
An Improved Filtering Algorithm
for Big Read Datasets and its Application to

Single-Cell Assembly

— Supplement —

Axel Wedemeyer∗ Lasse Kliemann† Anand Srivastav
Christian Schielke Thorsten B. Reusch Philip Rosenstiel

June 6, 2017

S1 Formal descriptions

In this section we give a technical description of Bignorm which might
be important for further algorithmic enhancements. The level of details
are chosen in a way that the essential mathematical parts should be
clear.

S1.1 Formal Problem Formulation

Denote byN := {0, 1, 2, . . .} the set of non-negative integers, and for each
n ∈ N denote by [n] := {1, . . . , n} the integers from 1 to n (including 1
and n). Denote by Σ := {A,C,G,T,N} the alphabet of nucleotides plus
the symbol N used to indicate an undetermined base. By Σ∗ we denote
all the finite strings over Σ, and for some k ∈ N by Σk all the strings
over Σ of exactly length k. For v ∈ Σ∗, denote by |v| ∈ N its length and
v̄ ∈ Σ∗ its reverse complement. For v, w ∈ Σ∗, we write v ∼= w if |v| = |w|
and the two strings are equal up to places where either of them has the
N symbol.

∗axw@informatik.uni-kiel.de
†lki@informatik.uni-kiel.de

1

The input to the filter algorithm is a dataset D = (n,m,R,Q) where
for each i ∈ [n] we have:

• m(i) ∈ N: a flag for an unpaired (m(i) = 1) or paired (m(i) = 2)
dataset;

• R(i, s) ∈ Σ∗ for each s ∈ [m(i)]: the set of reads in the dataset;

• Q(i, s) ∈ Z|R(i,s)| for each s ∈ [m(i)]: the set of corresponding phred
scores.

Each read i ∈ [n] consists of m(i) read strings R(i, 1), . . . , R(i,m(i)). For
t ∈ [|R(i, s)|], we denote the nucleotide at position t in read string R(i, s)
by Rt(i, s) and its phred score by Qt(i, s). Note that in terms of read
strings, D may contain the “same” read multiple times (perhaps with
different quality values), that is, there can be i 6= j such that R(i) = R(j).
Hence it is beneficial that we refer to reads by their indices 1, . . . , n.

Denote by x ∈ Σ∗ the genome from which the reads were obtained
and g := |x| its length. (For the purpose of this exposition, we simplify
by assuming the genome is a single string.) For each locus ` ∈ [g],
the coverage c`(D) of ` with respect to D is informally described as
the number of read strings that were or could have been produced by
the sequencing machine while reading a part of x that contains locus `.
More precisely, for each v ∈ Σ∗ define

• c`(v) := 1 if there is a substring w of x which contains locus ` and
satisfies v ∼= w or v ∼= w̄;

• c`(v) := 0 otherwise.

Then, we define:

c`(D) :=
n∑
i=1

m(i)∑
s=1

c`(R(i, s))

As result of our algorithm a sub-dataset D′ = (n′,m′, R′, Q′) of D
should be determined such that n′ is much smaller than n without losing
essential information. The goal is to produce an assembly of similar
quality based on D′ instead of D. We only consider the natural approach
to create D′ by making a choice for each i ∈ [n] whether to include
read i in D′ or not, so in particular (R′(1), . . . , R′(n′)) will be a sub-vector
of (R(1), . . . , R(n)). When we include a read in D′, we also say that it
is accepted, whereas when we exclude it, we call it rejected. On an
abstract level, a filtered dataset based on D can be specified by giving a
set of indices A ⊆ [n] that consists of the accepted reads.

Many popular assemblers, such as SPAdes [1], Platanus [2], or Allpaths-
LG [3], work with the de Bruijn graph that is based on k-mers. Fix a

2

parameter k ∈ N; typically k ≥ 21 The set of k-mers of a string v ∈ Σ∗,
denoted M(v, k) ⊆ Σk, is the set of all strings of length k that are sub-
strings of v. Partly we need to consider a k-mer multiple times if it occurs
in multiple places in the string, and the corresponding set is denoted:

M∗(v, k) :=
{

(µ, p) ∈ Σk ×N ; µ is a substring

of v starting at position p
}
.

For a read i ∈ [n] and read string s ∈ [m(i)], defineM(i, s, k) := M(R(i, s), k)

and M(i, k) :=
⋃m(i)
s=1 M(i, s, k), so M(i, k) are all the k-mers that oc-

cur in any of the m(i) read strings of R(i). Denote also M∗(i, s, k) :=
M∗(R(i, s), k).

