Supporting Information

# N-Heterocyclic Carbene and Chiral Brønsted Acid Cooperative Catalysis for a Highly Enantioselective [4+2] Annulation

Dian-Feng Chen and Tomislav Rovis\*

### **Table of Contents**

| 1. General Considerations                                                                             | - —2         |
|-------------------------------------------------------------------------------------------------------|--------------|
| 2. General Procedures for the Asymmetric [4+2] Annulation                                             | — 3          |
| 3. Characterization Data of New Compounds                                                             | — 3          |
| 4. <sup>1</sup> H, <sup>13</sup> C & <sup>19</sup> F NMR Spectra ———————————————————————————————————— | · <u>—</u> 9 |
| 5. HPLC Spectra                                                                                       | —23          |

#### **1. General Considerations**

Commercial reagents were purchased from Aldrich, Alfa and TCI, and were used as received unless otherwise indicated. Dichloromethane was degassed with argon and passed through two columns of neutral alumina. Anhydrous THF, toluene and cyclohexane were purchased from Aldrich and used as received. All catalytic reactions were carried out under N<sub>2</sub> with oven-dried vials. Thin layer chromatography was performed on SiliCycle® 250 um, 60A plates. Column chromatography was performed on *SiliCycle®SilicaFlash*® P60, 40-63 um, 60A. Visualization was accomplished with UV light (254 nm) or DNP (Dinitrophenylhydrazine).

<sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on a Bruker 500 Hz (125 Hz) spectrometer at ambient temperature. All NMR spectra are referenced to TMS or the residual solvent signal. Data for <sup>1</sup>H NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported as follows: chemical shift ( $\delta$  ppm). Data for <sup>19</sup>F NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported as follows: chemical shift ( $\delta$  ppm). Data for <sup>19</sup>F NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Several spectra had very complex coupling and deconvolution was not possible.

High resolution mass spectra (HRMS) were obtained from Columbia University Mass Spectrometry Facility on a JOEL JMSHX110HF mass spectrometer using FAB+ ionization model. Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FI-IR spectrometer. HPLC spectra were obtained on an Agilent 1100 series system. Optical rotation was obtained with an Autopol-III automatic polarimeter.

Ketones besides perfluoroethyl or perfluoropropyl phenones<sup>1</sup> were purchased from Aldrich and used as received. 2-(bromomethyl)benzaldehydes,<sup>2</sup> and chiral phosphoric acids <sup>3</sup> are known. The triazolium salts **4-5** were prepared according to our previous procedure.<sup>4</sup>

#### 2. General Procedures for the Asymmetric [4+2] Annulation:

To an oven-dried 5 mL vial with a magnetic stir bar, aldehyde 1 (0.10 mmol), ketone 2 (0.20 mmol), triazolium salt **5a** (9.3 mg, 0.020 mmol), chiral phosphoric acid **6d** (6.8 mg, 0.010 mmol), KOAc (19.6 mg, 0.40 mmol) were added before being transferred to an argon-filled glovebox. 1.0 mL of dry cyclohexane was added. The vial was tightly capped and removed from the glovebox. The reaction was vigorously stirred at room temperature. After 12h, the mixture was concentrated and the residue was subjected to flash silica gel chromatography (hexane: ether = 20:1) to yield lactone product.

#### 3. Characterization Data of New Compounds:



Prepared according to the general procedure: 19.9 mg, 68% yield, 95% ee,  $R_f = 0.33$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +87.8^\circ$  (c = 0.014 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 80:20 hexanes/isopropanol, 1.0 mL/min. Minor: 5.36 min, major: 6.14 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 – 7.42 (m, 3H), 7.35 – 7.25 (m, 5H), 3.83 (d, J = 16.3 Hz, 1H), 3.69 (d, J = 16.3 Hz, 1H). Data matches literature report.<sup>2</sup>



Prepared according to the general procedure: 21.4 mg, 69% yield, 91% ee,  $R_f = 0.36$  (10:1 hex:EtOAc);  $[\alpha]^{20}{}_D = +90.9^{\circ}$  (c = 0.017 g/ml, CHCl<sub>3</sub>). HPLC analysis: Chiracel IC column, 85:15 hexanes/iso-propanol, 1.0 mL/min. Minor: 5.80 min, major: 6.25 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.35 – 7.25 (m, 2H), 7.06 – 6.93 (m, 2H), 3.84 (d, J = 16.3 Hz, 1H), 3.64 (d, J = 16.4 Hz, 1H). Data matches literature report.<sup>2</sup>



