

Figure S1. Correlation between Tn-seq replicates for determining the *A*. *actinomycetemcomitans* essential genome. Each point corresponds to a gene in
VT1169 (left) or 624 (right). The normalized reads/gene are plotted for replicates 1 and
2 on the X and Y axis, respectively. r_s, Spearman's rank correlation coefficient.

biosynthesis genes. * indicates less than expected (DESeq2 adjusted p < 0.01).

12 Figure S3. Functional enrichment in the A. actinomycetemcomitans essential 13 genome. Overlying data labels indicate clusters of orthologous groups (COGs). Normalized fold enrichment (Y axis) is the percent of the essential genome made up by 14 15 a COG divided by the percent of the whole genome made up by the same COG. The Y axis is adjusted such that 2-fold higher than the genome is +2, and 2-fold lower than the 16 genome is -2. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (two-tailed Fisher's exact test). I, 17 Lipid transport and metabolism. J, Translation, ribosomal structure, and biogenesis. M, 18 19 Cell wall/membrane/envelope biogenesis. D, Cell cycle control, cell division, and chromosome partitioning. H, Coenzyme transport and metabolism. L, Replication, 20 recombination, and repair. F, Nucleotide transport and metabolism. E, Amino acid 21 transport and metabolism. U, Intracellular trafficking, secretion, and vesicular transport. 22 23 Q. Secondary metabolite biosynthesis, transport, and catabolism. O Post-translational modification, protein turnover, and chaperones. K. Transcription. C. Energy production 24 and conversion. R, General function prediction only. P, Inorganic ion transport and 25 26 metabolism. S, Signal transduction mechanisms. G, Carbohydrate transport and metabolism. V, Defense mechanisms. S, Function unknown. 27

Figure S4. Conservation of the A. actinomycetemcomitans essential genome 29 among strains. (A) Y axis, number of core essential genes in VT1169 with an ortholog 30 in the indicated number of other A. actinomycetemcomitans strains (X axis). Dotted line, 31 total core essential genes in VT1169. Data labels, number of orthologs (percentages 32 are relative to 319). (B) Y axis, number of core essential genes in VT1169 with an 33 ortholog in another individual strain. Each point represents an individual strain of A. 34 35 actinomycetemcomitans. The percentages (relative to 319) indicate the average ± standard deviation. (A) and (B) were essentially the same for 624 (see Dataset S1). 36

ortholog in the essential genome of the indicated species (X axis). The corresponding

numbers in 624 varied at most from VT1169 by 1 (see Dataset S1). Each species is

colored according to its phylogenetic class. The average for each class is shown on the

right. The Cyanobacteria and Actinobacteria are not shown since they are represented

by single species (S. elongatus and M. tuberculosis, respectively). Error bars represent

45 standard deviation (n = 2-13). *, p < 0.001 (two-tailed Student's *t* test).

40

41

42

43

44

46

Figure S6. The Cartesian Pooling-Coordinate Sequencing method. In the CP-CSeq 47 method, 2 master plates (MP) are made. Each well of each plate goes into the 48 corresponding well in MP1 (left), whereas all of the wells per plate each go into a 49 50 separate well in MP2 (right). Then, Tn-seq is done on each row and column of each MP. The A. actinomycetemcomitans ordered library comprises 39 plates, so it required 33 51 Tn-seq reactions (8 MP1 rows + 12 MP1 columns + 8 MP2 rows + 5 MP2 columns). In 52 the example shown, the mutant in well A4 of plate 39 can be identified by finding the 53 intersection between row A and column 4 in MP1 and row H and column 4 in MP2. 54

Figure S7. Factors that mediate *A. actinomycetemcomitans* erythromycin resistance. (A) The wild type and hyper-sensitive *acrA*⁻ mutant were grown with half-MIC erythromycin (1 μ g/ml, +ery) or the solvent control (same volume of pure ethanol, ery). (B) Screen for mutants that do not attach in response to erythromycin. Attachmentdefective mutants become enriched in the liquid phase specifically in the presence of antibiotic (right). wt, wild type.

