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The Hamiltonian of the hybrid system is given by

Ĥ/~ =
∞∑
p=1

ωbare
10p â

†
pâp +

(
ωbare

q − αbare/2
)
b̂†b̂+

(
αbare/2

) (
b̂†b̂
)2

+ ωbare
m ĉ†ĉ (S1)

+
∞∑
p=1

(
gq,10p

(
â†pb̂+ âpb̂

†
)

+ gm,10p

(
â†pĉ+ âpĉ

†)) (S2)

where ωbare
10p is the bare frequency of the TE10p mode of the cavity, ωbare

q ≡ ωge and ωef are, respectively, the bare

frequencies of the |g〉 ↔ |e〉 and |e〉 ↔ |f〉 transitions of the transmon qubit, αbare ≡ ωef−ωge is the bare anharmonicity
of the transmon qubit, ωbare

m is the bare magnon frequency, gq,10p is the coupling strength between the TE10p cavity
mode and the transmon qubit, and gm,10p is the coupling strength between the TE10p cavity mode and the Kittel

mode [16]. In Eq. (S1), â†p (âp), b̂
† (b̂), and ĉ† (ĉ) are the creation (annihilation) operators of, respectively, a photon

in the TE10p cavity mode, an excitation in the transmon qubit and a magnon in the Kittel mode. In the Hamiltonian
of Eq. (S1), the transmon qubit is considered as an anharmonic oscillator in order to take into account the effect of
the |e〉 ↔ |f〉 transition on the values of the calculated parameters, therefore capturing the straddling regime of the
qubit-magnon system [21]. Figures S1A and B schematically represent the energy diagram of the hybrid system with
the qubit and the Kittel mode in the resonant and dispersive regimes, respectively.

The parameters of the hybrid system in Eq. (S1) are shown in Table S1. We calculate values of the qubit-magnon
coupling strength gq−m, the qubit-TE103 cavity mode dispersive shift χq,103, the qubit-magnon dispersive shift χq−m,
and the magnon Kerr coefficient Km using these parameters and the above Hamiltonian by truncating the sum over
the TE10p modes of the cavity to p = 4. We consider the TE10p cavity mode number states |n10p = {0, 1, 2}〉, the
transmon states |i = {g, e, f}〉, and the Kittel mode magnon number states |nm = {0, 1, 2}〉. More explicitly, we
diagonalize the Hamiltonian and evaluate the parameters with

χq,103 =
1

2
(ωe103 − ω

g
103)

χq−m =
1

2
(ωem − ωgm)

Km = 2ωgm,0→1 − ω
g
m,0→2

where ω
g(e)
103 is the frequency of the TE103 cavity mode with the transmon in the ground (excited) state, ω

g(e)
m is the

frequency of the Kittel mode with the transmon in the ground (excited) state, and ωgm,0→nm
is the transition frequency

of the Kittel mode between the magnon vacuum state and the |nm〉 magnon number state with the transmon in the
ground state, with ωgm ≡ ωgm,0→1, such that for Km = 0, ωgm,0→nm

= nmω
g
m. The qubit-magnon interaction strength

gq−m is simply calculated by half the splitting in the qubit-magnon hybridized energy levels. Figure S1D shows the
qubit-magnon dispersive shift χq−m and Fig. S1E shows the magnon Kerr coefficient Km, both calculated as a function
of the bare magnon frequency ωbare

m . Table S2 summarizes the theoretical values of gq−m, χq,103, χq−m, and Km.
As in the main text, the TE102 and TE103 cavity modes are, from now on, labeled the coupler and probe cavity

modes, respectively. Therefore, indices ‘102’ and ‘103’ are replaced by indices ‘c’ and ‘p’, respectively.
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Data on the avoided crossing between the TE102 cavity mode (coupler mode) and the Kittel mode is shown in
Fig. S3A. Figure S3B shows the current-dependent dressed cavity frequency with the qubit in the ground state,
ωgc (I), extracted from data of Fig. S3A. The dressed cavity frequency is fitted to

ωgc (I) = p1I + p2 − sgn (I − I0)

√
(p1I − p3)

2
+ p2

4 (S3)

with the fitting parameters p1 to p4 related to the physical quantities by

ωbare′

c = p2 + p3,

ωbare′

m (I) = 2p1I + p2 − p3,

|gm−c| = p4,

ωbare′

m (I0) ≡ ωbare′

c

In the above equations, ωbare′

c is the frequency of the coupler mode bare of its interaction with the Kittel mode,