S1.2 Formal description of CMS

Bignorm, like Diginorm, is based on the count-min sketch (CMS) for
counting k-mers. CMS is a probabilistic data structure for counting ob-
jects from a large universe. We give a brief and abstract description.
Let a = (a1, . . . , aN) ∈ NN be a vector, given implicitly as a sequence of
updates of the form (p,∆) with p ∈ [N] and ∆ ∈ N. Each update (p,∆)
modifies a in the way ap := ap + ∆; where initially a = (0, . . . , 0). If ∆ = 1
in each update, then an interpretation of the vector a is that we count
how many times we observe each of the objects identified by the num-
bers in [N]. If N is large, e.g. if N is the number 4k of all possible k-mers
(we do not count k-mers with N symbols), then we may not be able to
store a in RAM. (For example, the typical choice of k = 21 brings a into
terabyte range; in our experiments we use k = 32.) Instead we fix two
parameters: the width m ∈ N and the depth t ∈ N and store a matrix of
m · t CMS counters cp,q with p ∈ [m] and q ∈ [t]. Moreover, we randomly
draw t hash functions h1, . . . , ht from a universal family. Each hq maps
from [N] to [m]. Initially, all counters in the matrix are zero. Upon arrival
of an update (p,∆), for each row q ∈ [t] we update chq(p),q := chq(p),q + ∆.
That is, for each row q, we use the hash function hq to map from the
larger space [N] (from which the index p comes) to the smaller space
[m] of possible positions in the row. Denote

âp := min{ch1(p),1, . . . , cht(p),t} . (1)

Then, it can be proved [4] that âp is an estimate of ap in the following
sense: clearly ap ≤ âp, and with probability at least 1 − e1−t we have

âp ≤ e
m−1

∑N
j=1 aj . The probability is over the choice of hash functions.

For example, choosing t := 10 is enough to push the error probability,
upper-bounded by e1−t, below 0.013%.

In our application, N = 4k is the number of possible k-mers (without
N symbols) and we implement a bijection β : Σk −→ [N], so we can

3

identify each k-mer µ by a number β(µ) ∈ [N]. Upon accepting some
read i, we update the CMS counters using all the updates of the form
(β(µ), 1) with µ ∈ M(i, k) not containing the N symbol, that is, for each
such µ we increase the count β(µ) by ∆ = 1. Then when all the reads
1, . . . , i − 1 have been processed, the required count c(µ, i) corresponds
to the entry aβ(µ) in the vector a used in the description of CMS, and for
the estimate ĉ(µ, i), we can use the estimate âβ(µ) as given in (1).

S1.3 Formal description of algorithm

We give a detailed description of our enhancements (i) to (iv) that were
briefly lined out on page ??. Although most of the settings are generic,
in some places we assume that data comes from the Illumina.

We start with (i), (ii), and (iii). Fix a read i ∈ [n] and a read string
s ∈ [m(i)]. Recall that for each t ∈ [|R(i, s)|] the nucleotide Rt(i, s) at po-
sition t in the read string R(i, s) is associated with a quality value Qt(i, s)
known as phred score. We want to assign a single value Q(i, s, µ, p) to
each (µ, p) ∈ M∗(i, s, k). We do so by taking the minimum phred score
over the nucleotides in µ when aligned at position p, that is:

Q(i, s, µ, p) := min
p≤t≤p+k−1

Qt(i, s)

(µ occurs on the right-hand side only implicitely through its length k).
Fix the following parameters:

• N-count threshold N0 ∈ N, which is 10 by default;

• quality threshold Q0 ∈ Z, which is 20 by default;

• rarity threshold c0 ∈ N, which is 3 by default;

• abundance threshold c1 ∈ N, which is 20 by default;

• contribution threshold B ∈ N, which is 3 by default.

When our algorithm has to decide whether to accept or reject a read
i ∈ [n], it performs the following steps. If the number of N symbols
counted over all m(i) read strings in i is larger than N0, the read is
rejected. Otherwise, for each s ∈ [m(i)] define the set of high-quality
k-mers:

H(s) :=
{

(µ, p) ∈M∗(i, s, k) : (Q0 ≤ Q(i, s, µ, p))

and (µ does not contain N)
}
.