Prepared according to the general procedure: 18.1 mg, 55% yield; 83% ee,  $R_f = 0.34$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +75.6^\circ$  (c = 0.016 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 5.68 min, major: 5.99 min; 1 H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.26 (dd, J =5.8, 2.9 Hz, 1H), 7.22-7.11 (m, 5H), 6.75-6.72 (m, 3H), 5.07 (s, 1H), 3.80 (dt, J = 11.2, 4.9 Hz, 1H), 3.34 (ddd, J = 11.1, 10.0, 4.1 Hz, 1H), 3.08 (ddd, J = 15.5, 10.1, 5.2 Hz, 1H), 2.91 (dt, J = 15.6, 4.3 Hz, 1H), 2.53-2.31 (m, 2H), 0.83 (t, J = 7.2 Hz, 3H. Data matches literature report.<sup>2</sup>



Prepared according to the general procedure: 21.1 mg, 68% yield; 87% ee,  $R_f = 0.33$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +72.0^\circ$  (c = 0.014 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 5.66 min, major: 6.29 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (dd, J = 7.9, 1.3 Hz, 1H), 7.52 (td, J = 7.6, 1.3 Hz, 1H), 7.35 – 7.22 (m, 5H), 7.01 (m, 1H), 3.84 (d, J = 16.3 Hz, 1H), 3.63 (d, J = 16.4 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  162.7 (d, J = 246 Hz), 161.9, 136.1 (d, J = 7.1Hz), 134.9, 134.8, 130.5, 130.4 (d, J = 8.1 Hz), 128.3, 127.9, 124.2, 123.0 (q, J = 282 Hz), 122.8 (d, J = 2.6 Hz), 116.7 (d, J = 20.9 Hz), 114.6 (d, J = 23.8 Hz) 82.7 (q, J = 30.7 Hz), 31.1 (d, J = 1.5 Hz); <sup>19</sup>F NMR (471 HZ, CDCl<sub>3</sub>)  $\delta$  -78.6 (s), -110.3 (m); IR (NaCl, neat) 1742, 1594, 1445, 1280, 1185, 1115, 1073, 749, 729, 708 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>16</sub>H<sub>11</sub>O<sub>2</sub>F<sub>4</sub> as [M+H]<sup>+</sup>, 311.0695. Found 311.0696.



Prepared according to the general procedure: 21.6 mg, 63% yield; 87% ee, Rf = 0.41 (10:1 hex:EtOAc);  $[\alpha]^{20}_{D} = +75.1^{\circ}$  (c = 0.011 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 5.09 min, major: 5.39 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (dd, J = 7.8, 1.2 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.33-7.24 (m, 4H), 7.22 (d, J = 7.6 Hz, 1H), 3.93 (d, J = 16.2 Hz, 1H), 3.66 (d, J = 16.2 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  162.1, 135.3, 134.6, 133.5, 130.2, 129.5, 128.7, 128.1, 127.9, 126.9, 124.4, 118.8 (qt, J = 287, 35.8 Hz), 111.3 (tq, J = 264, 35.6 Hz), 83.8 (t, J = 24.9 Hz), 31.4; <sup>19</sup>F NMR (471 MHZ, CDCl<sub>3</sub>)  $\delta$  -76.8 (s), -120.1, 121.5 (ABq,  $J_{AB} = 280.0$  Hz); IR (NaCl, neat) 1740, 1451, 1219, 1190, 1151, 1116, 1076, 745, 731, 716 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>17</sub>H<sub>12</sub>O<sub>2</sub>F<sub>5</sub> as [M+H]<sup>+</sup>, 343. 0575. Found 343. 0761.



