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ABSTRACT An atomic lattice in its ground state is excited
by the rapid displacement and release of an atomic constituent.
The time dependence of the energy transfer to other constitu-
ents is studied by using a phonon dispersion relation that is
linear in frequency and propagation vector components.

The small-amplitude vibrations of an atomic lattice are cus-
tomarily described in terms of nonlocal phonon excitations.
With the simplification of three-dimensionally degenerate
modes, labeled 4, the Hamiltonian for this description is

[1]

Exhibited here for each mode are the single phonon energy
fics, the phonon annihilation operator y, and the adjoint
creation operator yt, which operators form the phonon num-
ber operator for the degenerate mode: yty.
An alternative description refers to the N localized con-

stituents of the lattice, which are labeled a, . . . This version
of the Hamiltonian for constituents of mass M, which uses
coordinates ra and momenta Pa, is (1)

Pa M 3
a2 ab 2 a 2

Here, () symbolizes the average over the phonon spec-
trum, and

-a= (W2e ik-(roa-rob))=-'(-se iro.-rob)~ab-Nce =
6
> [3]

in which k is a mode propagation vector. The definition ofthe
N x N matrixf2 is extended to fn, n = -1, 0, 1, ..., by
the corresponding introduction of co".
The equations ofmotion about the equilibrium positions roa

are given, in matrix notation, by
d

M - r(t) = p(t)
dt

and

d
- - p(t) = Mfl2[r(t) - ro].dt

The solutions, relating time t to time 0, are

1 sin fkt
(r - ro)(t) = cos fkt (r - ro)(0) + fi p(0)

and

p(t) = cos fit p(O) - MI sin fit (r - ro)(0).

Consider a lattice in its phonon vacuum state. At time 0 the
system is disturbed by singling out a particular mass, labeled
a, which is abruptly removed from the neighborhood of its
equilibrium position, r~a = 0, given the displacement D, and
released. How does the energy thus imparted to the system
spread out into the lattice?
For mathematical simplicity, D is taken to be large on the

scale of vacuum fluctuations. (That such a D need not be in
the small amplitude range is duly noted and deferred for later
study.) According to Eqs. 2 and 3, the energy initially fed into
the a constituent is

E= 2 MD2(co2).
2 [6]

How much energy is still so localized at a later time t?
One learns from Eq. 5 that, at the D level,

(r - ro)(t)a = D(cos ft)aa = D(cos ct)

and

d
P(t)a = -MD(fi sin Qt)aa = MD - (cos cot),dt

[7]

which says that

Ea(t) = 2MD2 - (cos cOt) + ( 2)(cos .t)2* [8]T eat) 2b dtd 2coty

The small-t behavior is conveyed by

Ea(t)/E - t4(((04) - (C02)2),
4

19]

and one sees the initial phase of a general property: there is
no time dependence with a monochromatic spectrum. This,
of course, is expected physically because that limit is the
Einstein model of uncoupled oscillators.
One might try to move away from the Einstein model by

assuming a narrow Lorentzian spectrum (6w << (ct)):

[4]

(f(W))L = fd f(c)

1
-6SW
2-7r

[10]

(o - ( ())2+ W)

For application to Eq. 8, one notes that

(COS WOt)L = e-6'/t2cos(co)t.
[5]

[11]

Then, if (co)2 is effectively identified with (co2), the familiar
exponential decay emerges,

[12]
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That the short-time behavior in Eq. 12 does not agree with
Eq. 9 traces back to the nonexistence of the Lorentzian
averages, (W4)L and (W2)L.
For a more physical-and yet mathematically simple-

model, consider the dispersion relation

The second entry makes explicit the short-time behavior in
Eq. 9.
The long-time characteristics implied by Eq. 8 and the real

part of Eq. 20, for the circumstance u/a <<(c), or (w 2)
(W)2 are

Wcl) = W + u(IkxI + jkyl + lkzl).
which has the separation property

e-i@*,= ei 1t71 eilukIt
xyz

and permits explicit evaluation of the spectral average.
Let each one-dimensional k spectrum be

2ir m
km ,a v

v -1
m=0, ±1.±.. 2 '

where

v3 = N.

[13] iut\6
sin

2a
Ea(t)/E -

/ut

2a/
114]

5 2a

16 7rut 23

where the latter statement incorporates the average over the
time interval 2a/u << t. More generally, there is a rever-
beration effect that brings the energy Ea,,(t) of Eq. 8 down to

[15] zero at all t > 0 that are an integer multiple of 2a/u.
For any constituent a =& a, the D-level implications of Eq.