We determine the contribution of R(i, s) to k-mers of different fre-
quencies:

b0(s) := |{(µ, p) ∈ H(s) ; ĉ(µ, i) < c0}|,
b1(s) := |{(µ, p) ∈ H(s) ; c0 ≤ ĉ(µ, i) < c1}|

4

Note that the frequencies are determined via CMS counters and do not
consider the position p at which the k-mer is found in the read string.
The read i is accepted if and only if at least one of the following condi-
tions is met:

b0(s) > k for at least one read string s, (2)

m(i)∑
s=1

b1(s) ≥ B. (3)

If the read is accepted, then for each µ ∈M(i, k) the corresponding CMS
counter is incremented, provided that µ does not contain the N symbol.
Afterwards processing of the next read starts.

The motivation for condition (2) is as follows. According to [5], most
errors of the Illumina platform are single substitution errors and the
probability of appearance of an erroneous k-mer in the genome, caused
by an incorrect reading of a nucleotide, is quite low. Thus, k-mers pro-
duced by single substitution errors are likely to have very small counter
values in the CMS (less than c0 times) and can be considered as rare
k-mers. One such error can only effect at most k k-mers. So if we count
more than k rare k-mers, they must be the result of factors other than
one single substitution error. If we assume that the probability of multi-
ple single substitution errors in a read is smaller than the probability of
error-free rare k-mers, we should accept this read.

Condition (3) says that in the read i, there are enough (namely at
least B) k-mers where each of them is too frequent to be a read error
(CMS counters at least c0) but not that abundant that it should be con-
sidered redundant (CMS counters less than c1).

This concludes the description of (i), (ii), and (iii), particularly how
we analyze the counts in C(i, s) = (ĉ(µ, i))µ∈M(i,s,k) for each read i and
s ∈ [m(i)], how we incorporate quality information, and how we handle
the N symbol.

Finally, to accomplish (iv), we wrote a multi-threaded implementa-
tion completely in the C programming language. The parallel code
uses OpenMP. For comparison, the implementation of the original Dig-
inorm algorithm (included in the khmer-package [6]) features a single-
threaded design and is written in Python and C++; strings have to be
converted between Python and C++ at least twice.

S2 Comparison of different assemblers

To investigate how digital normalization affects other assemblers, we
ran IDBA_UD and Velvet-SC on

• the unfiltered dataset

5

Assembler
Normalization

Diginorm Bignorm

SPAdes 8.2× 28.0×
IDBA_UD 3.8× 18.0×
Velvet-SC 65.2× 255.2×

Table S1: Median speed-up by assembler and normalization algorithm

• the dataset filtered with Diginorm and

• the dataset filtered with Bignorm, Q0 set to 20

for each of the 13 test datasets.
For comprehensibility, we used the measurements for SPAdes on the

unfiltered dataset as a reference. We present box plot diagrams for
the measures largest contig, N50, genome fraction, total length, and as-
sembler runtime (Walltime), grouped by assembler and by normalization
used.

For largest contig and N50, IDBA_UD does not benefit from normal-
ization while Velvet-SC clearly does. Both assemblers however, appear
to be inferior to SPAdes (regardless of normalization). The results of
Velvet-SC on normalized data are comparable to IDBA_UD (see Supple-
ment Figure 1 and 2).

For genome fraction, both IDBA_UD and Velvet-SC profit from nor-
malization, but Velvet-SC always performs worse than IDBA_UD, whose
results are bested by SPAdes (see Supplement Figure 3).

For total length of the assembly, IDBA_UD (like SPAdes) does profit
from normalization with Diginorm, but using Bignorm led to a deterio-
ration. Velvet-SC benefits from both normalization algorithms, but its
results are still inferior to IDBA_UD and SPAdes (see Supplement Fig-
ure 4).

For the assembler runtime (Walltime), all assemblers get substan-
tially faster when using normalization (see Supplement Figure 5. The
diagram shows that SPAdes on a dataset normalized with Bignorm is
always faster that IDBA_UD on the same, unfiltered dataset. Remarks:

• the y-axis is logarithmised for an informative plot

• the runtime given for Velvet-SC is the sum of the runtimes of velveth
and velvetg

See Table S1 for the median speed-up by assembler and normaliza-
tion algorithm.

6

spades idba_ud velvet−sc

●

●

●

●

●

●

●

0.5

1.0

1.5

unfiltered diginorm Bignorm unfiltered diginorm Bignorm unfiltered diginorm Bignorm
filter method used

La
rg

es
t c

on
tig

 (
re

la
tiv

e)

Supplement Figure 1: Comparison of largest contig for SPAdes,
IDBA_UD and Velvet-SC relative to SPAdes on unfiltered dataset.

spades idba_ud velvet−sc

●

●

●

●

●

●

0.0

0.5

1.0

1.5

unfiltered diginorm Bignorm unfiltered diginorm Bignorm unfiltered diginorm Bignorm
filter method used

N
50

 (
re

la
tiv

e)

Supplement Figure 2: Comparison of N50 for SPAdes, idba_ud and
velvet-sc relative to SPAdes on unfiltered dataset.

