Supporting Information

for

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

Kati Erdmann*^{,‡,1}, Jessica Ringel^{‡,1}, Silke Hampel², Manfred P. Wirth¹ and Susanne Fuessel¹

Address: ¹Department of Urology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany and ²Leibniz Institute of Solid State and Material Research Dresden, P.O. Box 270016, Dresden 01171, Germany

Email: Kati Erdmann* - kati.erdmann@uniklinikum-dresden.de

* Corresponding author

[‡]Equal contributors

Relative cellular viability of DU-145 cells following monotreatment or combinatory treatment including dose-response curves

Table S1: Relative cellular viability of DU-145 cells following treatment with carbon nanomaterials and chemotherapeutics alone or in combination.^a

carbon	chemo-	concentration carbon nanomaterial (µg/mL)							
nanomaterial	therapeutic	0	1	5	10	25	50	100	200
	none	100 (CON)	101.1 ± 2.5	97.0 ± 3.0	95.2 ± 4.8	86.9 ± 2.4 ^b	78.7 ± 2.4 ^b	78.3 ± 3.5 ^b	79.4 ± 3.3 ^b
CNFs	DTX (1.5 ng/mL)	94.1 ± 3.5	$89.0 \pm 3.8^{b,c}$	n.d.	$77.6 \pm 8.4^{b,c,d}$	$49.8 \pm 4.5^{b,c,d}$	37.4 ± 5.1 ^{b,c,d}	$27.0 \pm 4.3^{b,c,d}$	$27.9 \pm 5.0^{b,c,d}$
	MMC (0.3 µg/mL)	67.9 ± 9.2 ^b	61.5 ± 12.3 ^{b,c}	46.0 ± 11.8 ^{b,c,d}	$33.8 \pm 8.8^{b,c,d}$	25.2 ± 10.1 ^{b,c,d}	19.6 ± 10.2 ^{b,c,d}	n.d.	19.1 ± 11.0 ^{b,c,d}
	none	100 (CON)	95.7 ± 3.3	95.4 ± 3.0	95.1 ± 0.4	93.7 ± 5.3	90.1 ± 3.9 ^b	88.2 ± 4.3 ^b	79.6 ± 4.1^{b}
CNTs	DTX (1.5 ng/mL)	94.1 ± 3.5	93.6 ± 1.0	n.d.	91.4 ± 0.4	89.3 ± 3.8	85.2 ± 2.8 ^b	$80.3 \pm 4.0^{b,d}$	$70.4 \pm 5.3^{b,d}$
	MMC (0.3 µg/mL)	67.9 ± 9.2^{b}	$69.9 \pm 5.9^{b,c}$	$67.9 \pm 6.8^{b,c}$	$64.6 \pm 5.7^{b,c}$	$61.2 \pm 4.7^{b,c}$	54.5 ± 7.2 ^{b,c}	n.d.	$47.3 \pm 3.6^{b,c,d}$

^aCombinatory treatments contained the respective carbon nanomaterial and chemotherapeutic in the same concentrations as indicated for the individual treatments. Results are depicted as averaged relative cellular viability (%) \pm relative mean deviation. Untreated cells (CON) served as control (100%). The effects of CNFs and CNTs on cellular viability have been reported previously [28]; n.d.: not determined.

 $^{b}p < 0.05$ treatment versus control, $^{c}p < 0.05$ treatment versus carbon nanomaterial alone, $^{d}p < 0.05$ treatment versus chemotherapeutic alone

Figure S1: Relative cellular viability of DU-145 cells treated with increasing concentrations of (a) DTX, (b) MMC, (c) CDDP and (d) CP. Results are depicted as averaged relative cellular viability (%) ± relative mean deviation. The effects of CDDP and CP on cellular viability have been reported previously [28]. Cells were treated for 2 h (DTX, MMC) or 24 h (CDDP, CP) with increasing concentrations of the chemotherapeutics. Assessment of cellular viability was conducted 72 h after end of treatment. Untreated cells (CON) served as control (100%). The 50% inhibitory concentrations (IC50) calculated from the dose-response curves were 8.96 ng/mL for DTX, 0.63 µg/mL for MMC, 0.62 µg/mL for CDDP and 8.35 µg/mL for CP.