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Previous models 

A handful of theoretical models were developed to account for the non-
dichotomous particle trajectories in DLD arrays (Table 1 in main text. Note that the 
table only considers stretched array designs and deterministic dynamics. Tilted square 
arrays are not within the scope of this paper). Diffusion could be a source for 
displacement angles between 0°  and 𝜃! . Heller and Bruus proposed a model that 
included diffusion and particle size dispersion, which reproduced the continuous change 
in migration angle as a function of particle diameter 1. They assumed that particles 
diffuse as they are advected by the flow in an array of point-like pillars. Heller and Bruus’ 
theory, however, is not directly relevant to the deterministic dynamics studied in this 
paper.   

Interestingly, non-diffusive dynamics can also give rise to particle trajectories 
that are neither zigzag nor bumping. Long et al. discovered another non-binary 
deterministic migration angle in the case where the row-shift (𝜖) is such that 𝑀𝐷! =  𝑁𝜖 
with 𝑀 and 𝑁 co-primes 2. Long et al. called this non-binary behavior multi-directional 
sorting modes, and showed the existence of 3 or 4 different migration angles depending 
on 𝑀 and 𝑁. In these models the pillars were treated as points, ignoring the flow 
distortion due to the finite pillar diameter (Figure 1C-F). Cerbelli also studied rational 
row-shifts  in the case of pillars with finite size and also found multi-directional modes 3.  

Kulrattanarak et al considered finite size pillar arrays with different geometric 
parameters 𝐷! , 𝐷!  and 𝑁 , and observed (numerically and experimentally) particle 
trajectories which they named “mixed motion”, with angles in between zigzag and 
bumping modes 4. According to the authors, mixed motion (which Kulrattanarak et al 
observed when 𝐷!/𝐷!  ≤  2) was associated with a symmetry breaking in the width of 
the two flow lanes at the two opposing pillars that define a gap. While this work 
provided a significant step forward in capturing the phenomenology of DLD with 
realistic geometries, it did not provide an explanation of how the symmetry breaking of 
the fluid lanes leads to mixed motion in specific geometries. Importantly, these authors 
considered the   streamlines and separatrices as having the same symmetries as the 
pillar array, as proposed in the original theory. 

Anisotropic permeability of a stretched DLD array  

The problem studied in this paper is a pressure-gradient driven fluidic system in 
a perfectly periodic lattice of pillars. For these kinds of systems, several studies have 
shown that the micro-structure of the lattice can cause anisotropic permeability 4,5, 
where the  flow direction is not aligned with pressure gradient direction. Therefore, 
small particles advected by the flow can follow trajectories with non-zero migration 
angle. When wall-bounded arrays are considered instead of an idealized infinite lattice, 



the external walls impose additional boundary conditions. Some authors have assumed 
that the presence of the walls force the flow to have no lateral velocity (that is, zero 
average velocity perpendicular to the walls) in each unit cell, an assumption that results 
in the impossibility of anisotropic permeability 6. However, recent experiments 
(included our own results in this paper) have shown that the dynamics of passively 
advected particles in wall-bounded stretched DLD arrays can exhibit a lateral velocity 
and therefore anisotropic permeability7.  

In the nanoDLD array considered in this paper, there are 125 pillars in between 
the walls delimiting a 50µm wide channel, and 1250 pillars in the axial direction 
between the inlet and outlet of the array. Whether the assumption that channel-
bounding walls (which impose a global boundary condition) force a zero lateral velocity 
in each internal unit cell (a local flow pattern) is valid, or if the number of pillars within 
walls is large enough to be well approximated as an infinite array, can be addressed 
experimentally. Figure 4A of the main text show that small particles indeed have non-
zero migration angle, consistent with the predictions of our model that assumes an 
infinite array. This agreement is then expected when the ratio of the width of the array 
(W) to the lateral pitch (Dy) is sufficiently large, that is, when W/Dx >> 1.  