7

spades idba_ud velvet−sc

●

●

●

0.6

0.7

0.8

0.9

1.0

unfiltered diginorm Bignorm unfiltered diginorm Bignorm unfiltered diginorm Bignorm
filter method used

G
en

om
e

fr
ac

tio
n

(r
el

at
iv

e)

Supplement Figure 3: Comparison of genome fraction for SPAdes,
idba_ud and velvet-sc relative to SPAdes on unfiltered dataset.

spades idba_ud velvet−sc

●

●

●●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

unfiltered diginorm Bignorm unfiltered diginorm Bignorm unfiltered diginorm Bignorm
filter method used

To
ta

l l
en

gt
h

(r
el

at
iv

e)

Supplement Figure 4: Comparison of total length of assemblies for
SPAdes, idba_ud and velvet-sc relative to SPAdes on unfiltered dataset.

8

spades idba_ud velvet−sc

●

●

●

●

−6

−4

−2

0

2

unfiltered diginorm Bignorm unfiltered diginorm Bignorm unfiltered diginorm Bignorm
filter method used

lo
g(

re
la

tiv
e

R
un

tim
e)

Supplement Figure 5: Comparison of log of runtime for SPAdes, idba_ud
and velvet-sc relative to SPAdes on unfiltered dataset.

9

unfiltered Diginorm Bignorm

80
10

0
12

0
14

0
16

0
18

0

filter method used

%
 o

f r
ef

er
en

ce
 le

ng
th

Supplement Figure 6: Comparison of the total length of the SPAdes as-
semblies by filter method used relative to the length of the reference

10

S3 Total length of Assemblies

The distribution of the total length of the assemblies done with SPAdes
and Q0 set to 20 are shown in Supplement Figure 6. For the plot, all
measures were divided by the length of the related reference genome as
provided by JGI / UCD.

S4 Quality plots of datasets

As Bignorm uses the phred score in its decision function, it is not surpris-
ing that low quality datasets give low quality normalizations. Especially
the decline rate of the phred score over the read position, as shown in
Supplement Figure 7, turned out to have a big impact on the result of
the normalization.

References

[1] Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Ku-
likov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin,
A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A.:
SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-
Cell Sequencing. Journal of Computational Biology 19(5), 455–477 (2012).
doi:10.1089/cmb.2012.0021

[2] Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno,
M., Yabana, M., Harada, M., Nagayasu, E., Maruyama, H., Kohara, Y.,
Fujiyama, A., Hayashi, T., Itoh, T.: Efficient de novo assembly of highly
heterozygous genomes from whole-genome shotgun short reads. Genome
Research, 1384–1395 (2014). doi:10.1101/gr.170720.113

[3] Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker,
B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., Berlin, A.M., Aird, D.,
Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A., Nusbaum, C., Lan-
der, E.S., Jaffe, D.B.: High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4),
1513–1518 (2011). doi:10.1073/pnas.1017351108

[4] Cormode, G., Muthukrishnan, S.: An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms 55(1), 58–75
(2005). doi:10.1016/j.jalgor.2003.12.001

[5] Kelley, D.R., Schatz, M.C., Salzberg, S.L.: Quake: quality-aware detection
and correction of sequencing errors. Genome Biol 11(11), 1–13 (2010).
doi:10.1186/gb-2010-11-11-r116

[6] Crusoe, M., Edvenson, G., Fish, J., Howe, A., McDonald, E., Nahum, J., Nan-
lohy, K., Ortiz-Zuazaga, H., Pell, J., Simpson, J., Scott, C., Srinivasan, R.R.,
Zhang, Q., Brown, C.T.: The khmer software package: enabling efficient
sequence analysis, 1–3 (2014). doi:10.6084/m9.figshare.979190

11

Caldi Aceto

ASZN2 Alphaproteo

E. coli Arma

Supplement Figure 7: Quality plots of selected datasets, generated us-
ing the FastQC tool and ordered by decreasing quality

12

	Formal descriptions
	Formal Problem Formulation
	Formal description of CMS
	Formal description of algorithm

	Comparison of different assemblers
	Total length of Assemblies
	Quality plots of datasets

