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Antisense oligonucleotides (AONs) hold promise for therapeu-
tic splice-switching correction in many genetic diseases. How-
ever, despite advances in AON chemistry and design, systemic
use of AONs is limited due to poor tissue uptake and sufficient
therapeutic efficacy is still difficult to achieve. A novel class
of AONs made of tricyclo-DNA (tcDNA) is considered very
promising for the treatment of Duchenne muscular dystrophy
(DMD), a neuromuscular disease typically caused by frame-
shifting deletions or nonsense mutations in the gene-encoding
dystrophin and characterized by progressive muscle weakness,
cardiomyopathy, and respiratory failure in addition to cogni-
tive impairment. Herein, we report the efficacy and toxicology
profile of a 13-mer tcDNA inmdxmice. We show that systemic
delivery of 13-mer tcDNA allows restoration of dystrophin in
skeletal muscles and to a lower extent in the brain, leading to
muscle function improvement and correction of behavioral
features linked to the emotional/cognitive deficiency. More
importantly, tcDNA treatment was generally limited to mini-
mal glomerular changes and few cell necroses in proximal
tubules, with only slight variation in serum and urinary kidney
toxicity biomarker levels. These results demonstrate an
encouraging safety profile for tcDNA, albeit typical of phos-
phorothiate AONs, and confirm its therapeutic potential for
the systemic treatment of DMD patients.
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INTRODUCTION
Duchenne muscular dystrophy (DMD) is an X-linked recessive
disorder characterized by progressive muscle degeneration, loss of
walking ability, decline of respiratory and cardiac functions, and
early death.1–3 DMD is the most common and severe form of
muscular dystrophy, with an incidence of about 1 in 3,500 newborn
males.3 Various mutations in the DMD gene disrupt the open
reading frame (ORF) and lead to the absence of functional dystro-
phin protein.4,5 Becker muscular dystrophy (BMD) is also caused
by mutations in the dystrophin gene, but is characterized by less se-
vere symptoms, slower disease progression, and less severe muscle
wasting than DMD.6 The cause for the difference between DMD
and BMD is, in most cases, the conservation of the reading frame
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despite the mutation, which results in a truncated but partly func-
tional dystrophin.

There is no effective therapy to stop the progression of the disease,
although several promising experimental strategies are currently under
investigation. Exon skipping using antisense oligonucleotides (AONs)
to convert out-of-frame DMD mutations into in-frame deletions,
thereby restoring expression of a truncated but functional dystrophin,
is currently one of the most attractive approaches for the treatment
of DMD. AON-based drugs have already entered clinical trials and
demonstrated promising results.4,5,7,8 However, although dystrophin
could be restored at low levels using these synthetic naked oligonucle-
otide compounds inDMDpatients,4,9 these studies have failed to show
amarked clinical benefit, and although theUS Food andDrug Admin-
istration (FDA) has surprisingly granted accelerated approval to
Eteplirsen (a phosphoroamidate morpholino oligomer [PMO-AO]
targeting exon 51), additional clinical trials have been requested to
confirm the drug’s clinical benefit, which has not yet been demon-
strated.9–12 Therefore, there is still a critical need to develop efficient
AONs able to restore the expression of dystrophin in all relevant tissues
and cells without jeopardizing the safety of patients. The novel class of
AONs made of tricyclo-DNA (tcDNA), which displays unique phar-
macological properties andunprecedented uptake inmany tissues after
systemic administration, is considered very promising for the treat-
ment of DMD.13,14 We have previously demonstrated the functional
correction and neurobehavioral improvement in muscular dystrophic
mice after treatmentwith a 15-mer splice-switching tcDNAand shown
he Authors.
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the superiority of this oligonucleotide analog compared to other naked
chemistries (namely PMO and 20OMe AONs).13 tcDNA is a confor-
mationally constrained nucleotide analog that deviates from natural
DNA by the presence of three additional carbon atoms between C50

andC30, towhich a cyclopropane unit is fused for further enhancement
of structural rigidity.15,16 Fully modified as well as gapmer tcDNAs in
the length range of 11–20 nt have been shown to produce potent anti-
sense effects.17,18 A further crucial feature of tcDNAchemistry is that it
displays higher RNA-binding properties than 20OMe andPMO,17 thus
permitting use of shorter AONs. Importantly, this offers the advantage
of reducing themass of synthetic nucleotides administeredwhile keep-
ing a biological effect, which could reduce toxicity induced by accumu-
lation of AONs. To investigate this possibility, we aimed to study the
therapeutic potential of a short 13-mer tcDNA-AONthat is fullymodi-
fied and phosphorothiated (PS).