ωbare′

m is the frequency of the Kittel mode bare of its interaction with the coupler mode, gm−c is the coupling strength

between the coupler mode and the Kittel mode, and I0 is the coil current for which ωbare′

m = ωbare′

c . This enables us

to determine ωbare′

c /2π = 8.456 GHz.
We furthermore fit the cavity spectrum Re(r) to

Re(r) = Re

ωr − ωbare′

c +
i(κint

c −κ
cpl
c )

2 − |gm−c|2

ωr−ωbare′
m (I)+iγm/2

ωr − ωbare′
c + iκc

2 −
|gm−c|2

ωr−ωbare′
m (I)+iγm/2

 (S4)

where ωr is the readout frequency, κint
c is the internal loss rate of the coupler mode, κcpl

c is the coupling rate of the
input/output port to the coupler mode, κc = κint

c + κcpl
c is the total linewidth of the coupler mode, and γm is the

magnon linewidth. The coupling rate of an unused port of the cavity is included in the internal loss rate of the
cavity. Values of κint

c , κcpl
c , and κc, given in Table S3, are determined from a measurement of the coupler cavity mode

spectrum far from the avoided crossing (I = −10 mA) while the value of ωbare′

c is fixed by the fit of ωgc (I) to Eq. (S3).

The global fitting parameters are γm and gm−c while ωbare′

m is fitted for each coil current I.
Figure S3C shows spectra fitted to Eq. (S4) for coil currents I near the avoided crossing at I0 ≈ 5.5 mA. We find

gm−c/2π = 22.5 ± 0.1 MHz and γm/2π = 1.3 ± 0.3 MHz, with error bars corresponding to 95% confidence intervals.
The avoided crossing calculated with Eq. (S4) and the parameters determined from the above fits is shown in Fig. S3D.

The effective Hamiltonian of a driven qubit-harmonic oscillator system in the dispersive regime is given by

Ĥ/~ =
1

2
∆sσ̂z + (∆d + χ) d̂†d̂+ χσ̂z d̂

†d̂+ Ωs

(
σ̂− + σ̂+

)
+ Ωd

(
d̂+ d̂†

)
(S5)

where ∆s = ωq − ωs is the spectroscopy detuning, ωq is the qubit frequency with the oscillator in the vacuum state,

ωs is the spectroscopy excitation frequency, ∆d = ωgo −ωd is the drive detuning, ω
g(e)
o is the oscillator frequency with
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the qubit in the ground (excited state), ωd is the drive frequency, d̂† (d) is the creation (annihilation) operator of
the oscillator, χ is the dispersive shift, Ωs is the spectroscopy excitation strength (Rabi frequency), and Ωd is the
oscillator excitation strength.

From the Hamiltonian of Eq. (S5), Gambetta et al. obtained an analytical expression for the qubit spectrum
S(ωs) [17], given by

S(ωs) =
∞∑
n=0

1

π

1

n!
Re

 (−A)neA

γ
(n)
q − i

(
ωs − ω̃(n)

q

)
 ≡ ∞∑

n=0

Sn(ωs) (S6)

with

ω(n)
q = ωq +B + 2χn (S7)

ω̃(n)
q = ω(n)

q + n∆d (S8)

γ(n)
q = γq + κ (n+Dss) (S9)

A = Dss

(
κ/2− i (2χ+ ∆d)

κ/2 + i (2χ+ ∆d)

)
(S10)

B = χ(ng + ne −Dss) (S11)

Dss =
2(ng + ne)χ2

(κ/2)2 + χ2 + (χ+ ∆d)2
(S12)

ng =
Ω2

d

(κ/2)2 + ∆2
d

(S13)

ne =
Ω2

d

(κ/2)2 + (∆d + 2χ)2
(S14)

In the above equations, ω
(n)
q and γ

(n)
q are respectively the frequency and the linewidth of the qubit with the oscillator

in the number state |n〉, γq is the qubit linewidth with the oscillator in the vacuum state, and κ is the linewidth of the

harmonic oscillator. The qubit frequency ω
(0)
q is ac Stark shifted by B from ωq and the frequencies ω̃

(n)
q appearing in

the spectrum of Eq. (S6) are furthermore shifted by n∆d from ω
(n)
q (Fig. S1C).