Figure S8. Factors that mediate A. actinomycetemcomitans erythromycin-induced 63 attachment. Biofilm attachment was measured using crystal violet. X axis, fraction of 64 minimum inhibitory concentration (MIC) for erythromycin. Y axis, absorbance (A_{620}) 65 66 reading for crystal violet bound to biofilms. Overlying data labels indicate the plate and well in the ordered library that was the source of the mutant (see Figure 3 for gene 67 products). Error bars represent standard deviation (n = 11-16). Significance was 68 determined for each concentration compared to no erythromycin addition. *, p < 0.05; **, 69 p < 0.01; ***, p < 0.001 (two-tailed Student's *t* test). 70

71	Table S1. Summary	y of Tn-seq analy	ysis for essential genome.
----	-------------------	-------------------	----------------------------

Sample	Rep	Total reads	With IR ^a	Processed ^b	Mapped ^c	Sites ^d	No slip ^e	In both ^f
VT1160	1	13,574,870	11,531,485 (85%)	10,480,596 (91%)	9,084,230 (87%)	44,329	43,56 4	32,34
VIII09	2	9,893,314	8,881,261 (90%)	8,649,894 (97%)	7,711,040 (89%)	38,553	37,74 8	4
624	1	15,346,282	11,862,440 (77%)	10,189,279 (86%)	3,921,979 (38%)	39,000	38,64 3	26,53
024	2	22,724,657	18,817,125 (83%)	16,916,684 (90%)	12,801,472 (76%)	37,325	36,27 3	0
no antibiotic	-	7,637,188	6,919,034 (91%)	6,452,821 (93%)	5,942,808 (92%)	2,634	2,013	-
erythromycin	-	8,035,917	6,743,078 (84%)	5,740,553 (85%)	5,202,209 (91%)	2,516	1,949	-

72 Percentages are relative to the value in the adjacent left column.

⁷³ ^aReads containing the transposon inverted repeat (IR) sequence (CCAACCTGTTA) with

0 mismatches in its expected location (IR end position at base 38-40) within the read

^bReads remaining after trimming 3' low-quality bases (phred score + 33 < 20), trimming

76 poly-C tails, and removing reads <20 bases long

^cReads mapping end-to-end to the *A. actinomycetemcomitans* genome with high quality

78 (MAPQ > 39)

^dSites identified after accounting for the 2 bp duplication associated with mariner

insertion events (by adding 2 to the genome position of reads mapping to the negative

81 strand)

- ⁸² ^eSites remaining after correcting for polymerase slippage by collapsing adjacent sites
- 83 onto the site with the highest read count (local maximum)
- ¹Sites present in both replicates (1 aliquot of the mutant pool before amplification, 1 after
- 85 amplification)

86 **Table S2. Smoothing to correct for distance from origin.**

Sample	Replicate	Max:min*
VT1160	1	1.24
VIII09	2	1.97
634	1	1.15
024	2	1.27
no antibiotic	-	1.20
erythromycin	-	1.17

*Fold difference between the maximum and minimum values of the LOESS regression

⁸⁸ for insertion abundance vs. location, indicating how much insertions close to the origin

⁸⁹ were inflated relative to those close to the terminus prior to smoothing

90 Table S3. Gene essentiality in *A. actinomycetemcomitans* VT1169 and 624.

		Essential	Essential	Essential	Essential
Strain	Total genes		orthologs in	orthologs in	accessory
		genes	both strains ^b	1 strain only ^b	genes⁵
VT1160	1,912	413	319	86	8
V11109		(22%)	(77%)	(21%)	(2%)
624	2 164	386	319	54	13
024	2,104	(18%)	(83%)	(14%)	(3%)

91 ^aPercentages are relative to the value in the 'Total genes' column.

^bPercentages are relative to the value in the 'Essential genes' column.

Table S4. Metabolic pathways that are essential in *A. actinomycetemcomitans.*

	Glycolysis				
	Pyruvate dehydrogenase				
	Pentose phosphate pathway				
Carbohvdrate metabolism	Phosphoribosyl pyrophosphate (PRPP)				
· · · · · · · · · · · · · · · · · · ·	biosvnthesis				
	Fructose catabolism				
	Acetate fermentation				
	ATP synthase				
Energy metabolism	Cvtochrome oxidase				
	Fatty acid biosynthesis				
Lipid metabolism	Phospholipid biosynthesis				
	Purine metabolism				
Nucleotide metabolism	Pyrimidine metabolism				
	Glutamine/glutamate biosynthesis				
	Glycine/serine biosynthesis				
	Threonine biosynthesis ^a				
	Cysteine biosynthesis ^a				
Amino acid metabolism	S-adenosyl methionine (SAM) metabolism				
	Lysine/diaminopimelate biosynthesis				
	Chorismate biosynthesis				
	Glutathione biosynthesis ^a				
Chucan matchalian	Lipopolysaccharide biosynthesis				
Giycan metabolism	Peptidoglycan biosynthesis				
	Riboflavin metabolism				
	Coenzyme A (CoA) biosynthesis				
Cofester and viterain metabolism	Lipoic acid biosynthesis ^b				
Colactor and vitamin metabolism	Tetrahydrofolate (THF) metabolism				
	Heme biosynthesis				
	Menaguinone biosynthesis				
Terpenoid backbone metabolism	Isoprenoid biosynthesis				
	RNA polymerase				
	Ribosome				
Constin information processing	Aminoacyl-tRNA biosynthesis				
Genetic mornation processing	RNA degradation				
	DNA replication				
	DNA repair				
	Sec-dependent protein export				
	Thiamine transport				
	Spermidine transport				
Membrane transport	Arginine transport				
	Cystine transport				
	Peptide transport				
	Zinc transport ^a				