The majority of preclinical studies focus on assessing the efficacy
of AONs in target tissues and improving delivery, and evaluation of
toxicity is often neglected, even though this is particularly important
when developing new generations of AONs or different drug delivery
systems (DDSs). This can lead to subsequent failure of a new drug in
further toxicological studies, as it happened with peptide conjugated
PMO (PPMO) targeting the human dystrophin exon 50 (AVI-5038),
which was found to cause mild tubular degeneration in the kidneys
of cynomolgus monkeys.19 This example highlighted the fact that
toxicity threshold varies between species. However, numerous spe-
cific and early biomarkers of toxicity can now be evaluated in mice
(treated with high doses of AONs) to predict toxicity in pre-clinical
development.20 These delivery challenges were recognized by experts
from the COST Action BM1207 “Networking towards clinical imple-
mentation of antisense-mediated exon skipping for rare diseases”21

(http://exonskipping.eu), and it is becoming clear that these toxico-
logical challenges should be addressed in the very early stages of
new AON development to ensure the clinical translation of these
studies.22 Because tcDNA chemistry has never been used in the clinic,
as opposed to other naked chemistries, which have been evaluated for
other applications before DMD, we believe it is of importance to eval-
uate its toxicological profile in mice before undertaking expensive and
lengthy reglementary toxicological studies.

We therefore investigated here the therapeutic benefit and toxicology
profile of a 13-mer tcDNA delivered intravenously (i.v.) in a mouse
model of DMD (mdx mouse). We first show the efficiency of this
short tcDNA, which allowed a restoration of dystrophin expression
in skeletal muscles and to a lesser extent in the brain, leading to mus-
cle function improvement and correction of behavioral features
linked to the emotional/cognitive deficiency associated with the
lack of dystrophin. Importantly, for the preclinical development of
such a novel AON and considering how critical the early evaluation
of the toxicity profile is in drug development, we also evaluated the
toxicological profile of tcDNA-AONs after 12 weeks of treatment at
a dose of 200 mg/kg/week using early and specific urinary kidney
injury biomarkers (KIBs). We show that although tcDNA treatment
was well-tolerated, with only minimal glomerular changes and few
cell necroses in proximal tubules, some variation in serum and uri-
nary biomarkers can be detected. Our results therefore demonstrate
the efficacy of tcDNA treatment, with an overall encouraging safety
profile, but highlight the well-known issue of PS-AON accumulation
and associated kidney toxicity.

RESULTS
Efficacy of 13-mer tcDNA-AON

To evaluate the effectiveness of a 13-mer tcDNA, we designed a
shorter tcDNA of 13 nt targeting the 50 donor splice site on
DMD intron 23 based on previously optimized and published se-
quences.13,23 We first confirmed the efficacy of this 13-mer tcDNA-
AON following intramuscular injections in the tibialis anterior
(TA) muscle of adult mdx mice, which carry a nonsense mutation
in exon 23 of the DMD gene24 (Figure S1). We then evaluated
repeated systemic administrations of tcDNA-AONs, in which mice
were treated intravenously with 200 mg/kg/week of tcDNA for a
period of 12 weeks and tissues were analyzed 2 weeks after the final
injection. RT-PCR results revealed a dystrophin transcript lacking
exon 23 in all muscle samples from tcDNA-treated mice (Figure 1A),
and quantification by qRT-PCR confirmed efficient exon 23 skipping
in all examined tissues, reaching levels of 38% in the cardiac muscle
(Figure 1A). We evaluated dystrophin restoration by western blot
and detected the amount of dystrophin protein, ranging from 5% to
30%, in the different tissue samples, with particularly high levels in
the diaphragm of tcDNA-treated mice (27%) compared to wild-
type (WT) mice (Figure 1B). In order to visualize the localization of
the restored dystrophin protein, we performed immunostainings
and showed a correct expression and localization of dystrophin pro-
tein at the sarcolemma level of muscle fibers in the different skeletal
muscle samples after tcDNA treatment (Figure 1C). tcDNA-AON
amounts were also quantified by liquid chromatography-tandem
mass spectrometry (LC-MS/MS) and detected in all tested tissues,
with particularly high levels in the liver and kidneys, as expected
for PS-AON (Figure 1D). These results showed, for the first time,
the effectiveness of a shorter AON, 13-mer tcDNA, in exon-skipping
approaches for DMD, with great restoration of dystrophin protein.