In the main text we studied the migration angle of particles in DLD arrays in 
terms of the local periodicity and pseudo-periodicity of individual particles in the 
Poincare recurrence map, resulting in what seemed to be an ergodic dynamics from an 
irrational rotation number map on a torus. To have a global representation of this 
dynamics, we calculated the angle between the axial direction and the average velocity 
field, and compared it to the migration angle calculated from the pseudo-periodicity. We 
define the average velocity as 

𝑈 =
1
𝐴 𝑈 𝑟

!
𝑑𝐴 

where 𝑈 𝑟  is the velocity in position 𝑟 of the unit cell and 𝐴 is the area of the unit cell. 
The angle 𝜃 between the average velocity and the axial direction is 

𝜃 = tan!!
𝑈 !

𝑈 !
 

where 𝑈 ! and 𝑈 ! are the x-component and y-component of the average velocity 𝑈 .  

Figure S1 shows the dependence of the single trajectory based migration angle (Fig. 
S1A, same as Fig 4A in the manuscript) and the average velocity angle (Fig. S1B) on the 
ratio between pillar radius 𝐷! and the pitch distance 𝐷! in y-direction. The two results, 
one using the recurrence map and individual trajectories, and the other computed using 
the velocity field directly, are remarkably close to each other. This suggests that the 
pseudo-periodicity described in the main text is a manifestation of the anisotropic 
permeability of the flow. Even when the average migration angle can be directly 
calculated from the average velocity in the unit cell, the Poincare recurrence map 



introduced in our paper is essential to elucidate individual trajectories, and the structure 
of the flow lanes. In addition, the recurrence map allows us to calculate the finite-radius 
particle trajectories resulting from the interplay between the flow of individual particles 
and particle-pillar interaction.  

	

Figure	S1	Normalized	migration	angle	of	particle	trajectories	and	average	flow	velocity.	(A)	The	migration	angle	obtained	using	
the	Poincare	recurrence	map	and	normalized	by	the	pillar	structural	angle.	𝜃!	is	the	migration	angle	calculated	from	a	pseudo-
periodicity	N	and	𝜃!	is	the	structural	pillar	array	angle	determined	by	𝑡𝑎𝑛!!( !!

!!!
).	(B)	The	angle	of	the	average	flow	velocity	in	a	

unit	cell	normalized	with	the	structural	pillar	array	angle.	𝐷! ,𝐷! ,𝐷!	are	the	pitch	in	x	and	y	direction	and	the	pillar	diameter.	 

 

Recurrence map in a point-like pillar array 

In general, the analytical form of the recurrence map 𝑓 is unknown and needs to be 
computed using Stoke’s equation with relatively complex boundary conditions. However, 
in the limiting case of negligible pillar diameter (point-like pillar system) the flow is not 
perturbed by the pillar array so that particles’ trajectories are parallel to the x-axis of the 
array. In the recurrence-map coordinates, if a particle was at position 𝜂!(= 𝑦!/𝐷!)  at the 
inlet of the unit cell, the position of the particle 𝜂!!!(= 𝑦!!!/𝐷!) at the next pillar inlet 
becomes 𝜂! − 𝜖/𝐷! because in the unit cell the 𝑦 coordinates are measured with respect 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
D0/Dy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
/

p

Dx /Dy = 1

Dx /Dy = 1.5

Dx /Dy = 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
D0/Dy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ta
n

1
(
U

y/
U

x)
/

p

Dx /Dy = 1

Dx /Dy = 1.5

Dx /Dy = 2

A

B



to the bottom pillars, and the next pillar position has a y-axis shift by 𝜖. (Note that in the 
main text we defined 𝜂 as 𝑦/𝐺 but in a point-like pillar array 𝐺 = 𝐷! , and 𝜂 =𝑦/𝐷!.) 
Thus, in this case the recurrence map can be calculated analytically as following. 

 

where we have used the unit cell periodic boundary conditions.  

From the equation above we can calculate the local periodicity and the migration 
angle. Assume that the pillar array has a structural periodicity of 𝑁!. This means that the 
array repeats its structure for translations of the form 𝑥 + 𝑁!𝐷! in the x-direction. This 
symmetry requires that the row shift in the y-direction be 𝜖 = 𝐷!/𝑁!. We can calculate 
the sequence of positions measured at the inlet of the unit cell as the particle goes 
downstream. By iterating the recurrence map 

𝑓!! 𝜂! =  𝑓 𝑓!!!! 𝜂! =  𝜂! − 𝑁!
𝜖
𝐷!