The steady-state distinguishability Dss is defined as the separation between the steady-state coherent states |αss
g,e〉

created in the oscillator by the microwave excitation with the qubit in the ground state and the excited state,

Dss =
∣∣αss
e − αss

g

∣∣2. The last term in Eq. (S9) shows that as the coherent states |αss
g,e〉 become more distinguishable,

the qubit linewidth γ
(n)
q increases due to the measurement-induced dephasing [17]. The occupancy with the qubit in

the ground (excited) state is given by ng(e) = |αss
g(e)|

2 = 〈n̂Π̂
g(e)
q 〉, where Π̂

g(e)
q = |g(e)〉〈g(e)| is the projector of the

qubit to its ground (excited) state.

For χ � κ and ∆d = 0, the steady-state distinguishability Dss is simply given by Dss = ng + ne, A → −Dss and
B → 0. In that case, the component of the qubit spectrum with n excitations, Sn(ωs), has a Lorentzian lineshape.

The qubit spectrum S(ωs) is therefore well described by a sum of Lorentzian functions at frequencies ω
(n)
q and of

linewidths γ
(n)
q with a Poisson distributed spectral weight of mean given by Dss. However, for χ ∼ κ, A becomes

complex, leading to a non-Lorentzian lineshape for Sn(ωs), with possibly negative values. However, the integral over
ωs of the spectrum and its components is positive in all cases.



ection S4. QUBIT SPECTROSCOPY MAGNON VACUUM STATE

A. Measurement

We perform spectroscopy of the qubit by probing the change ∆r in the reflection coefficient r of a readout mi-
crowave excitation of fixed frequency ωr as a function of the spectroscopy frequency ωs. For all qubit spectroscopy
measurements presented here, ωr is fixed at the frequency of the dressed TE103 cavity mode (probe mode) with the
qubit in the ground state at ωgp/2π = 10.44916 GHz such that ∆r = ωgp − ωr = 0. The readout excitation power Pr is
fixed to 9.2 aW, corresponding to an average number of photons in the probe mode much smaller than one. Indeed,
the occupancy of the probe mode from the readout excitation is given by

ngp =
Pr

~ωgp
κcpl

p

(κp/2)2
(S15)

where κp is the the total linewidth of the probe mode and κcpl
p is the coupling rate of the cavity input-output port to

the probe mode. With values of κcpl
p and κp given in Tables S3, we obtain ngp = 0.078± 0.004 for Pr = 9.2 aW.

B. Analytical model

To take into account the finite occupancy of the probe mode for qubit spectra measured with the Kittel mode in
the vacuum state (Pmw = 0), we use the analytical spectrum S(ωs) of Eq. (S6) by considering the probe cavity mode
as the harmonic oscillator through the substitutions

n, ng,e, κ→ np, n
g,e
p , κp,

χ→ χq−p,

∆d,Ωd → ∆r,Ωr,

A,B,Dss → Ap, Bp, D
ss
p

in Eqs. (S7) to (S14). This leads to

S(ωs) =
∞∑

np=0

1

π

1

np!
Re

 (−Ap)npeAp

γ
(np)
q − i

(
ωs − ω̃

(np)
q

)
 ≡ ∞∑

np=0

Snp
(ωs) (S16)

More explicitly, we fit the measured spectrum Re(∆r) to

Re(∆r) = A
10∑

np=0

Snp
(ωs) + Re(∆r)off (S17)

where A is a conversion factor from S(ωs) to Re(∆r), and Re(∆r)off is an offset of the spectrum from zero. The
Fock basis of the probe mode is truncated to np = 10. The linewidth κp of the probe mode is fixed to the value
determined from a fit of the spectrum of the probe mode (Table S3), and the readout detuning ∆r is zero. The
fitting parameters are the qubit frequency with the probe mode in the vacuum state, ωq, the qubit linewidth γq(Ps)
broadened by the spectroscopy microwave excitation of power Ps, the qubit-probe mode dispersive shift χq−p, the
probe mode occupancy ngp with the qubit in the ground state, the conversion factor A, and the offset Re(∆r)off .