Prepared according to the general procedure: 30.2 mg, 77% yield; 90% ee, Rf = 0.43 (10:1 hex:EtOAc);  $[\alpha]^{20}{}_{D} = 107.3$  (c = 0.015 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/iso-propanol, 1.0 mL/min. Minor: 4.69 min, major: 4.91 min; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.96 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.33 – 7.25 (m, 5H), 7.21 (d, *J* = 7.6 Hz, 1H), 3.95 (d, *J* = 16.2 Hz, 1H), 3.67 (d, *J* = 16.2 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  162.0, 135.2, 134.6, 133.5, 130.2, 129.4, 128.6, 128.1, 127.9, 127.1, 124.4, 118.8 (m), 116.3 (m), 113.9 (m), 111.9 (m), 109.9 (m), 107.8 (m), 84.7 (t, *J* = 25.3 Hz), 31.7; <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -79.9 (t, *J* = 11.3 Hz, 3F), -116.1 – -118.4 (m, 2F), -120.5 (ddd, *J* = 289.6, 12.5, 4.7 Hz, 1F), -122.9 (ddd, *J* = 289.2, 12.5, 3.0 Hz, 1F); IR (NaCl, neat) 1741, 1461, 1450, 1340, 1226, 1125, 1074, 745, 730, 716, cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>18</sub>H<sub>12</sub>O<sub>2</sub>F<sub>7</sub> as [M+H]<sup>+</sup>, 393. 0726. Found 393. 0718.



Prepared according to the general procedure: 18.6 mg, 57% yield; 90% ee,  $R_f = 0.33$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +112.9^\circ$  (c = 0.018 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 6.06 min, major: 7.05 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, J = 8.8Hz, 1H), 7.54 – 7.50 (m, 3H), 7.40-7.33 (m, 3H), 7.32 – 7.29 (m, 2H), 3.83 (d, J = 16.4, 1H), 3.68 (d, J =16.4 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 141.1, 137.0, 133.1, 131.9, 129.7, 128.9, 128.7, 127.9, 126.9, 122.8, 123.1 (d, J = 282 Hz), 83.2 (d, J = 30.6 Hz ), 31.0; <sup>19</sup>F NMR (471 MHz, Chloroformd)  $\delta$  -78.7 (s); IR (NaCl, neat) 1736, 1600, 1270, 1185, 1168, 1095, 1074, 765, 720, 683 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>16</sub>H<sub>11</sub>O<sub>2</sub>F<sub>3</sub>Cl as [M+H]<sup>+</sup>, 327. 0400. Found 327.0397.



Prepared according to the general procedure: 24.3 mg, 66% yield; 77% ee,  $R_f = 0.41$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +93.1^{\circ}$  (c = 0.019 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 8.15 min, major: 11.11 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.0 Hz, 1H), 7.58 – 7.50 (m, 4H), 7.48 – 7.40 (m, 4H), 7.36 – 7.28 (d, J = 7.4 Hz, 3H), 3.89 (d, J = 16.2 Hz, 1H), 3.75 (d, J = 16.3 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): 162.3, 147.4, 139.1, 135.8, 133.5, 130.9, 129.6, 129.1, 128.8, 128.7, 127.2, 127.0, 126.9, 126.3, 123.3 (d, J = 282 Hz), 123.0, 83.2 (d, J = 30.4 Hz), 31.3; <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -78.7 (s); IR (NaCl, neat) 2923, 1737, 1611, 1450, 1271, 1238, 1169, 1130, 1073, 758, 740, 721, 695 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>22</sub>H<sub>16</sub>O<sub>2</sub>F<sub>3</sub> as [M+H]<sup>+</sup>, 369.1102. Found 369.1100.



(S)-3-(4-fluorophenyl)-6-phenyl-3-(trifluoromethyl)isochroman-1-one

Prepared according to the general procedure: 27.5 mg, 71% yield; 93% ee, Rf = 0.40 (10:1 hex:EtOAc);  $[\alpha]^{20}{}_{\rm D}$  = +103.5° (c = 0.014 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 7.05 min, major: 8.85 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 8.1 Hz, 1H), 7.58 – 7.51 (m, 5H), 7.49 – 7.39 (m, 4H), 7.02 (t, *J* = 8.6 Hz, 2H), 3.89 (d, *J* = 16.3 Hz, 1H), 3.70 (d, *J* = 16.3 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  163.2 (d, *J* = 249 Hz), 162.1, 147.6, 139.0, 135.6, 131.0, 129.4 (d, *J* = 3.3 Hz), 129.2 (d, *J* = 8.7 Hz), 129.1, 128.8, 127.3, 127.0, 126.3, 123.1 (d, *J* = 282 Hz), 122.8, 116.0 (d, *J* = 21.7 Hz), 82.8 (d, *J* = 30.5 Hz), 31.3; <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -78.9 (s), -110.5 (tt, *J* = 8.4, 5.0 Hz); IR (NaCl, neat) 1739, 1611, 1512, 1239, 1171, 1073, 988, 836, 745, 697 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>22</sub>H<sub>15</sub>O<sub>2</sub>F<sub>4</sub> as [M+H]<sup>+</sup>, 387.1008. Found 387.1002.