= 𝜂! − 1 ≡ 𝜂! 

we see that the map returns to the original coordinate 𝜂! after 𝑁! iterations. (At the last 
step in the previous sequence of iterations we used the periodic condition of map in the 
y-direction.) Therefore, the initial position 𝜂! is repeated over every 𝑁!  iterations. The 
sequence of these positions are: 

{𝜂!, 𝜂!,… , 𝜂!!!!, 𝜂!}. 

In this sequence, there are 𝑁! − 1 direct transitions and one veering transitions. Because 
the flow periodicity and the pillar structural periodicity is same, the migration angle of 
small particle trajectories is zero. The lane dividing separatrices happen at inlet 
coordinates 𝜖, 2𝜖,… , 𝑁! − 1 𝜖. Particles starting at those points will end in stagnation 
points. Trajectories of particles within the flow lanes always have a periodicity of 𝑁!. 

We can also use the recurrence map to study multi-directional sorting modes2. For 
the case of 𝜖 = 𝑀𝐷!/𝑁 where 𝑀,𝑁 are co-primes, the recurrence map 𝑓 is  

𝑓 𝜂 =
𝜂 −

𝑀
𝑁

             if   𝜂 > 𝑀/𝑁 

𝜂 −
𝑀
𝑁 + 1      if   𝜂 < 𝑀/𝑁

 

With this recurrence map, we can calculate the 𝑁-th iteration position: 
 

𝑓! 𝜂 = 𝜂 −𝑀 ≡ 𝜂. 
 
In the last step, we use the periodic boundary conditions and the fact that 𝑀 is an 

⌘i+1 = f(⌘i) =

⇢
1 + ⌘i � ✏/Dy if ⌘i < ✏/Dy

⌘i � ✏/Dy if ⌘i > ✏/Dy



integer number. Therefore, the initial position is repeated every 𝑁 steps. However, in 
this case, the particle goes to the adjacent unit cell 𝑀 times before it lands in the same 
original position 𝜂. Thus, the pseudo-periodicity in this case is 𝑁/𝑀. Note that in this 
geometry, the symmetry of the streamlines still coincides with the symmetry of the pillar 
structure.  

Local periodicity 

The local periodicity of a long trajectory shows an intermittent behavior. Fig. S2 A 
– C shows several cycles in a long trajectory. Depending on the initial position, these 
cycles have local periodicities of any of two consecutive integer numbers 𝑁′ and 𝑁! + 1. 
The order in which 𝑁′ or 𝑁! + 1 occur is irregular. Still we can define the pseudo-
periodicity by averaging over multiple local periodicities in a large trajectory. Thus, the 
average periodicity, which we call the pseudo-periodicity, is a non-integer number 
between 𝑁′ and 𝑁! + 1.  

	

Figure	S2.	Long	particle	trajectory	in	a	pillar	array	and	the	corresponding	recurrence	map.	(A)	The	first	cycle	trajectory	from	one	
zigzag	transition	to	next	zigzag	transition	with	local	periodicity	N’=10.	(B)	The	second	cycle	trajectory	with	local	periodicity	N’=11.	
(C)	The	third	cycle	trajectory	with	local	periodicity	N’=10.	(D)	The	recurrence	map	with	N’=10	corresponding	to	the	trajectory	in	
(A).	(E)The	recurrence	map	with	the	next	N’=11	particle	positions	overlaid	with	the	previous	cycle.	(F)	The	recurrence	map	with	
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the	next	N’=10	particle	positions	overlaid	with	the	previous	two	cycles.	Here	the	pillar	diameter	 is	40	nm	and	𝐷! = 𝐷! = 400	
nm.	The	row-shift	distance	is	40	nm	so	the	structural	periodicity	𝑁!	is	10.	 