5 are

[16]
(r - ro)(t)a = D(cos Qt),

and
Then one has

vTut
sin-

E e-hillk.1"t=a=
m fTrut

sin-
va

irut v-i 7rut v+ 1
2 sin- sin-

a 2v a 2v

'rut
sin

va

irut
sin-

-i(rtl/2a) 2a
irut
2a

the latter version refers to the large-v limit. Indeed,
produced directly as the integral

dk eiiIlkI.
27J-r va

Then, beginning with

(in) 1 13it-~~ ilmte-it= N "w6te -e~( iei11rn)
N o v m

the large-v limit emerges as

/ rut\sin-i
(e-i@) = e- 2a

7rut

2ah/

where

31ru
(W) = w +

2- 2a

Examples of the information contained in
description of the phonon spectrum are

-(2) = ()2 + (2-

(7ru) 2 W(7U)

d
P(t)a = MD - (cos tQt)aa,dt

[24]

where, according to the general form of Eq. 3,

'k1(cos flt), = (cos wteL rw) = Re - > e-i"w-e,14ro,. [25]

Then, with the introduction of the dispersion relation of Eq.
[17] 13, one has

1 1-iwotik*ro = iwt l hilkl..It ikt.- e> e-e H e->9v km
No ~~~xyz Vmit is

[18]

[19]

[20]

[26]

where f appears as a stand-in for the x, y, or z component of
roe.
The large-v limit of an individual factor in Eq. 26 is

1 ~~~~~~~a(IT/a
_ > e-"il"k"teikl"l-.. dk eik(f- Ut)
V m 21T0

+ Afdk e-ik(f+t

1 r - 1 sin 2 u-ut)
=2- Lxt 2a ({- t] r
e1(j - ut)2a

Ir
sin - (e + Ut)

1 I 2a
+-exp -i-(e+ ut)2 [2a J Ir

(I + ut)
2a

[21]

this complete

[27]

The two terms represent phonon pulses moving positively
and negatively, at the speed u, along the particular axis to
which f refers. Accordingly, the triple product in Eq. 26
contains 23 = 8 terms that describe phonon pulses moving at
the speed 3112u along the three-dimensional lines that project
into the diagonals of the three orthogonal planes that form

[22] each octant.
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Under the circumstance ut >> a, the two pulses of Eq. 27
have no significant overlap and one can focus separately on
each of the eight pulses, moving along a straight line that is
contained in one of the octants.
The energy associated with a particular constituent, in one

of the octants, has the same form as in Eq. 8, but with (cos
cot) replaced by the structure of Eq. 25. If, for simplicity, one
again considers a narrow phonon spectrum, (co)>> u/a, the
energy associated with a particular lattice site in one of the
octants, say the one with all positive coordinates, is given by

2a

2

sin - (f - ut)
Ea(t)/E = H [28

-8(fx-Ut)[2aJ
One expects that, in the long run, the energy E is distrib-

uted through the lattice, with E/8 appearing in each octant.
Should a pulse center happen to coincide with a lattice site at
time t (f - ut = 0 for x, y, and z), one-eighth of the octant
quota would be localized at that site.
More generally, let each e - utbe written as the sum ofma,

m = 0, ±1, ... , and the residue p, IpI S a/2. Then the
expected total energy will be realized if

[IT 2

X0 sin - (ma + p)
= 2. [29]

m= -x 2JT
2 (ma + p)

For p = 0, this assertion reads

8 / 1 1
1+ 2 t1+ii+?+. . . = 2, [30]

which is true. Should p = a/2, one is told that

16 1 1

,f2 o+ 32+ 52+-.

. =2, [311

which is also true.
A general mathematical proof-as contrasted with the

preceding physical proof-follows from the Fourier series

00 2iT . 1 21T\
> eik(ma+p) = - ei(2p/a) k --it [32
M=-x0 a /=-x a

Multiplication by [1 - (k/K)]/K, with a positive K < 2Ir/a,
followed by k-integration from -K to K, yields

1 2

sin - K(ma + p) 2IT10 2 I i

m=-x 1 = Ka [33]
2 K(ma + p)

L 2 J
the choice K = IT/a reproduces Eq. 29.
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