C. Fit

The measurements and the fits of the qubit spectra for spectroscopy excitation powers Ps of 19 aW and 190 aW
are shown in Figs. S4A and S4B. The dispersive shift χq−p between the qubit and the probe mode is found to be
−0.8 ± 0.2 MHz, in excellent agreement with the expected value of −0.73 MHz (Table S2). The power-broadened
qubit linewidth γq(Ps), shown in Fig. S4C, is fitted to

γq(Ps) =
√
ηPs + γq(0)2 (S18)

s —



where η ≡ (2Ωs)
2/Ps relates Ps to the Rabi frequency Ωs, and γq(0) is the intrinsic qubit linewidth [27]. The Rabi

frequency Ωs in Eq. (S5) is estimated from the power-broadened qubit linewidth with

Ωs =
1

2

√
γq(Ps)2 − γq(0)2 (S19)

From the fit of γq(Ps) to Eq. (S18), we find γq(0)/2π = 0.25+0.07
−0.10 MHz. To obtain this value, we restrict the

minimal value of γq(Ps) in the fit such that the intrinsic linewidth respects the T1 limit set by min [γq(0)] = 1/T1,

with T1 = 0.63 ± 0.07 µs determined in a time-domain measurement. The linewidth γ
(np=0)
q (0) = γq(0) + κpD

ss
p in

Eq. (S9), corresponding to the linewidth of the peak with zero photons and broadened through measurement-induced
dephasing from the photon occupancy of the probe mode, is 0.57 ± 0.02 MHz. The difference between γq(0) and

γ
(np=0)
q (0) can be explained by an occupancy in the probe mode of 0.20+0.20

−0.09, significantly higher than the expected
occupancy from the probe microwave excitation of 0.078 ± 0.004 previously estimated. This indicates a residual
occupancy of 0.12+0.21

−0.10, which should result in a linewidth of 0.44+0.54
−0.27 MHz, broadened from the intrinsic linewidth

even in the absence of both probe and spectroscopy microwave excitations. This linewidth compares well with the
linewidth of 0.51 ± 0.04 MHz calculated with the dephasing time T ∗2 = 0.62 ± 0.04 µs determined from Ramsey
interferometry in a time-domain measurement (Figs. S4D and S4E). While all microwave excitations are turned off
during the free evolution in the Ramsey interferometry measurement, the residual occupancy of the probe cavity mode
creates measurement-induced dephasing of the qubit, increasing the linewidth from 0.25 to 0.51 MHz.

A. Analytical model and fit

To fit the spectrum of the transmon qubit measured in the dispersive regime with a coherent excitation applied to
the Kittel mode (Pmw > 0), we use the analytical spectrum S(ωs) of Eq. (S6) by considering the Kittel mode as the
harmonic oscillator through the substitutions

n, ng,e, κ→ nm, n
g,e
m , γm,

χ→ χq−m,

∆d,Ωd → ∆mw,Ωmw,

A,B,Dss → Am, Bm, D
ss
m

in Eqs. (S7) to (S14). To take into account the ac Stark shift of the qubit frequency by the photons in the probe
mode, we substitute

ωq → ω(np=0)
q = ωq +Bp (S20)

where the ac Stark shifted qubit frequency with the Kittel mode in the vacuum state, ω
(np=0)
q /2π = 7.99156 GHz,

is determined from the fit presented in Fig. S4A. The qubit linewidth with the Kittel mode in the vacuum state is
substituted to

γq → γ(np=0)
q = γq + κpD

ss
p (S21)

to take into account the increase in the linewidth by measurement-induced dephasing from photons in the probe

mode, with γ
(np=0)
q /2π = 0.78 MHz (Fig. S4C and Table S4). With theses substitutions, we fit the qubit spectrum to

Re(∆r) = A
10∑

nm=0

Snm(ωs) + Re(∆r)off (S22)

where, to take into account the asymmetry in the qubit lineshape from the qubit-probe mode dispersive interaction,
we consider the one-photon peak of the probe mode with

Snm
(ωs) ≈ Snm,np=0(ωs) + B × Snm,np=1(ωs) (S23)

in Eq. (S22), where

B ≡
pnp=1

pnp=0
≈
∫

dωs

Snp=1(ωs)

Snp=0(ωs)
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is the relative spectral weight between the one-photon and the zero-photon peaks. From measurements at Pmw =
0 (Fig. S4a), we find B = 0.03, which is supposed to be constant in the following analysis. Figure S5A shows an
example of the qubit spectrum for a Kittel mode excitation power of 3.1 fW.