Not every initial position at the inlet will have an infinite trajectory: some positions 
will, upon a finite number end up in the stagnation point at some pillar downstream. We 
call that set of points the stagnation set. To find the stagnation set, we first identify the 
inlet point 𝜂!where the recurrence map is discontinuous (𝑓 𝜂!! = 1;  𝑓 𝜂!! = 0). This is 
the starting point of the streamline that divides the veering streamlines (𝜂 <  𝜂! ) from 
the direct streamlines (𝜂 > 𝜂! ). The stagnation set can be computed by iteratively 
applying the inverse of the recurrence map 𝑓!! to find all the points that the map to 𝜂!.  

 
𝜂! = 𝜂! →  𝜂!! = 𝑓!!(𝜂! →  𝜂!! = 𝑓!!(𝜂!!}… →  𝜂!!!! = 𝑓!!(𝜂!!) → ⋯ } 

 
In general, this set is infinite. However, in the point-like pillar array, 𝜂! =

!
!!
= !

!
, the 

above set is finite: 
 

{!
!
, !
!
,… , !!!

!
, 1}. 

 
Note that the fluid flow brings the first position in this set, 𝜂! = 1/𝑁, towards the 
stagnation point on the next pillar after one iteration. The point  𝜂!! = 2/𝑁 ends on the 
stagnation point after two iterations, and so on.  

The pseudo-periodicity can be defined by the following formula:  

𝑁 = lim
!→!

1
𝐿 𝑁!!

!

!!!

 

where 𝐿 is the number of cycles in a long trajectory and 𝑁!! is local periodicity in the i-th 
cycle. In practice, the trajectory starts at some point 𝜂 in the inlet of the unit cell. If is 
point belongs to the stagnation set, these iterations will eventually land on a stagnation 
point, and the computation of the pseudo-periodicity could proceed by iterating the map 
backwards. In any case, the stagnation set is countable (we can in principle count the 
pillars where the stagnation points will be) and therefore, this is a set of null measure. 
Therefore, with probability 1 the initial position 𝜂 will not be in the stagnation set and 
we can find the next transition point infinitely.  

Geometric dependence of the recurrence map 

The recurrence map 𝑓 is the mapping from the initial position at the inlet to the 
final position at the outlet. Therefore, as the streamlines veer differently depending on 
the geometry of the array, the recurrence map changes accordingly. Figure S2 shows the 
recurrence maps corresponding to different geometries, specifically differences in pillar 



diameter. As the pillar diameter increases, the mapping 𝑓  approaches the identity 
function 𝑦 = 𝑥  and the local periodicity increases considerably. In this case the 
dynamics of the iterations resemble that of a dynamical system after undergoing a 
tangent bifurcation, which has been described as a route to intermittent chaotic 
behavior. In Fig. S2 the initial position was set at the middle of the gap and the map was 
iterated until the trajectories went through 400 cycles.  

	

Figure	S3.	The	recurrence	map	overlaid	with	multiple	cycle	positions	in	different	geometries.	(A)-(D)	The	pillar	diameter	𝐷!	is	set	
to	be	240,	200,	160,	120	nm,	respectively.	In	all	geometry,	𝐷! = 𝐷! = 400	nm	and	𝑁! = 10.	 

As the pillar diameter increases, the recurrence map approaches a tangent 
bifurcation due to two factors. One factor is the discontinuity points moves closer to the 
pillar surface, and the bundle of veering streamlines gets compressed. The second 
reason is that the curvature of a recurrence map near the discontinuity point increases, 
indicating that the streamlines close to the pillars are considerably perturbed. Thus, the 
ratio between the pillar diameter and the pillar to pillar distance strongly determines the 
shape of the recurrence map.  

The transition cycles on the recurrence map has a rich variety of patterns. Fig. S3 
shows two such patterns. One is the case in which the local periodicity persists but the 
final position of a cycle does not match the initial position of a cycle exactly, and there is 
a smooth drift of the subsequent cycles making the trajectories to form the band shown 
in Fig. S3 (A), (C). The other case is when the local periodicity oscillates between 𝑁′ and 
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𝑁! + 1. In this case the starting points of subsequent cycles may differ sufficiently that 
the local periodicity of subsequent cycles is different. Fig. S3 (B) and (D) shows that case 
in which the gray band in the recurrence map is more space filling than in the other two 
examples. 

