant data without any additional tuning. The results
are depicted in Fig. 1, where the simulations are shown for the time response of
the σ32 cellular level (temperature increases at t = 400min).

The result of this simulation agrees qualitatively with experimental results.
For the set of parameters used, the agreement of the model predictions with
the data was also quantitative. The levels and rate of synthesis of the chaper-
ones under normal temperature and heat-shock conditions also agree with the
literature data (12) (see Fig. 2).

Heat shock was also thoroughly investigated for FtsH-null mutants (12).
In this mutant, loss of FtsH function causes marked stabilization of σ32 at
low temperature (≈ 20-fold of the wild type) and high temperature (≈ 35-fold
of the wild type), whereas induction of heat-shock protein synthesis occurred
almost normally in these cells. As shown in Fig. 1, our model provides good



agreement with this accumulation of σ32 and the qualitative dynamics for the
relative DnaK synthesis (Fig. 2).

Additionally, the model was tested for the case where σ32 was overproduced
at 30◦C. This case was investigated by Straus et. al (13) who observed that
when σ32 was overproduced at normal growth temperature, the level of σ32

increased and remained elevated 60 min.. It was also observed that the synthesis
of DnaK was only transiently induced, reaching a peak at ≈ 10 min. after σ32

overproduction and then declining. This behavior for the σ32 level and rate of
synthesis of chaperones could be reproduced by our model (data not shown).

Description of the Reduced-Order Heat-Shock Model

Although the detailed modeling of the heat-shock response involves nonlinear
equations with a level of complexity that cannot be analytically tractable, we
found that the basic functional modules in this response and their qualitative
behavior can be fully captured by a simplified model whose components are
exposed in what follows. For ease of notation, we will denote the chaperones
by D, the protease by F , the σ32 by S, and the unfolded proteins by Uf .
Furthermore, we refer to the total quantity of X by Xt and the free quantity of
X by Xf . As in the full heat-shock model, we will assume that D is produced
at a rate Kd and is degraded at rate αd. D can reversibly bind to the σ-factor
S or to the unfolded protein Uf . In turn, the level of free σ, Sf , influences
the rate of transcription of protein D. S itself is produced at a temperature-
dependent rate η(T) and degraded through a regulated mechanism involving D
and F . The proteins are folded through the interaction with D and unfolded
with a temperature-dependent rate K(T ). The chemical reactions describing
this network are naturally divided into two categories, fast and slow. The fast
reactions are assumed to be in equilibrium with respect to the slow reactions.
In terms of differential equations, those reactions translate to the following:

dSt

dt
= η(T )− α0St − αsS : D : F

dDt

dt
= KdSf − αpDt

dUf

dt
= K(T )Pfolded −KfoldU : D [3]

where U : D is the complex formed by the binding of Uf to D, and S : D : f
is the complex formed by the binding of S to F mediated by the binding to
D. The total concentration of protein D, unfolded proteins Uf , F , and S are
constant, so that we can write the mass balance equations

St = Sf + S : D + S : D : F

Dt = Df + U : D + S : D + S : D : F

Ft = Ff + S : D : F, [4]



where Pt is the total number of proteins in the cell, considered here to be
constant. We can now apply some simplifying assumptions. We eliminate U:D
and S:D:F from Eq. 3 by utilizing the fact that the binding reactions are fast
compared with expression and degradation and write algebraic expressions:

S : D = Ks.Sf .Df

U : D = Ku.Uf .Df

S : D : F = KfFfS : D. [5]

Using the relationships in Eqs. 4 and 5, we get the following relationships:

Sf =
St

1 + KsDf (1 + KfFf )

If St ¿ Dt (as in the case of the heat-shock response), the expression for
Df simplifies to:

Df ' Dt

1 + KuUf

and consequently:

Sf ' St

1 + KsDt1+Kf Ff

1+KuUf

.

Under these assumptions, Eqs. 3 become

dSt

dt
= η(T )− α0.St − αs.

αKsKfD2
t

Γ− κDt + KsDt(1 + αKfDt)
St

dDt

dt
= Kd.

Γ− κDt

Γ− κDt + KsDt(1 + αKfDt)
St − αdDt, [6]

where we have defined Γ .= 1 + KuPt, κ
.= Ku(KT +Kf )

KT
, and assumed that

Ff = αDt. This assumption is justified by the fact that FtsH is part of the σ32

regulon, and that is much more abundant in the cell than σ32. Pt is the total
number of proteins in the cell (assumed to be constant), Ks, Kf , and Ku are
binding rate constants, and α0, αd, and αs are degradation constants.

Under the above-mentioned assumptions, the simplified model reproduces
qualitatively the dynamics of the heat-shock response system. The equations
involved in this model have the benefit of being amenable to analytical analysis,
an unfeasible task for the full model with its layered complexity.

It is worth noting here that even though the description of the reduced-order
model seems to be based on empirical interactions, the same description could
be exactly derived from the full model through various algebraic manipulations
and approximations ∗. Furthermore, the expressions of the reduced-order model
can be exactly cast into a modular decomposition shown in Fig. 3.

∗The model reduction procedure involves details and algebraic manipulations that are
omitted here.
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