The parameters fixed in the fit of the qubit spectrum are the qubit frequency ω
(np=0)
q , the power-broadened qubit

linewidth γ
(np=0)
q , the magnon linewidth γm, the relative spectral weight B, the qubit-probe mode dispersive shift

χq−p, and total linewidth κp of the probe mode. For each Kittel mode excitation power, the fitting parameters are
the qubit-magnon dispersive shift χq−m, the Kittel mode excitation detuning ∆mw, the magnon occupancy with the
qubit in the ground state, ngm (Fig. 4A in the main text), the conversion factor A, and the offset Re(∆r)off (Fig. S5C).
Excitation-power-averaged values of ∆mw and χq−m, given in Tables S4 and S2 respectively, are discussed in the
main text. Figure S5B shows the splitting between qubit peaks corresponding to successive magnon number states,
2χq−m + ∆mw, as a function of the Kittel mode excitation power Pmw. Within error bars, the splitting does not
depends on Pmw.

From the value of ∆mw/2π = −0.38 MHz, we can estimate the dressed magnon frequency ωgm/2π = (ωmw +
∆mw)/2π = 7.94962 GHz. The Lamb shift (ωbare

m −ωgm)/2π = 1.88 MHz is calculated from diagonalization of the total

Hamiltonian Ĥ of Eq. (S1) using parameters of Table S1. This gives a bare magnon frequency ωbare
m /2π = 7.95150 GHz,

from which we calculate
∣∣ωbare

q − ωbare
m

∣∣ /2π = 89 MHz, much greater than the qubit-magnon coupling strength of
7.79 MHz.

The offset Re(∆r)off shows a linear scaling with Pmw, with Re(∆r)off set to zero for Pmw = 0. The offset appears
as a displacement of the reflection coefficient ∆r in phase space, indicating an ac Stark shift of the resonant frequency
of the probe mode by the occupancy of the Kittel mode. In the detuning-dependent measurement shown in Fig. 2B
of the main text, the Kittel mode spectrum is indeed visible through the dispersive interaction between the probe
cavity mode and the Kittel mode [32].

B. Kittel mode excitation

In Fig. 4A of the main text, the magnon occupancy ngm increases as a function of the Kittel mode excitation power
at a rate of 0.342± 0.008 magnons per femtowatt. Theoretically, the magnon occupancy ngm is given by

ngm =
Ω2

mw

(γm/2)2 + ∆2
mw

(S24)

with the Kittel mode excitation strength Ωmw given from the input-output theory by

Ωmw =

√
Pmw

~ωmw

∑
p

√
κcpl

10p

 gm,10p

∆m,10p
+

gq−mgq,10p

∆q−m

√
∆2

m,10p + κ2
10p

 (S25)

where ∆m,10p = ωbare
10p − ωbare

m , ∆q−m = ωbare
q − ωbare

m , and ∆mw = ωgm − ωmw. For a given p, the first term of
Eq. (S25) describes the excitation of the Kittel mode through a virtual excitation in the TE10p cavity mode, while
the second term describes the excitation of the Kittel mode through a virtual excitation in the qubit excited by a
virtual excitation in the TE10p cavity mode. This leads to a slope of the magnon occupancy ngm as a function of the
excitation power Pmw given by

ngm
Pmw

=
1

~ωmw

1

(γm/2)2 + ∆2
mw

∑
p

√
κcpl

10p

 gm,10p

∆m,10p
+

gq−mgq,10p

∆q−m

√
∆2

m,10p + κ2
10p

2

(S26)

Truncating to sum over cavity modes to p = 3, we calculate ngm/Pmw = 0.16+0.12
−0.06 magnons per femtowatt with

parameters given in Tables S1 to S4 and with the linewidth and coupling rate of the TE101 cavity mode of κ101/2π =

1.39 MHz and κcpl
101/2π = 0.13 MHz, respectively. Error bars correspond to extremal values within the 95% confidence

interval of κcpl
102 = κcpl

c , κcpl
103 = κcpl

p , γm, and ∆mw. The discrepancy between the experimental and theoretical slopes
of ngm(Ps) of approximately a factor of two is most likely explained by an underestimation of Ωmw as not all excitation
channels of the Kittel mode are taken into account.