			Lipopolysaccharide transport
			Lipoprotein transport
2			 _

- 94 ^aEssential in *A. actinomycetemcomitans* 624 only
- 95 ^bEssential in *A. actinomycetemcomitans* VT1169 only

96 Table S5. Potential A. actinomycetemcomitans-specific genes that lack an

97 ortholog in DEG.

VT1169	624	Product
VT1169_1070	624_2202	polysaccharide biosynthesis protein
VT1169_0067	624_1100	sodium:glutamate symporter GltS
VT1169_0520	624_2137	thiamine transporter component ThiB
VT1169_0129	624_0989	sigmaE negative regulator RseC
VT1169_0156	624_1789	prepilin peptidase CpaA
VT1169_1349	NA*	fatty acid metabolism regulator FadR

98 *Did not lack an ortholog in DEG.

MP	Row	Col	Total reads	With IR ^a	Processed ^b	Mapped ^c	Tags ^e	Top tags ^f	Sites ^d
1	А		6,148,148	4,830,936 (79%)	3,649,129 (76%)	NA	45,957	468	NA
1	В		5,373,820	4,531,279 (84%)	3,491,154 (77%)	NA	39,567	468	NA
1	С		3,887,289	3,251,179 (84%)	2,536,589 (78%)	NA	33,022	468	NA
1	D		6,358,670	5,090,909 (80%)	3,999,603 (79%)	NA	40,989	468	NA
1	Е		5,608,446	4,667,131 (83%)	3,595,898 (77%)	NA	46,329	468	NA
1	F		4,969,310	4,203,787 (85%)	3,219,153 (77%)	NA	39,214	468	NA
1	G		4,566,115	3,829,211 (84%)	3,034,204 (79%)	NA	38,681	468	NA
1	Н		2,492,905	1,964,043 (79%)	1,510,392 (77%)	NA	29,692	468	NA
1		1	3,545,682	2,447,125 (69%)	1,888,617 (77%)	NA	25,242	312	NA
1		2	4,499,009	3,839,363 (85%)	3,105,883 (81%)	NA	32,024	312	NA
1		3	4,021,073	3,348,562 (83%)	2,676,740 (80%)	NA	28,033	312	NA
1		4	1,234,204	869,763 (70%)	680,343 (78%)	NA	13,083	312	NA
1		5	3,401,107	2,354,929 (69%)	1,900,598 (81%)	NA	20,561	312	NA
1		6	1,644,076	1,133,790 (69%)	880,485 (78%)	NA	12,469	312	NA
1		7	3,119,598	2,490,508 (80%)	1,924,580 (77%)	NA	20,123	312	NA
1		8	4,321,024	3,649,591 (84%)	2,785,342 (76%)	NA	21,526	312	NA
2		9	2,764,821	2,206,111 (80%)	1,741,078 (79%)	NA	18,909	312	NA
1		10	1,808,258	1,358,814 (75%)	1,033,058 (76%)	NA	16,152	312	NA
1		11	5,647,526	4,519,559 (80%)	3,362,231 (74%)	NA	38,515	312	NA
1		12	7,128,590	5,956,554 (84%)	4,627,746 (78%)	NA	42,519	312	NA
2	А		3,164,558	2,542,368 (80%)	2,006,113 (79%)	NA	26,697	480	NA
2	В		2,437,736	1,860,128 (76%)	1,481,401 (80%)	NA	19,600	480	NA
2	С		1,861,927	1,363,173 (73%)	1,061,002 (78%)	NA	18,919	480	NA