Functional Rescue

The functional properties were investigated by measuring the
maximal specific force and resistance to eccentric contraction-
induced skeletal muscle injury, which is an indicator of the structural
integrity of the muscle fibers on semi-isolated TAmuscles (Figure 2A,
left panel). The TA muscles from the control mdx mice showed a
decrease of 35% in the maximal specific force compared to the WT
muscle. In contrast, treatment with the 13-mer tcDNA displaying
8% of restored dystrophin significantly improved the maximal spe-
cific force compare to the control mdx mice. Moreover, TA muscles
from control mdxmice were unable to sustain tetanic tension, falling
to 42% of their initial force after nine eccentric contractions. In
contrast, TA muscles from tcDNA-treated mice maintained 58% of
their force following the eccentric contractions, which correlated
with the observed level of exon skipping and protein restoration of
TA muscles following treatment (Figure 2A, right panel).
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Figure 1. 13-mer tcDNA Treatment Induces Exon Skipping and Dystrophin Rescue

(A) Detection of exon-23-skipped dystrophin mRNA inmdxmuscles after systemic delivery of tcDNA 13-mer at 200 mg/kg/week. The lower 688-bp fragment corresponding

to the exon-23-skipped mRNA is detected by nested RT-PCR (blots). Intermediate-sized bands reflecting the formation of heteroduplex between the native and exon-23-

skipped products can also be observed, as previously described.45 SM, size marker. Exon-23-skipped mRNA was quantified by TaqMan assay and expressed as the

percentage of total dystrophin mRNA (shown in graphs below gels). n = 4mice per group; error bars aremean ±SEM. (B)Western blot showing dystrophin (Dys) expression in

different muscles from treatedmice at 200mg/kg/week compared tomdx andWT control mice. 100 mg of total protein were loaded for all samples and 25 mg forWT. Vinculin

(Vinc) was used as internal control. The quantification of dystrophin has been done using a standard curve with 0%, 5%, 10%, and 20% of corresponding WT tissues. All

western blots shown are representative of four treated mice. Below: diagrams depict quantification of dystrophin expressed as a percentage of WT expression using a

standard curve of WT tissues after normalization with total protein loading. n = 4 mice per treated group; error bars are mean ± SEM. (C) Dystrophin immunostaining on

transverse sections from mdx-treated muscles. Nuclei, blue (DAPI); dystrophin, green. Scale bar, 50 mm. (D) Quantification of tcDNA-13-mer amounts in various tissues by

LC-MS/MS.
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Respiratory failure being one of the major causes of death in DMD
patients,25 and because an improvement of this vital parameter is
required for better quality of life, we explored respiratory function
inmdxmice following 13-mer tcDNA treatment. Here, we confirmed,
by measuring the respiratory function in mdx mice by whole-body
plethysmography, that mdx control mice showed abnormalities for
a number of respiratory parameters compared to age-matched WT
mice (Figure 2B). We found that 13-mer tcDNA-treated mdx mice,
which expressed 27% of rescued dystrophin protein in the diaphragm
compared to WT controls, showed a significant improvement of res-
piratory function, as reflected by the enhanced pause (penh) and ratio
of mean inspiratory flow expressed by tidal volume (TV) to inspira-
tory time (TI) normalized to body weight (TV/TI/BW), underlying
the correlation between dystrophin restoration and amelioration of
respiratory function (Figure 2B).
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CNS Effect

