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Prediction based on GPS-PAIL and ASEB 

GPS-PAIL (GPS Prediction of Acetylation on International Lysines)1 and ASEB (Acetylation 

Enrichment Set Based method)2 were bioinformatics approaches designed for identifying protein 

acetylation sites. To demonstrate the benefit of integrating functional features with primary sequence, 

performance test of predicting with these two approaches were carried out.  

GPS-PAIL method mainly used BLOSUM62 to score potential substrates of acetylation enzymes 

depended on primary sequence information. For each query peptide sequence, after comparing the 

sequence similarities with those sequences in the positive dataset, sequences with high similarity scores 

will be predicted as potential substrates. The best scoring strategy was obtained based on positive and 

negative datasets. We repeated the prediction process of GPS-PAIL. The manually compiled 118 SIRT1 

substrate sequences were trimmed to 21 amino acids length and treated as positive dataset. Negative 

dataset, whose sample size is also 118, was composed of lysine centered peptide sequences with 

corresponding length. Those negative samples were randomly selected from the whole human proteome 

(Swiss-Prot database, version Release 20150323) after excluding proteins in positive dataset. Then, 4/5 

positive and negative sample peptides were taken as training set to explore the best scoring strategy. 

Meanwhile, the remaining 1/5 positive and negative sample peptides were taken as testing set. The above 

test processes were performed 100 times and negative datasets would be re-selected in each time of test. 

The final performance was the average of those 100 tests. For convenience of comparison with our new 

method, we used the cutoff which would generate Sp near 0.92 to calculate Sn and MCC. 

ASEB also depended on primary sequence information to recognize potential substrate sites of 

acetylation enzymes, proposed by our team previously. For a query sequence, through comparing its 

similarities with sequences in the positive set and the background set, sequence with high similarity with 

samples in the positive dataset will obtain smaller p-value score. The compiled 118 SIRT1 substrate sites 

were taken as the positive set. The background set was composed of 10000 lysine centered peptide 

sequences which were randomly selected from the whole human proteome (Swiss-Prot database, version 

Release 20150323, excluding proteins in positive set). The five-fold cross-validation on positive samples 

was carried out to estimate Sn. Then, 118 negative peptide sequences were randomly selected from the 

whole human proteome to estimate Sp with all positive samples as training set. Samples in the negative 

dataset would be re-selected for 100 times and the final Sp was the average of these 100 tests. For MCC, 

TP and FN were got by the five-fold cross-validation on positive dataset; TN and FP were got by the 

average of prediction performances on 100 negative datasets. For convenience of comparison with our 

new method, we used the cutoff which would generate Sp near 0.92 to calculate corresponding TP, FN, 

TN, FP.   



Supplementary table legends 

 

Supplementary Table S1. SIRT1 substrates proteins and sites used as positive dataset for the 

prediction. 

The highlighted lines are abandoned data which can’t be trimmed into standard prediction uniform. 

 

Supplementary Table S2. Prediction based on different classifiers (only sequence). 

Machine learning package scikit-learn (scikit-learn-0.18) was used to construct models. For Random 

Forest, the tree number was set to 100. For Neural Networks, the neuron number of hidden layer was set 

to two times of neuron number of input layer plus one (Nhid=2*Nin+1). The test strategy and coding 

manners are the same with predictions based on SVM. 

 

Supplementary Table S3. Enriched functional features of SIRT1 substrates proteins. 

Enrichment terms were represented for deacetylation proteins from the GO, Pfam and STRING 

database. 

 

Supplementary Table S4. Prediction performance of different cutoffs (SVM). 

 

Supplementary Table S5. Human acetylation sites obtained from PhosphoSitePlus database. 

 

Supplementary Table S6. Potential SIRT1 substrates filtered from human acetylation sites. 

Every lysine site were predicted by nine models. Votes were calculated by the prediction result of each 

model. Lysine sites which were predicted positive by more than or equal to five models (score>=5) 

were considered as potential substrate sites. 

 

Supplementary Table S7. Randomly selected lysine sites from the human proteome. 

 

Supplementary Table S8. Potential SIRT1 substrates filtered from randomly selected lysine sites. 

Every lysine site were predicted by nine models. Votes were calculated by the prediction result of each 

model. Lysine sites which were predicted positive by more than or equal to five models (score>=5) 

were considered as potential substrate sites. 

 

Supplementary Table S9. SIRT1 substrates from Chen’s study. 

270 SIRT1 substrate proteins contained lysine sites exhibiting 2-fold change of acetylation level 

between WT and KO cells in Chen’s study. 

 

Supplementary Table S10. Prediction based on different classifiers (sequence and functions). 

Machine learning package scikit-learn (scikit-learn-0.18) was used to construct models. For Random 

Forest, the tree number was set to 100. For Neural Networks, the neuron number of hidden layer was 

set to two times of neuron number of input layer plus one (Nhid=2*Nin+1). The test strategy and coding 

manners are the same with predictions based on SVM.  



Supplementary figures 

Supplementary Figure S1 a-c. Detection of acetylation levels to be SIRT1 deacetylation substrates but 

remain unchanged with immunoprecipitation and Western blotting. 

Acetylation levels of CDK6 (a), FANCD2 (b), MSH6 (c) remain unchanged after SIRT1 overexpression. 

pcDNA: pcDNA-vector transfection. SIRT1-Flag: Flag-tagged SIRT1 plasmid transfection as indicated 

in the figure. Equal amounts of indicated proteins were immunoprecipitated, followed by western 

blotting with pan-lysine acetylation antibody, used to detect the acetylation of immunoprecipitated 

proteins. 

 

 

  



Supplementary Figure S2 a-g. Detection of acetylation levels not to be SIRT1 deacetylation substrates 

with immunoprecipitation and Western blotting. 

Acetylation levels of ACSL1 (a), USP47 (b), OTUB1 (c), KDM2A (d), Jade2 (e), FABP5 (f) and INTS3 

(g) remain unchanged after SIRT1 overexpression. pcDNA: pcDNA-vector transfection. SIRT1-Flag: 

Flag-tagged SIRT1 plasmid transfection as indicated in the figure. Equal amounts of indicated proteins 

were immunoprecipitated, followed by western blotting with pan-lysine acetylation antibody, used to 

detect the acetylation of immunoprecipitated proteins. 

 

 

  



Supplementary tables 

Supplementary Table S4. Prediction performance of different cutoffs (SVM). 

 

Cutoffs (Votes) Sensitivity Specificity 

9 51% 97% 

8 55% 95% 

7 57% 93% 

6 62% 93% 

5 64% 93% 

4 65% 91% 

3 66% 90% 

2 66% 85% 

1 71% 75% 
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