99 Table S6. Summary of Tn-seq analysis for ordered library.

2	D		2,472,193	1,911,489 (77%)	1,528,554 (80%)	NA	22,258	480	NA
2	Е		5,805,898	4,543,344 (78%)	3,336,726 (73%)	NA	26,941	480	NA
2	F		3,145,652	2,518,957 (80%)	2,003,930 (80%)	NA	28,317	480	NA
2	G		1,908,165	1,319,514 (69%)	979,268 (74%)	NA	16,016	480	NA
2	Н		1,774,856	1,293,266 (73%)	1,015,537 (79%)	NA	14,854	384	NA
2		1	2,942,490	2,427,646 (83%)	1,967,551 (81%)	NA	29,300	768	NA
2		2	3,592,573	2,995,991 (83%)	2,452,254 (82%)	NA	29,569	768	NA
2		3	2,726,438	2,185,599 (80%)	1,781,679 (82%)	NA	27,188	768	NA
2		4	3,685,855	3,043,665 (83%)	2,498,167 (82%)	NA	33,499	768	NA
2		5	3,241,506	2,603,686 (80%)	2,120,114 (81%)	NA	26,313	672	NA
no	antibio	tic ^g	7,637,188	6,919,034 (91%)	6,452,821 (93%)	5,942,808 (92%)	44,658	NA	2,634

100 Percentages are relative to the value in the adjacent left column.

^aReads containing the transposon inverted repeat (IR) sequence (CCAACCTGTTA) with

102 0 mismatches in its expected location within the read (IR end position at base 39)

^bReads remaining after trimming 3' low-quality bases (phred + 33 < 35), trimming poly-C

104 tails, and removing reads <12 bases long

¹⁰⁵ ^cReads mapping end-to-end to the *A. actinomycetemcomitans* genome with high quality

106 (MAPQ > 39)

¹⁰⁷ ^dSites identified after accounting for the 2 bp duplication associated with mariner

insertion events (by adding 2 to the genome position of reads mapping to the negative

- 109 strand)
- ^eUnique 12-bp sequences next to transposon insertions
- ¹¹¹ ^fMost abundant tags corresponding to the number expected if only 1 mutant was

112 present per well

¹¹³ ^gControl for erythromycin screen (see Table S1)

114 Table S7. Ordered transposon mutant library.

Insertion mutants arrayed into wells	3,744 mutants
Wells successfully mapped*	3,245 wells
Mutants per well	
1 mutant per well	981 wells
2 mutants per well	990 wells
3 mutants per well	665 wells
4 mutants per well	352 wells
>4 mutants per well	257
Wells occupied per mutant	
Found in only 1 well	1,120 mutants
Found in 2 wells	57 mutants
Found in 3 wells	9 mutants
Found in 4 wells	80 mutants
Found in >4 wells	265 mutants
Unique insertions	1,531
Within coding genes (excluding 3' 10%)	990
Intergenic	541
Coding genes hit internally (of 1,912)	626
Coding genes not hit internally	1,286

115 *Found to contain a mutant(s) using CP-CSeq

116 **Table S8. Summary of Tn-seq results for erythromycin screen.**

Fold change vs. control	Analysis level	Total sites or genes	Inter-genic sites	Genic sites	Genes hit internally ^a	Combined ^b
Negotivo	Sites	14	6	8	7	0
negative	Genes ^a	7	-	-	-	9
Desitivo	Sites	147	49	98	90	00
Positive	Genes ^a	15	-	-	-	90

^aNot within the 3' 10% of the gene

¹¹⁸ ^bTotal genes that changed in the combined results

119 Table S9. COG enrichment analysis for genes that increased in abundance in the

120 presence of erythromycin.

COG category	Function	Fold enrichment ^a	P value ^b	
Р	Inorganic ion transport	1.9	0.07	
V Defense mechanisms		6.4	0.001	

^aPercent of the essential genome made up by a COG divided by the percent of the

122 whole genome made up by same COG

^bTwo-tailed Fisher's exact test

- 124 Script S1. vlookup.awk shell script mimicking vlookup function in Excel.
- 125 Usage: vlookup.awk file1 file 2, where file1 is the binary relationship file and file2 is the
- 126 test file
- 127 Source: http://unix.stackexchange.com/questions/88550/vlookup-function-in-unix
- 128 FNR==NR{
- 129 a [\$1]=\$2
- 130 next
- 131 }
- 132 { if (\$1 in a) {print \$1, a[\$1]} else {print \$1, "NA"} }