Dystrophin is expressed not only in muscles but also in central inhib-
itory synapses in the cerebellum, hippocampus, amygdala, and
cerebral cortex, where it contributes to the clustering of synaptic
g-aminobutyric acid ([GABA]A) receptors.26,27 In a previous study,
we demonstrated for the first time that tcDNA chemistry was able
to cross the blood-brain barrier and that systemic delivery of tcDNA
targeting exon 23 of the mdx mouse promoted rescue of dystrophin
expression in the brain.13 Here, we confirm this unique property
and show, by qRT-PCR, even slightly higher levels of exon skipping
in the hippocampus, cortex, and cerebellum of 13-mer tcDNA-
treated mice compared to the previously reported levels using a
15-mer tcDNA-AON. We also observed restoration of dystrophin
expression by western blot and confirmed the right localization of
the restored dystrophin in stratum pyramidale (SP) and proximal



Figure 2. Systemic Delivery of 13-mer tcDNA

Improves the mdx Phenotype

(A) TAmuscles ofmdxmice treated with 200mg/kg/week

of tcDNA were analyzed for their maximal specific force

(sP0) (left) and percentage of force drop following a series

of three to nine eccentric contractions (right). n = 4 per

group; error bars are mean ± SEM. (B) Respiratory

function inmdxmice treated with 200 mg/kg of tcDNA for

12 weeks (n = 4 per group) compared to mdx control

(n = 16) and WT mice (n = 10). penh and TV/TI/BW are

shown. Error bars are mean ± SEM. *p < 0.05 and
xp = 0.06 compared to mdx control mice (Mann-Whitney

U tests).
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stratum radiatum (SR) of CA1 hippocampus by immunostaining
(Figure 3A).

Brain defects due to dystrophin loss are associated with deficits in
cognitive and executive functions, communication skills, and social
behavior in DMD patients.28 The loss of dystrophin in the mdx
mouse model of DMD has been associated with cognitive and
emotional alterations, and an enhanced defensive behavior in
response to stress has been reported.29 In order to evaluate a cogni-
tive/emotional benefit following treatment, we measured the dura-
tion of tonic immobility (freezing) that resulted from a restraint-
induced fear response in mdx mice. The mice were observed for a
period of 5 min following an acute stress and, as expected, control
mdx mice spent about 70% of the time freezing in contrast to only
20% for WT mice. Correlating with detected exon skipping and
rescued dystrophin expression in the brain following 12 weeks of
treatment with 13-mer tcDNA, we measured a significant improve-
ment of the mdx emotional phenotype, reflected by the decreased
freezing time, increased distance traveled, and vertical activity
of the 13-mer-treated mice during the 5-min testing period
(Figure 3B).

General Tolerability and Safety Profile

Safety pharmacological evaluation is a crucial aspect in drug
development and needs to be considered relatively early for every
new molecule with therapeutic purposes. In this regard, we carried
Molecular Thera
out a detailed toxicity evaluation in mdx mice
treated with 200 mg/kg/week of 13-mer tcDNA
for 12 weeks. PS AONs are well-recognized for
their immunostimulatory effects30 by activating
the alternative pathway of complement among
others.31,32 Subsequently, proinflammatory cy-
tokines are released, resulting in enhancement
of innate immune responses.

In order to analyze the acute toxicologic
effects of 13-mer tcDNA in mice, both com-
plement activation and cytokine levels were
analyzed (Figures 4A and 4B). The results
showed that C3 protein levels, a complement
protein with a central role in complement activation, remained un-
changed after 13-mer tcDNA injection (Figure 4A). Complement
activation was further investigated in human serum in vitro.
Although positive control Zymosan significantly activates the com-
plement pathway, tcDNA showed no effect, confirming the results
obtained in vivo (Figure S2). Similarly, proinflamatory cytokines
interleukin-1b (IL-1b), IL-12p70, IL-17, interferon-gamma
(IFN-g), monocyte chemoatractant protein (MCP)1, Rantes, and
tumor necrosis factor alpha (TNF-a) as well as those with anti-in-
flammatory roles (IL-6, IL-10, and IL-13) showed no significant dif-
ferences in mice injected with 13-mer tcDNA compared to mdx
control mice (Figure 4B). Additional adverse and toxic effects of
antisense molecules may include liver or renal injury, especially
in repeated-dose studies, considering the amount of AONs that
ends up in the liver and kidney (Figure 1D). In particular, the
increased conferred stability of PS linkage may lead to tcDNA-PS
accumulation within lysosomes from tubular renal cells and slower
elimination by the urinary system. On the contrary, it is accepted
that hepatotoxicity is unrelated to accumulation but to its interac-
tion with hepatic proteins.20,33