C. Probability distribution

The probability pnm of the magnon number state |nm〉 is calculated as the relative spectral weight of each component
Snm(ωs) of the fitted spectrum S(ωs) with

pnm ≈
∫

dωs
Snm

(ωs)

S(ωs)
(S27)

where

S(ωs) ≈
10∑

nm=0

Snm
(ωs)

with Snm
(ωs) given by Eq. (S23). As discussed in Ref. [17], the probability distributions of Eq. (S27) are to be

compared with Poisson distributions of mean Dss
m given by

pnm =
(Dss

m)
nm e−D

ss
m

nm!
(S28)

Figure S6 shows the comparison between the Poisson distributions and the probability distributions calculated using
Eq. (S27) with experimentally determined parameters, but with different values of the magnon linewidth γm and
excitation detuning ∆mw. For γm � χq−m (γm/2π = 0.1 MHz, Figs. S6A and S6C), the probability distributions
given by Eq. (S27) follow the Poisson distributions, even for a finite excitation detuning ∆mw of −0.38 MHz [17].
However, for γm ∼ χq−m (γm/2π = 1.3 MHz, Figs. S6B and S6D), systematic deviations from the Poisson distribution
are observed. In that case, despite being in the strong dispersive regime with |2χq−m| > max [γq, γm], the qubit does
not perfectly probe the probability distribution of the Kittel mode. Error bars in Fig. 4B of the main text are calculated
by finding the extremal values of pnm

calculated within the 95% confidence intervals of the fitting parameters ngm,
χq−m, and ∆mw.

Using the Hamiltonian of the hybrid system of Eq. (S1), we calculate the magnon Kerr coefficient Km as a function
of the bare magnon frequency ωbare

m (Fig. S1E). For ωgm/2π = (ωmw + ∆mw) /2π = 7.94962 GHz at I = −5.02 mA,
we estimate Km/2π = −0.12 MHz. As this coefficient is much smaller than the magnon linewidth of 1.3 MHz, it is
not expected to significantly affect the dynamics of the Kittel mode.

However, to understand the effect of this nonzero Kerr coefficient on the behaviour of the magnon occupancy when
increasing the Kittel mode excitation power, we consider the effective Hamiltonian of the driven qubit-magnon system
in the dispersive regime given by

Ĥq−m/~ =
1

2
∆sσ̂z + (∆mw + χq−m +Km/2) ĉ†ĉ (S29)

+ χq−mσ̂z ĉ
†ĉ− (Km/2)

(
ĉ†ĉ
)2

+ Ωs

(
σ̂− + σ̂+

)
+ Ωmw

(
ĉ+ ĉ†

)
where ∆s = ωq − ωs is the spectroscopy detuning, ∆mw = ωgm − ωmw is the Kittel mode excitation detuning, Km is
the coefficient of the magnon Kerr nonlinearity, Ωs is the spectroscopy excitation strength (Rabi frequency), and Ωmw

is the Kittel mode excitation strength.
By projecting Ĥq−m of Eq. (S29) into the σ̂z → −1 subspace (qubit in the ground state), we obtain the Hamiltonian

of a driven Kittel mode with a Kerr nonlinearity

Ĥm/~ = (∆mw +Km/2) ĉ†ĉ− (Km/2)
(
ĉ†ĉ
)2

+ Ωmw

(
ĉ+ ĉ†

)
(S30)

Using Qutip [33,34], we numerically calculate the steady-state magnon occupancy ngm with this Hamiltonian and
under magnon relaxation at a rate γm/2π = 1.3 MHz, as a function of the Kittel mode excitation strength Ωmw. The
Kittel mode excitation detuning ∆mw is fixed to zero and −0.38 MHz in Figs. S7A and S7B, respectively. At zero
detuning (∆mw = 0), a nonzero Kerr coefficient leads to negative curvature in ngm(Ω2

mw) as the excitation gets less
efficient when the excitation strength increases, as the increasing magnon occupancy effectively change the excitation
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detuning for |Km| > 0. However, for a finite detuning of −0.38 MHz, the curvature is positive at small ngm for a finite
range of Kerr coefficients Km < 0. Indeed, in this case, the Kerr nonlinearity compensate the finite detuning, making
the Kittel mode excitation more efficient as the magnon occupancy increases. For larger values of ngm, the curvature
becomes negative, as shown in the inset of Fig. S7B.

We now compare the numerically calculated ngm(Ω2
mw) to the data ngm(Pmw) of Fig. 4A in the main text. Figures S7C

and S7D shows the coefficient of determination R2 between ngm(Ω2
mw) and ngm(Pmw) for different values of the Kerr

coefficient Km and the proportionally constant between Ω2
mw and Pmw. Maximizing the coefficient of determination

R2, we determine a Kerr coefficient Km of −0.20+0.05
−0.14 MHz for ∆mw/2π = −0.38 MHz. Error bars on Km are

calculated by finding the extremal values found within the 95% confidence interval of γm and ∆mw. Even if the
magnon Kerr coefficient is much smaller than the magnon linewidth, the value found from the fit is in relatively good
agreement with the value of −0.12 MHz in Fig. S1D.