Reconstruction of trajectories 

We derived a formula to connect the migration angle to the average streamline 
periodicity and the pillar structural periodicity.  

tan𝜃 =
(𝑁 − 𝑁!)𝐷!
𝑁𝑁!𝐷!

 

where 𝑁!  is the pillar structural periodicity and 𝑁  is the streamline periodicity. To 
confirm the calculation, we computed the particle trajectories over multiple pillar arrays 
using the calculated recurrence maps, as shown in Figure S4. The particle trajectories 
with three different initial positions are shown as green lines with zigzag type transitions 
in red. As discussed in the text, as the pillar diameter 𝐷! increases, the length of one 
cycle increases regardless of initial position (Fig. S4 A–D). Given the same initial 
positions, we can observe the migration angle increase as the pseudo-periodicity 
increases.  



	
Figure	 S4.	 The	 reconstructed	 particle	 trajectory	 over	 multiple	 arrays	 (A)-(D).	 The	 pillar	 diameter	 is	 120,	 160,	 200,	 240	 nm,	
respectively.	The	number	located	near	a	pillar	indicates	the	index	between	two	zigzag	transitions	(one	cycle).	 

We can also check the lateral spreading from the three different trajectories. As the 
particles move, the lateral spread in the y-axis oscillates but then converges back to the 
original spacing after a single cycle. Therefore, in the deterministic case the pillars do 
not spread out the particle trajectory in the y-direction.  

Initial position dependence on pseudo-periodicity 

In a point-like pillar array, every trajectory is periodic and therefore all cycles have 
local periodicity 𝑁!. In arrays with pillars of finite size, however, the pseudo-periodicity 
estimated as  

 

𝑁 =
1
𝐿 𝑁!′

!

!!!

 

 
of two trajectories starting at different initial positions are not always identical due to 
the finiteness of computation. Here, 𝐿 ≫ 1 is the number of cycles over a long trajectory.  

Figure S5 shows a typical plot of the pseudo-periodicity as a function of the initial 
position of the long trajectory. We observed that most values are around the averaged 
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pseudo-periodicity ( 𝑁 = 10.81 ) over all initial positions. The local periodicity 
alternates irregularly between 10 and 11. That the averaged periodicity 𝑁 = 10.81 
means the local periodicity of 11 occurs more often than that of 10 over a long trajectory. 
In the experiments performed for this paper the particles were injected in the whole 
inlet of the array, and therefore the migration angle was estimated from the collective 
average over all individual trajectories. Therefore, our definition of averaged pseudo-
periodicity is a reasonable choice to characterize the migration angle.  

	
Figure	 S5.	 Pseudo-periodicity	 dependence	 on	 the	 initial	 position.	 Here,	 pillar	 diameter	 is	 80nm	 and	𝐷! = 𝐷! = 400	nm.	 The	
pillar	has	a	structural	periodicity	of	𝑁𝑝 = 10. 

Recurrence map using 2 cells 

Our simulations assumed a pillar array in a periodic lattice, which allowed us to 
solve the Stoke’s equation in the unit cell. While this is a good approximation to model 
the actual system, this assumption may impose some limitations on the interpretation of 
the actual trajectories measured in finite size arrays in terms of our model. Here we will 
study two possible ways in which this approximation may influence our conclusions: 
one is the validity of our assumed pressure boundary conditions at the inlet and outlet of 
a unit cell, the other is the effect of the wall boundaries of the microchannel housing the 
pillar array on the particle trajectories. These two assumptions may be the cause of the 
differences between model and experiments seen in Figure 4 of the main. 