In this regard, we analyzed the serum levels of various general bio-
markers in mice following 12 weeks of treatment with 200 mg/kg/
week of 13-mer tcDNA. The serum creatine kinase (CK) level, a
marker for muscle injury, was largely reduced in mice treated with
13-mer tcDNA, which confirmed the efficacy of the treatment to
py: Nucleic Acids Vol. 8 September 2017 147
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Figure 3. tcDNA Effect on the CNS

(A) Quantification of exon 23 skipping by qRT-PCR hippocampus (Hippo), cortex, and cerebellum (Cbl) following i.v. injection of 200 mg/kg/week of tcDNA for 12 weeks (left

panel). Detection of restored dystrophin by western blot in cerebellum from tcDNA-treatedmdxmice compared withWT and untreatedmdxmice. 50 mg of total protein were

loaded for all samples, with amounts of WT tissues ranging from 5% to 20% for the WT control (middle panel). Quantification using the standard of WT tissues reveals 5.3% ±

1.1% of dystrophin restoration. Dystrophin immunostaining in WT (left), PBS-injected control (middle)mdxmice, and tcDNA-treated mice (200 mg/kg/week, right) in the SP

and proximal SR of the CA1 hippocampus. Scale bar, 20 mm. (B) Restraint-induced unconditioned fear responses expressed as a percentage of freezing time and horizontal

(i.e., distance run in 5 min) and vertical activity. **p < 0.01 compared to mdx controls (Mann-Whitney U tests); n = 4 per treated group; error bars are mean ± SEM.
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restore dystrophin and improve the dystrophic pathology of mdx
mice (Figure 5A). We next quantified serum levels of bilirubin, alka-
line phosphatase (ALP), and transaminases (ALT and AST) and
observed no significant difference compared to mdx control mice
(Figure 5A). These results confirm previous work, in which hepatic
toxicities have been primarily related to locked nucleic acid (LNA)
modifications rather than PS modifications.34

First-line biomarkers to evaluate kidney function include serum urea,
albumin, and creatinine because their abnormal values may indicate
kidney dysfunction. Our results showed that both serum urea and
albumin remained unchanged in tcDNA-treated mdx mice, whereas
serum creatinine showed slightly increased values after 12 weeks of
treatment when compared to WT and mdx control mice. This has
already been observed with other AONs, such as 20OMePS-modified
AONs13 and may reflect an accumulation of the AON within lyso-
somes of the kidney proximal tubule (Figure 5A). Additionally, we
explored the histopathological profile of kidney and liver in tcDNA-
treated mdx in order to determine and evaluate the potential toxic
response within the tissues. Histopathological findings were limited
to minimal glomerular changes, characterized by slightly increased
mesangial matrix in only very few glomeruli. Few single cell necroses
were detected within the proximal convoluted tubules (Figure 5B).
These findings could be the very early signs of a mild nephrotoxicity,
characteristic of PS-AON accumulation in the kidney at this high
dosing regimen. In livers from tcDNA-treatedmice, increased inflam-
matory infiltrates could be detected without any necrotic hepatocytes,
suggesting a minimal to moderate inflammation (Figure 5B).
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Evaluation of Kidney Toxicity: Urinalysis and Genomic

Biomarkers

In order to further study the potential renal toxicity that AON admin-
istration may induce due to its accumulation in proximal tubules,
several described KIBs have been studied.35 Prior to evaluating the
potential renal damage induced by tcDNA treatment, we first assessed
the basal renal status in WT andmdxmice as well as their age-related
progression. Although no significant differences were found in total
urine protein or creatinine levels between WT and mdx mice, urine
albumin was slightly increased in the latter (Table 1). Untreated
mdxmice showed evidence of early renal injury (6 weeks old), which
was further manifested by significantly increased expression of
B2-microglobulin (B2M), renin, neutrophil gelatinase-associated lip-
ocalin (NGAL), and osteopontin (OPN). With age, additional KIBs,
such as cystatin C, were also found to be significantly elevated in
mdxmice compared to their age-matched WT counterparts, whereas
others were normalized (B2M, IFN-g-induced protein 10 [IP10], and
OPN) (Figure S3). Our results indicate that mdx mice develop early
renal injury independently from AON treatment, which confirms
previously published results.36

