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Synchronous and Time-Varying Synergy Models. We modeled the generation of a
muscle pattern by the recruitment of N synchronous synergies as the linear combination
of N nonnegative vectors {w;}; -

LIOEDNACKS [1]

where m(f) is a P-dimensional vector representing the activations of P muscles at time ¢;
c/(?) is a nonnegative coefficient scaling the amplitude of the ith synergy at time ¢, and w;
is the ith muscle synergy. If we sample the muscle patterns at discrete time intervals, we
can rewrite Eq. 1 as

M=WC, 2]

where M has P rows and K columns (K total number of samples), W has P rows and N
columns (N number of synergies), and C has N columns and K rows.

We modeled the generation of a muscle pattern by the recruitment of » instances of N
time-varying synergies as the linear combination of nonnegative vectors wy(t)

m(/) = ic‘, W, (E—1)) 3]

where {w{(t)};,=1 _ n1s the ith synergy, i.e., a sequence of P-dimensional vectors
representing the activations of P muscles at the time 7 after the synergy onset, ¢ is the
synergy onset time, and ¢; is a nonnegative coefficient scaling the synergy amplitude.
Differently from our previous model (1), a given muscle pattern m(#) can be
reconstructed by multiple instances of the same N synergies. The jth instance is simply a
shifted version of the ith synergy, and we use an index function i = [(j) € [1, ..., N] to
map instances into synergies. In discrete time, the ith time-varying synergy of duration T’
can be expressed as a matrix W' with P rows and Q columns, each column representing
the synergy activation vector at time 7, 0 <7, <7 (g = 1, ..., O). We use the matrix W =
[W!' W2 ... W"] with P rows and O x N columns to compactly represent a set of N
synergies. If we introduce a time-shifting matrix O;[4, K] to align, by matrix
multiplication of W with @;, the first sample of the ith synergy with the kth sample (2 — Q
<k < K) of a muscle pattern (K samples long) and to truncate the synergy’s samples
shifted before the beginning or after the end of the pattern (1), we can rewrite Eq. 3 as

M=W Q' ¢ 0,,lk.K])=WH “l

Model complexity comparison. An important distinction between the two models is the
number of free parameters in each one of them. Given a set of N synergies, the



reconstruction of the data with synchronous synergies requires as many combination
coefficients as the number of samples (K,,,) times the number of synergies (N). With
time-varying synergies, there is one amplitude coefficient and one timing coefficient for
each instance of a synergy, thus the number of parameters depends on the number of
instances. However, because the temporal overlap of different instances of the same
synergy is constrained by a refractory period (see below), in general the number of
instances of each synergy is less then the number of data samples divided by the number
of samples for each synergy (K, /Q). Thus the number of parameters is less than K,,, /Q
times the number of synergies times 2 (the number of parameter per instance, one
amplitude and one timing coefficient), and the ratio of the number of parameters in the
synchronous model over the number of parameters in the time-varying model is in
general larger than the number of samples in each time-varying synergies divided by 2
(Q/2). Therefore, the time-varying model provides a more parsimonious description of
the muscle patterns by expressing the muscle activation waveforms as a combination of
the activation time courses of the synergies. In contrast, in the synchronous model the
muscle activation waveforms are determined by the combination coefficients.

Synergy Extraction Algorithms. Synchronous synergies. The algorithm (2) is initialized
with random nonnegative synergies (W) and coefficients (C) and proceeds to minimize
the total reconstruction error by iterating two steps:

(7) given the synergies W, the coefficients C are updated according to the rule
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(if) given the coefficients C, the synergies W are updated according to the rule

MC"),
W, =W, ———. [6]
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Time-varying synergies. The algorithm starts by initializing N synergies with random
nonnegative values, and it proceeds to minimize the total reconstruction error by iterating
three steps.

(1) Selection of synergy instances by matching pursuits. For each EMG segment and
given the set of N synergies, a procedure based on the matching pursuits algorithm (3) is
used to select which synergy instances to use in the reconstruction. A dictionary for that
episode is constructed with all of the possible synergy instances obtained by shifting each
normalized synergy from the beginning to the end of the segment one sample at a time.
For an EMG segment made of K samples and for N synergies O samples long, allowing
for partial overlap of the synergies at the segment edges, a dictionary of N x (K+ Q—1)
elements is constituted in this way. The matching pursuits procedure then selects those
elements in the dictionary whose combinations best match the pattern, using the
following steps. First, the scalar products of the muscle pattern with all of the elements of



the dictionary are computed. Second, the dictionary element with the largest scalar
product is selected. Third, the selected element is multiplied by its scalar product and
subtracted from the muscle pattern. Fourth, the scalar product of the residual muscle
pattern with all of the remaining dictionary elements is recomputed. At each iteration one
instance is selected and these four steps are repeated until the highest scalar product is
below a given threshold (set equal to 0.1). Through these iterations a variable number of
instances are selected to best reconstruct the muscle pattern. To avoid selecting
overlapping instances, we modified the original matching pursuits algorithm by
introducing a refractory period. Once a synergy instance has been selected, the scalar
products of the other instances of the same synergies with onset times within a fixed time
interval (refractory period) around the onset time of the selected synergies are reduced.
This reduction depends on the onset time difference according to a Gaussian function
with a width equal to half the synergy duration (i.e., 0/2).

(i1) Determination of the scaling coefficients. For each EMG segment and given the set of
N synergies, once n instances have been selected the scaling coefficients ({c;};=1... ) that
best reconstruct that episode are determined by back-projection (3).

(ii1) Updating of the synergies. Once the n instances and their scaling coefficients have
been determined for all of the episodes, the synergies are updated by the same
multiplicative update rule used in the nonnegative matrix factorization algorithm (Eq. 6)
with the matrix H (Eq. 4) in place of the matrix C. This step corresponds to adaptively
changing the dictionary used in the reconstruction.
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