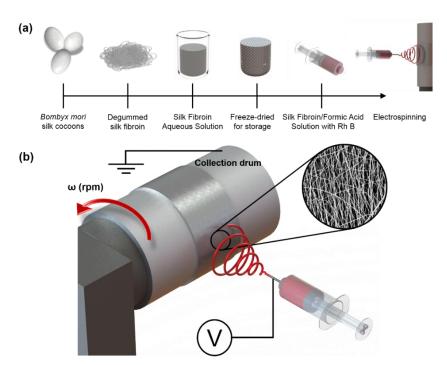
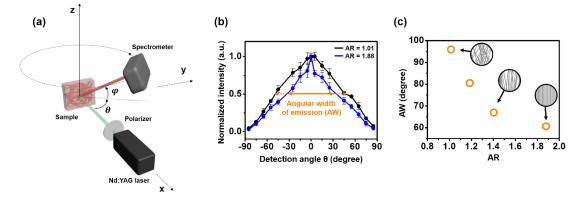
## Random lasing from structurally-modulated silk fibroin nanofibers

Authors: Soocheol Kim<sup>1,†</sup>, SungYeun Yang<sup>1,†</sup>, Seung Ho Choi<sup>2</sup>, Young L. Kim<sup>2</sup>, WonHyoung Ryu<sup>1,\*</sup> & Chulmin Joo<sup>1,\*</sup>

e-mail: whryu@yonsei.ac.kr (WonHyoung Ryu), cjoo@yonsei.ac.kr (Chulmin Joo)

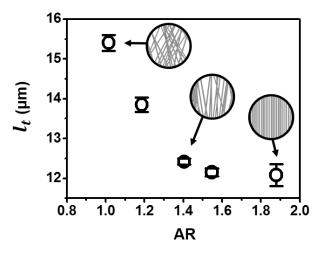

<sup>1</sup> School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea <sup>2</sup> Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

47907*,* USA


<sup>+</sup> These authors contributed equally to this work

\* These are corresponding authors

## Fabrication protocol of silk fibroin nanofibrous random laser




**Figure S1.** (a) Production of biocompatible random lasers composed of electrospun RhB-SF nanofibers. (b) Control of SF nanofiber alignment is achieved by operating the electrospinning system at various rotational speed of collection drum ( $\omega$ ).



**Figure S2.** (a) Experimental setup for measuring angular distribution of output emission from SF nanofibrous scaffolds. The scaffold was on the y-z plane, and the pump laser (i.e., Nd:YAG laser) illuminated the scaffold along the x axis. The spectrometer, mounted in a rotational arm, was elevated by  $\varphi = 30^{\circ}$  in order not to block the beam path of the pump laser. The  $\theta$  denotes the detection angle. (b) Representative angular emissions from the SF scaffolds with AR = 1.01 (black line) and AR = 1.88 (blue line). The angular emission for each scaffold was normalized by its maximum emission at  $\theta = 0^{\circ}$ . The aligned SF nanofibers (AR = 1.88) exhibited a sharp output emission around  $\theta = 0^{\circ}$ , while the SF scaffold with a random fiber arrangement (AR = 1.01) was characterized by a broad angular distribution. The errorbar denotes the standard error evaluated over five measurements. (c) Angular width (AW) of output emission for each scaffold was determined as the full-width at half-maximum of its angular output emission. It can be seen that the aligned SF nanofibers exhibit a narrower angular width of emission, indicating enhanced directional scattering and emission in the scaffolds.

## Transport mean free path-lengths of SF scaffolds



**Figure S3.** Transport mean free paths as a function of ARs. The errorbar denotes the standard error evaluated over five measurements.