Treatment with tcDNA for 12 weeks did not affect total urine protein
content or creatinine levels (Table 1). In addition, mdx mice treated
for 7 or 12 weeks showed restored levels of B2M and cystatin C. How-
ever, kidney injury molecule 1 (KIM1) and renin were found to be
further increased after 12 weeks of treatment (about 10- and 5-fold,
respectively, compared to age-matched mdx controls) (Figure 6A;
Table 2). Urinary albumin, although not statistically significant



Figure 4. Toxicology Profile following Intravenous Injection of tcDNA in mdx Mice

(A) C3 Complement activation analysis was carried out in mdx serum collected 1 hr after injection with 13-mer tcDNA (n = 3) or vehicle (PBS, n = 11). (B and C) Anti-in-

flammatory (B) and proinflammatory (C) cytokine levels were evaluated by multiplex inmunoassays using Luminex technology inmdx serum collected 1 hr after injection with

13-mer tcDNA (n = 7) or vehicle (PBS, n = 8). Data are mean ± SEM (p < 0.05).
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(p > 0.05), was also found to be elevated compared to untreated mice
(Table 1). All other analyzed KIBs remained unchanged.

As previously published, the KIBs can also be measured by gene
expression at the mRNA level on the mice kidney cortex,20 so we
next confirmed these results by evaluating the gene expression of
some KIBs on the mRNA level from tcDNA-treated mice and showed
significant changes for several biomarkers (Figure 6B). Similar
changes were previously reported with 20OMePS-AON, confirming
the expected effect of PS-AON accumulation in kidneys.

DISCUSSION
Over the last decade, the prospect of successful AON-based splicing
therapy for neuromuscular disorders has moved a step closer,
particularly for DMD. Many of these promising therapies have
now entered clinical trials and encouraging results have been ob-
tained in most cases while also showing the limitations of currently
used chemistries. The current generation of AONs has indeed failed
to demonstrate clinical efficacy in DMD patients, largely due to a
poor uptake and a few safety issues (for 20OMePS at least) imposing
a limited amount of AONs. Clinical studies in DMD face many
other challenges that not only are common to trials in all rare dis-
eases but are also specific to the Duchenne population, such as the
number of patients with particular deletions amenable to exon
skipping, the variation in clinical care across centers, or the lack
of validated biomarkers.11,37 Regarding the design and optimization
of the AON itself, it has become clear that improving the delivery
and safety profile are the major challenges, and international efforts
are currently focusing on new generations of AONs or different
drug delivery systems, such as various conjugations, to find the
best clinical candidates in terms of efficiency and safety profile.
Among these new promising chemistries, tcDNA has shown inter-
esting properties and clear superiority compared to clinically tested
AONs (20OMe and PMO),13 which is partly due to its RNA-binding
affinities, permitting use of AONs of decreased length. A previous
study performed in a comparative cellular assay has already shown
that a tcDNA of only 11 nt induced significant exon skipping.38

This crucial feature offers the advantage of reducing the mass of
synthetic nucleotides administered while keeping a biological effect,
thus reducing toxicity induced by the accumulation of AONs. In
this study, we therefore focused on the efficacy and toxicology eval-
uation of a shorter tcDNA-AON of 13 nt targeting the mouse dys-
trophin exon 23 and demonstrate the therapeutic potential of
tcDNA in the mdx mouse model following systemic treatment for
12 weeks. The 13-mer tcDNA was efficient in all tested skeletal
muscles, albeit slightly less than the previously reported 15-mer
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 149
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Figure 5. Serum Biochemistry and Histopathological Profile of Liver and Kidneys in tcDNA-Treated mdx Mice

(A) Serum CK, AST, ALT, ALP, bilirubin, urea, creatinine, and albumin levels were measured at the end of the treatment in WT, mdx controls, and mdx mice treated with