Figure S8 shows that deviations from Poisson distributions in the magnon probability distributions expected from
the finite Kerr nonlinearity are much smaller than deviations expected from the estimation of the probability distri-
butions with Eq. (S27).

Finally, no thermal occupancy of the Kittel mode is found within our error bars of about 0.01 magnons, indicating
an effective magnon temperature smaller than ∼ 80 mK.
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(0)
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m < ω
(0)
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g(e)
m is the magnon frequency with the

qubit in the ground (excited) state |g(e)〉. (C) A microwave excitation at ωmw is used to drive the Kittel mode at a detuning

∆mw = ωg
m−ωmw, leading to peaks in the qubit spectrum at frequencies ω̃
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corresponding to successive magnon number states is therefore given by 2χq−m + ∆mw. Calculation of (D) the qubit-magnon
dispersive shift χq−m and (E) the magnon Kerr coefficient Km as a function of the bare magnon frequency ωbare

m using the
parameters of Table S1. The straddling regime (shaded area) corresponds to ωbare

m between the transmon |g〉 ↔ |e〉 transition
frequency (ωq, blue solid lines) and |e〉 ↔ |f〉 transition frequency (ωq + α, blue dashed lines, where α(< 0) is the transmon
anharmonicity) with the Kittel mode in the vacuum state. Vertical black dashed line show ωbare

m /2π = 7.95150 GHz, calculated
from the experimentally determined ωg

m/2π = 7.94962 GHz and the calculated Lamb shift (ωbare
m − ωg

m)/2π = 1.88 MHz.

. S1. Qubit-magnon hybrid system.fig
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fig. S2. Experimental setup. Spectroscopic measurements are performed with a vector network analyzer (Agilent E5071C).
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(A) Measurement of the reflection coefficient Re(r) of a readout microwave excitation at
frequency ωr as a function of the coil current I. Both the spectroscopy and Kittel mode microwave excitations are turned off for
this measurement. The avoided crossing in the coupler cavity mode spectrum indicates the coherent interaction between this
cavity mode and the Kittel mode. (B) Fit of the dressed frequency of the coupler cavity mode with the qubit in the ground
state, ωg

c (I), to Eq. (S3). (C) Fit of the coupler cavity mode spectrum to Eq. (S4) for different coil currents near the avoided
crossing (I = 5 to 6 mA). Individual spectra are offset vertically by Re(r) = 1 for clarity. (D) Coupler cavity mode spectrum as
a function of I calculated using Eq. (S4) with gm−c/2π = 22.5 MHz and γm/2π = 1.3 MHz. For (A), (B) and (D), coupler and

Kittel modes frequencies bare of their mutual interaction, ωbare′
c and ωbare′

m respectively, are shown as horizontal and diagonal
dashed lines.

fig. S3. Cavity-magnon coupling.
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fig. S4. Power broadening of the qubit spectrum. Qubit spectra for spectroscopy excitation powers
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fig. S5. Dispersive qubit-magnon interaction.
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(A), (B) Numerical calculation of the magnon occupancy ng
m as a function of the

Kittel mode excitation power, proportional to Ω2
mw, using the Hamiltonian of Eq. (S30) for different values of Km and with a

magnon linewidth γm of 1.3 MHz. The Kittel mode excitation detuning ∆mw is (A) zero and (B) −0.38 MHz. Insets shows
a larger range of Kittel mode excitation power. (C), (D) Coefficient of determination R2 between ng

m(Pmw) (data, Fig. 4A in
the main text) and ng

m(Ωmw) (simulations, this figure) as a function of Km and the proportionality constant between Pmw and
Ω2

mw. The Kittel mode excitation detuning ∆mw is (C) zero and (D) −0.38 MHz. Vertical and horizontal dashed lines show
best fit values of Km and 4π2Pmw/Ω
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mw, respectively.
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fig. S7. Magnon Kerr nonlinearity.

fig. S8. Effect of the finite Kerr nonlinearity on the magnon probability distribution. Probability distributions of magnon



Parameter Symbol Value (MHz)