Prepared according to the general procedure: 29.8 mg, 81% yield; 86% ee,  $R_f = 0.43$  (10:1 hex:EtOAc);  $[\alpha]^{20}_D = +118.0^\circ$  (c = 0.028 g/ml, CHCl<sub>3</sub>); HPLC analysis – Chiracel IC column, 85:15 hexanes/isopropanol, 1.0 mL/min. Minor: 7.27 min, major: 8.35 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, J = 1.9Hz, 1H), 7.72 (dd, J = 7.9, 2.0 Hz, 1H), 7.58 – 7.48 (m, 4H), 7.41 (t, J = 7.5 Hz, 2H), 7.38 – 7.28 (m, 5H), 3.86 (d, J = 16.3 Hz, 1H), 3.73 (d, J = 16.3 Hz, 1H);  $\delta$  <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.4, 141.3, 138.9, 134.0, 133.5, 133.1, 129.6, 129.0, 128.8, 128.7, 128.4, 128.1, 127.1, 126.9, 124.7, 123.3 (d, J = 282 Hz), 83.0 (d, J = 30.4 Hz), 30.8; <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -78.8 (s); IR (NaCl, neat) 2924, 1742, 1451, 1306, 1221, 1169, 1073, 760, 745, 702 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) calcd for C<sub>22</sub>H<sub>16</sub>O<sub>2</sub>F<sub>3</sub> as [M+H]<sup>+</sup>, 369.1102. Found 369.1100.

#### References:

- (1) Davies, A. T.; Salwin, A. M.; Smith, A. D. Chem. Eur. J. 2015, 21, 18944.
- (2) Janssen-Müller, D.; Singha, S.; Olyschläger, T.; Daniliuc, C. G.; Glorius, F. Org. Lett. 2016, 18, 4444.
- (3) Momiyama, N.; Nishimoto, H.; Terada, M. Org. Lett. 2011, 13, 2126.
- (4) (a) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876. (b) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418.

## 4. <sup>1</sup>H, <sup>13</sup>C & <sup>19</sup>F NMR Spectra





























### 5. HPLC Spectra



| #          | Time  | Area  | Height | Width  | Area%  | Symmetry |
|------------|-------|-------|--------|--------|--------|----------|
| 1          | 5.332 | 122.3 | 19.8   | 0.0941 | 50.064 | 0.868    |
| 2          | 6.111 | 122   | 17.3   | 0.1105 | 49.936 | 0.898    |
| L <u> </u> | 0.111 | 122   | 17.3   | 0.1100 | 43.330 |          |



| # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|-------|-------|--------|--------|--------|----------|
| 1 | 5.356 | 10.2  | 1.7    | 0.0953 | 2.501  | 0.868    |
| 2 | 6.138 | 397.9 | 55.3   | 0.112  | 97.499 | 0.887    |



|   | # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|---|-------|-------|--------|--------|--------|----------|
| [ | 1 | 5.822 | 348.4 | 50.4   | 0.1067 | 49.925 | 0.859    |
| [ | 2 | 6.275 | 349.5 | 46.4   | 0.1158 | 50.075 | 0.866    |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.803 | 5    | 6.1E-1 | 0.1372 | 4.310  | 0.742    |
| 2 | 6.248 | 112  | 14.4   | 0.1299 | 95.690 | 0.843    |



|   | # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|---|-------|-------|--------|--------|--------|----------|
| [ | 1 | 5.937 | 115.9 | 17.5   | 0.1106 | 49.993 | 0.93     |
| [ | 2 | 6.3   | 115.9 | 15.8   | 0.1225 | 50.007 | 0.888    |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.683 | 7.9  | 1.2    | 0.104  | 8.458  | 0.884    |
| 2 | 5.994 | 85.4 | 11.8   | 0.1105 | 91.542 | 0.871    |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.771 | 23.3 | 3.4    | 0.1061 | 50.166 | 0.844    |
| 2 | 6.217 | 23.2 | 3.1    | 0.1139 | 49.834 | 0.883    |