The use of a single unit cell implies an infinite array in the x, y-directions. However, 
the pressure and velocity distributions of a multi cell array in which the boundary 
conditions are imposed at the input and output cells may be different from the pressure 
and velocity distributions if the boundary condition are imposed at the single unit cell. 
In our simulations, we applied a constant pressure on the inlet and outlet (AH, DE in 
Figure 1). To test that this is not too severe an approximation, we simulated several set 
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of combined unit cells (2x1, 2x2, 3x3 unit cells, still with periodic boundary conditions) 
to verify consistency with the 1x1 unit cell simulations. The resulting recurrence map 
showed no significant difference in either case.  

The boundary conditions at the microchannel housing the pillar array may also 
have an impact on the fluid flow. In our experiments, the use of periodic boundary 
condition to mimic the infinite array can be justified by the fact that our nanoDLD 
device has 125x1250 unit cells inside the 50 µm wide microchannel. Thus, we can justify 
that our assumption of an infinite array is valid in the bulk of our arrays, as long as we 
are far from the boundaries. This is further justified by the observation that the 
experimentally measured migration angle matches well the one estimated with our 
model. To be more quantitative we simulated multiple arrays (15x20, 30x20, 45x20, 
60x20 arrays) and observed that the effects of the walls started to be washed off at ~20 
unit cells away from the microchannel boundary. The effect of the wall boundary 
conditions on particle trajectories in DLD arrays has also been discussed in 8.  

Movie Description 

The concept of the recurrence map can be more clearly understood using an 
animated description of the dynamics (Movie bump.mp4). Our animation shows the 
time evolution of a particle trajectory and connects it to the corresponding dynamics in 
a recurrence map. In the movie, the three panels from the left show the trajectory in 
multiple pillars, the trajectory in a unit cell and the recurrence map, respectively. Here, 
𝑁! = 5 and the pillar diameter 𝐷! is 200 nm. The pillar to pillar distance (𝐷! = 𝐷!) is 
400 nm so that the ratio (𝐷!/𝐷!) is 0.5. The long trajectory is composed of total 8 
transition segments starting from 90% of the pillar gap (𝜂! = 0.9).  

For the particle with radius larger than the critical diameter (𝐷!), the trajectory is 
similar to that of the small particle until it veers around the pillar for the first time. But 
due to the shift of the center of particle by the pillar repulsion, it cannot veer around the 
pillar and bumps on the post surface. After it follows the closest possible streamline to 
the separatrix line, it ends up to the same initial position (the directional locking 9). The 
animation in the middle shows this transition by overlaid trajectories inside a unit cell. 
In the recurrence map, the mapping 𝑓 intersects the identity function (𝑦 = 𝑥) which 
becomes a fixed point in the dynamics. Here, blue circle means the initial position at the 
inlet and the red circle means the final position at the outlet.  

Geometric parameters in the unit cell simulation 

Four key parameters are used to specify the geometric configurations in our arrays, 
as shown in Fig. 1A: pillar diameter, 𝐷!, the lattice parameters (pitch) of the pillar unit 
cell, 𝐷!, 𝐷! and the row shift fraction, 𝜖. The value of these geometric parameters in the 
pillars used in this paper are summarized in the following Table S1.  



Table	S1	Geometric	parameters	in	the	unit	cell	simulation	

 𝐺 (nm) 𝐷! (nm) 𝐷! (nm) 𝐷! (nm) 𝑁! 𝐷!/𝐷! Figure 

1 380 40 400, 600, 800 400 10 0.1 2, 4  

1 320 80 400, 600, 800 400 10 0.2 4, 5 

2 280 120 400, 600, 800 400 10 0.3 1, 4, 5  

3 240 160 400, 600, 800 400 10 0.4 1, 4, 5 

4 200 200 400, 600, 800 400 10 0.5 1, 4, 5 

5 160 240 400, 600, 800 400 10 0.6 1, 4, 5 

6 120 280 400, 600, 800 400 10 0.7 4, 5 

 

Here, we fixed the array structural periodicity as 𝑁! = 10 and the pitch distance in y-
direction at 400nm (𝐷! = 400 nm). Therefore, the only independent variables are the 
pillar diameter 𝐷! and the pitch distance in x-direction 𝐷!. However, we also tested the 
different structural pillar periodicities (𝑁! = 3, 4, 5, 10) in different simulations.  
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