TE101 cavity mode bare frequency ωbare
101 /2π 6994.0

TE102 cavity mode bare frequency ωbare
102 /2π = ωbare

c /2π 8414.5

TE103 cavity mode bare frequency ωbare
103 /2π = ωbare

p /2π 10, 441.5

TE104 cavity mode bare frequency ωbare
104 /2π (12, 800)

Transmon bare |g〉 ↔ |e〉 transition frequency ωbare
q /2π 8040.6

Transmon bare anharmonicity αbare/2π −137.2

TE101 cavity mode-qubit coupling rate gq,101/2π 73

TE102 cavity mode-qubit coupling rate gq,102/2π = gq−c/2π 126.1

TE103 cavity mode-qubit coupling rate gq,103/2π = gq−p/2π 135.4

TE104 cavity mode-qubit coupling rate gq,104/2π (116)

TE101 cavity mode-Kittel mode coupling rate gm,101/2π (−13.6)

TE102 cavity mode-Kittel mode coupling rate gm,102/2π = gm−c/2π 22.5

TE103 cavity mode-Kittel mode coupling rate gm,103/2π = gm−p/2π (−20.3)

TE104 cavity mode-Kittel mode coupling rate gm,104/2π (14.0)

gq−m, the qubit-
probe mode dispersive shift χq,103 = χq−p, the qubit-magnon dispersive shift χq−m, and the magnon Kerr coefficient Km.
Parameters in parentheses are numerically estimated based on electromagnetic field simulations.

Parameter Symbol Value (MHz) Error (%) Figure

Experimental Theoretical

Qubit-magnon coupling strength gq−m/2π 7.79 6.67 +17 1

Qubit-probe mode dispersive shift χq−p/2π −0.8± 0.2 −0.73 +9 S4

Qubit-magnon dispersive shift χq−m/2π 1.5± 0.1 1.27 +18 2 to 4, S1D, and S5B

Magnon Kerr coefficient Km/2π −0.20+0.09
−0.13 −0.12 +58 S1E

diagonalization of the total Hamiltonian Ĥ of Eq. (S1) using parameters of Table S1. The qubit-probe mode dispersive shift
χq−p, the qubit-magnon dispersive shift χq−m, and the magnon Kerr coefficient Km are evaluated at ωbare

m /2π = 7.95150 GHz
for I = −5.02 mA.

Parameter Symbol Value (MHz) Figure

Coupler cavity mode linewidth κc/2π 2.08± 0.02 -

Coupler cavity mode internal loss rate κint
c /2π 1.58± 0.02 -

Coupling rate to the coupler cavity mode κcpl
c /2π 0.51± 0.02 -

Probe cavity mode linewidth κp/2π 3.72± 0.03 -

Probe cavity mode internal loss rate κint
p /2π 2.45± 0.03 -

Coupling rate to the probe cavity mode κcpl
p /2π 1.27± 0.03 -

Intrinsic qubit linewidth γq(0)/2π 0.25+0.07
−0.10 S4C

Kittel mode linewidth γm/2π 1.3± 0.3 S3

when available. Error bars indicate 95% confidence intervals.

table S1.

Parameters of the hybrid system used for the calculation of the qubit-magnon coupling strength

Parameters of the hybrid system.

table S2.

Comparison between experimental and theoretical values, respectively determined from measurements and from

Comparison between experimental and theoretical values.

table S3. Linewidths of the hybrid system. Figures in Supplementary Information related to the parameters are indicated



Parameter Symbol Value in Fig. 1 Value in Fig. 2 Value in Fig. 3 Figure

Readout excitation power Pr 9.2 aW -

Readout excitation frequency ωr/2π 10.44916 GHz -

Probe mode occupancy ng
p 0.6± 0.2 0.22± 0.17 S4F

Spectroscopy excitation power Ps 190 aW 19 aW -

Broadened qubit linewidth γ
(np=0)
q (Ps)/2π 1.74± 0.04 MHz 0.78± 0.03 MHz S4C

Kittel mode excitation power Pmw - 7.9 fW [0.079, 3.1] fW -

Kittel mode excitation detuning ∆mw/2π - [−10.38, 4.62] MHz −0.38± 0.08 MHz S5B

S4.
Experimental parameters of the measurements presented in the figures of the main text. Figures in Supplementary
Information related to the parameters are indicated when available. Error bars indicate 95% confidence intervals.

table Experimental parameters of the measurements.