#### 3d:



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.66  | 5.4  | 5.4E-1 | 0.1664 | 6.629  | 1.067    |
| 2 | 6.287 | 76   | 9.8    | 0.1294 | 93.371 | 7.82E-5  |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.086 | 27.1 | 4.5    | 0.0929 | 49.280 | 0.823    |
| 2 | 5.387 | 27.9 | 4.3    | 0.0989 | 50.720 | 0.874    |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 5.092 | 6.4  | 8.8E-1 | 0.1208 | 6.372  | 0.688    |
| 2 | 5.392 | 93.8 | 14     | 0.1116 | 93.628 | 0.826    |



|   |   | 1     | 1000 | mongine |        | 1100.0 | ojimiotij |
|---|---|-------|------|---------|--------|--------|-----------|
| [ | 1 | 4.693 | 26.1 | 4.5     | 0.089  | 49.179 | 0.838     |
| [ | 2 | 4.913 | 27   | 4.5     | 0.0926 | 50.821 | 0.863     |
|   |   |       |      |         |        |        |           |



|   | i ime | Area | Height | Wiath  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 4.691 | 5    | 8.1E-1 | 0.1028 | 5.155  | 0.809    |
| 2 | 4.912 | 92.5 | 15.4   | 0.0921 | 94.845 | 0.835    |
|   |       |      |        |        |        |          |



| # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|-------|-------|--------|--------|--------|----------|
| 1 | 6.061 | 587.2 | 77.6   | 0.1142 | 50.010 | 0.816    |
| 2 | 7.05  | 586.9 | 65.1   | 0.1371 | 49.990 | 0.836    |
|   |       |       |        |        |        |          |



|   | # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|---|-------|-------|--------|--------|--------|----------|
| Γ | 1 | 6.062 | 39.4  | 5.3    | 0.1139 | 5.052  | 0.837    |
|   | 2 | 7.051 | 740.3 | 81.9   | 0.1374 | 94.948 | 0.83     |



| _ | # | Time   | Area  | Height | Width  | Area%  | Symmetry |
|---|---|--------|-------|--------|--------|--------|----------|
|   | 1 | 8.155  | 396.6 | 36.2   | 0.1677 | 50.219 | 0.879    |
|   | 2 | 11.114 | 393.1 | 25.3   | 0.2391 | 49.781 | 0.945    |



| # | Time   | Area  | Height | Width  | Area%  | Symmetry |
|---|--------|-------|--------|--------|--------|----------|
| 1 | 8.152  | 78.5  | 7.2    | 0.1669 | 11.296 | 0.898    |
| 2 | 11.113 | 616.6 | 39.6   | 0.2397 | 88.704 | 0.933    |



| # | Time  | Area | Height | Width  | Area%  | Symmetry |
|---|-------|------|--------|--------|--------|----------|
| 1 | 7.044 | 61.1 | 6.7    | 0.1426 | 49.893 | 0.9      |
| 2 | 8.835 | 61.3 | 5.1    | 0.1855 | 50.107 | 0.904    |



| # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|-------|-------|--------|--------|--------|----------|
| 1 | 7.054 | 18.5  | 2      | 0.1423 | 3.260  | 0.904    |
| 2 | 8.853 | 547.6 | 45.6   | 0.1863 | 96.740 | 0.912    |



| _ | # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|---|-------|-------|--------|--------|--------|----------|
|   | 1 | 7.278 | 536   | 57     | 0.1457 | 50.054 | 0.891    |
|   | 2 | 8.352 | 534.9 | 47.5   | 0.1753 | 49.946 | 0.942    |



| # | Time  | Area  | Height | Width  | Area%  | Symmetry |
|---|-------|-------|--------|--------|--------|----------|
| 1 | 7.273 | 28.4  | 3.1    | 0.1437 | 7.178  | 0.882    |
| 2 | 8.347 | 367.1 | 32.8   | 0.1725 | 92.822 | 0.953    |