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Tomogram Denoising. Direct interpretation of the intracellular mature vaccinia virus
(IMV) tomograms was difficult because of the fine-grain noise present in the
reconstructions. Therefore, denoising was necessary to discern and interpret structural
features in the tomograms. Two different denoising methods were combined: Gaussian
filtering and anisotropic nonlinear diffusion (AND). The combination of both methods
allowed masking-out of the background while preserving the structural features of the
IMVs at good resolution. This procedure did not involve significant modification of the
signal in the tomogram; hence, quantitative postprocessing was possible (1).

Gaussian filtering is a linear denoising method (2), which essentially means that any
structural feature in the tomogram is low-pass filtered by the same filter. Consequently,
Gaussian filtering does not preserve edges in the tomogram, and features are thus blurred.
The strength of the Gaussian filtering is defined by the standard deviation of the Gaussian
function, σg. Different values of σg were tested over IMV tomograms, and σg = 1 was the
most appropriate value in terms of noise reduction vs. blurring of structural features. The
tomograms resulting from the Gaussian filtering kept sharp structural details, being much
cleaner than the original ones (see Fig. 1B). Nevertheless, a more powerful denoising
method was still necessary to remove the considerable residual background.

AND is currently the most powerful method applied in cryo-electron tomography (3, 4).
This method is capable of reducing noise while preserving structural features. AND has
two main diffusion modes: EED (edge-enhancing diffusion) and CED (coherence
enhancement diffusion). The former allows noise reduction with edge enhancement. The
latter allows improvement of curvilinear and planar structures. A combination of both
methods proved to be an efficient approach for visualizing tomograms (3). In that hybrid
approach, a threshold over the local relation between structure and noise is computed
from a subvolume of the tomogram containing only noise. Then, all of the voxels whose
local structure is higher than that threshold are considered as structural features and hence
processed as CED; otherwise, EED is applied.

In this work, the AND strategy described in ref. 4 was applied. This approach tightly
combines both EED and CED modes, as well. The important novelty is the use of 2D
CED over plane or surface-like structures. This type of CED allows significant
enhancement of those features, especially in single-tilt axis tomography, as quantified in
that work. Such a diffusion mode has turned out to be especially useful to enhance
membranes in IMV tomograms. Moreover, the AND approach used in this work also
included Gaussian filtering over all of the voxels whose density measured in its
neighborhood was lower than the density measured for the subvolume containing noise.
This improvement allowed further smoothing of the background.

Before the application of AND over the tomograms, they were rescaled so that the
density was in the range [0,255], where 0 was background and 255 the highest density.
Denoising was then performed by using five iterations of the AND according to
Fernandez and Li (4), equivalent to 20 iterations of the approach in ref. 3. The values of



the parameters for CED and EED modes were C = 4 and K = 2, respectively. The local
scales used in the AND approach were σo = 1 for initial filter of the input volume, and σ
= 2 for the averaging of the structure tensor used in the computation of CED diffusion.

This AND approach yielded much cleaner tomograms than did the Gaussian filter. The
background was almost completely smoothed out, and important structural features were
significantly highlighted (see Fig. 1C). The results provided by AND were suitable for
3D visualization, with either isosurface or volume rendering. Nevertheless, AND
methods have the drawback that the signal in the tomogram is modified (even some
artifacts might appear), so interpretation and quantitative postprocessing should be
carried out with caution. This disadvantage was already outlined in ref. 1. For that reason,
a combination of Gaussian and AND denoising was devised to take advantage of their
best properties, as described in the following.

Segmentation of IMVs. The combination of tomograms denoised by Gaussian filtering
and by AND was considered more feasible for visualization and interpretation of fine
structural details. AND smoothes out the background and highlights features, whereas
Gaussian filtering (with a relatively small σg) preserves resolution in the important
structural features. Consequently, the tomograms denoised with AND were used to define
masks to be applied over the ones resulting from Gaussian filtering. The masks allowed
the preservation of the areas containing important features, with the background and
unimportant structures cancelled out. The tomograms resulting from this combination
then contained the important features of the IMVs at sufficient resolution to discern
important structural details, without any significant modification of the signal (see Fig.
1D).

The creation of a mask from the AND result was carried out with AMIRA (TGS Europe,
Merignac, France) according to the following steps:

1. Threshold-based binary segmentation of the tomogram resulting from AND denoising.
In this step a threshold over the density value (see below a method for objective
determination of a density threshold) was defined. Afterward, all of the voxels with
density greater than the threshold were considered as part of the mask; otherwise, they
were cancelled out. This step also filtered out unconnected small areas spread throughout
the background.

2. Interactive monitoring of the binary segmentation. Some noisy areas connected around
the extremes of the tomogram, mainly related to the effect of the missing wedge, could be
removed semiautomatically.

3. The resulting segmentation was further processed by using a morphological dilation
operation (2). This operation from the field of computer vision was used here to expand
the segmentation result, preserving its global structure. The aim was the creation of a
global connected mask that loosely fit the IMV, more suitable for masking the Gaussian
tomogram.



4. The mask just created was then applied over the tomogram resulting from the Gaussian
filtering.

Scheme of the procedure for denoising and segmenting IMVs



Optimal thresholding. Objective determination of a density threshold was needed in
several stages of the procedure described here. First, the segmentation of IMVs in the
tomograms required a threshold for the creation of the mask. Second, a threshold is also
required in 3D visualization with an isosurface, because the smooth 3D surface comprises
all of the voxels with density lower than the threshold. In 3D electron microscopy of
single particles or icosahedral viruses, this threshold is normally found out based on the
molecular weight of the complex and the protein density (see, for instance, refs. 5–8).
However, such a procedure cannot be applied in electron tomography of complex
biological specimens.

In this work, the thresholds for segmentation and visualization were objectively
computed by means of optimal thresholding (2), a method derived from the field of
computer vision. In essence, the method assumes that the volume is composed by a
background and a foreground, and that the density histogram of the volume can then be
modeled as the weighted sum of the two probability densities that approach normal
distributions (the histograms of the background and foreground). Those assumptions are
general enough to be valid under different brightness and contrast conditions and
applicable to a wide spectrum of image-processing applications, in particular to cryo-
electron tomography. Here, all of the structural components of IMVs made up the
foreground.

Under those assumptions, the threshold that allows optimal segmentation is given by the
density level corresponding to the minimum probability between the maxima of the two
normal distributions (foreground and background). However, determination of such an
optimal threshold is far from trivial. The difficulty stems from the fact that histograms are
not, in general, bimodal (i.e., two regions are clearly recognizable), and, therefore, the
simplest strategy consisting of searching for a minimum between two maxima in the
histogram does not work. In practice, the proper strategy searches for the density
threshold that maximizes the variance between foreground and background. There are a
number of alternative approaches for that goal (2).

In this work, an iterative method inspired by the one shown in ref. 2 was developed for
determination of optimal thresholds. In essence, the algorithm iterates by redefining the
background and foreground areas in the tomogram until a density threshold is found in
the exact middle of the mean densities of the background and foreground. The algorithm
is simple and requires a few iterations. In the following, the steps of the algorithm are
presented. Let µF denote the mean density in the foreground, and µB denote the mean
density in the background. Let T(t) be threshold computed at the iteration t. Let V denote
the tomogram, with V(i,j,k) being the voxel with indices (i,j,k).

1. Initial values for µB, µF, and T(o):
µB = 0; µF = mean density of the tomogram; T(o) = µF. 

2. At step t, segment the tomogram:
If the voxel V(i,j,k) has density greater than or equal to T(t), then the voxel is classified as
foreground; otherwise, the voxel is classified as background.



3. At step t, update the mean densities µB and µF :
µB = mean density of the voxels segmented as background; µF = mean density of the
voxels segmented as foreground.

4. At step t, update the foreground vs. background threshold:
T(t + 1) = ( µB + µF ) / 2

5. Iterate?:
If T(t + 1) = T(t) , then stop, and T(t + 1) is the optimal threshold. Otherwise, return to step 2
and iterate.

This algorithm was applied here for determination of the optimal thresholds in several
stages: creation of masks in segmentation of IMVs and 3D visualization of tomograms
and subareas with isosurface. Furthermore, this technique proved to be very useful to
confirm the existence of the pores and measure their aperture.
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