200 mg/kg/week of 13-mer tcDNA for 12 weeks. n = 4 per treated group; error bars are mean ± SEM; *p < 0.05. (B) Histopathological profile of kidney and liver following

tcDNA treatment. (a–c) PAS staining of WT (a) and controlmdx (b) mouse kidney with negative staining of glomeruli. (c) In mice treated with 200mg/kg/week of 13-mer tcDNA

for 12 weeks, a slight increased mesangial matrix can be observed in the glomeruli, as shown with an asterisk. (d and e) H&E staining of WT (d) and control mdx (e) mouse

kidney with normal glomeruli. (f) Few single cell necroses are observed within the proximal convoluted tubules in the tcDNA-treatedmouse kidney (black arrow). (g and h) H&E

staining of WT (g) and control mdx (h) mouse liver. (i) H&E staining of tcDNA-treated mouse liver reveals slightly increased inflammatory infiltrates.
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tcDNA.13 Remarkably, in the heart, the 13-mer tcDNA induces
particularly high levels of exon skipping and dystrophin restoration,
suggesting a potential size advantage for uptake in the cardiac
muscle.
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Restoration of dystrophin expression significantly improved the mdx
mouse phenotype andmany functional improvements were observed,
including gain in muscle-specific force and better respiratory func-
tion, which represents an indispensable requisite for a life-improving



Table 1. Urinary Levels of Albumin, Creatinine, and Total Protein in WT and

mdx Mice Treated or Not with 13-mer tcDNA during 7 and 12 Weeks,

Respectively

Total Protein
(mg/mL)

Albumin
(mg/mL)

Creatinine
(mg/dL)

WT (n = 5) 9.55 ± 2.15 29.85 ± 5.8 59.89 ± 7.54

mdx (n = 4) 9.72 ± 1.56 58.81 ± 17.38 68.18 ± 4.15

tcDNA 7 weeks (n = 4) 7.02 ± 0.49 178.4 ± 90.10 73.02 ± 7.01

tcDNA 12 weeks (n = 4) 7.73 ± 1.46 112.2 ± 15.95 70.19 ± 14.80

p value (WT versus mdx) >0.99 0.68 >0.99

p value (mdx versus
tcDNA 7 weeks)

>0.99 0.59 >0.99

p value (mdx versus
tcDNA 12 weeks)

>0.99 0.28 >0.99

Data are expressed as mean ± SEM.
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therapy, considering that respiratory failure is a major cause of death
among patients with DMD.25

Exon skipping and dystrophin restoration were also detected in the
brain following 13-mer tcDNA treatment, supporting the fact that
tcDNAs are able to cross the blood-brain barrier. In the brain, dys-
trophin (Dp427) is found at the level of inhibitory GABAergic syn-
apses in Purkinje cells of the cerebellum and in principal neurons of
the hippocampus, cortex, and amygdala. Concurring with cognitive
deficits and psychiatric symptoms observed in DMD, an enhanced
defensive behavior in response to a threat has previously been re-
ported in dystrophin-deficient mdx mice.29 Despite limited restora-
tion of dystrophin observed in the brain, 13-mer tcDNA treatment
was able to significantly restore certain behavioral aspects linked
to the absence of dystrophin in the CNS, highlighting a great advan-
tage of this chemistry for the systemic treatment of DMD. We are
currently investigating these emotional/cognitive aspects in the
mdx mouse model in more detail and assessing the effect of tcDNA
local delivery to the specific structures of the brain (intraventricular,
hippocampus, and cerebellum) in order to shed some light on the
dystrophin localization/function in the CNS. The loss of full-length
brain dystrophin in mdx mice has also been shown to impair their
capacity of acquisition and long-term retention of cued and trace
fear memories;39 thus, evaluating the effect of brain dystrophin
rescue on long-term memory deficits following systemic and locore-
gional treatment of tcDNA may be particularly interesting to clarify
the role of dystrophin in the brain.

Although the 13-mer tcDNA shows a great efficiency, similar to the
previously reported 15-mer tcDNA, decreasing the sequence length
makes it increasingly more challenging to identify a unique target
site. Furthermore, increased binding energy has the capacity to not
only increase potency against the intended target but also to “off-tar-
gets”, and the so-called hybridization-mediated off-target effects
(OTEs) may become a more prevalent concern. However, because
splicing modulation is highly dependent on target sequence position
in the intended RNA target, effects on unintended off-target RNAs
containing a perfect match are extremely unlikely with splice-switch-
ing AONs as opposed to gapmer AONs recruiting RNase H.30,40

OTEs have not been noted with great abundance in preclinical or
clinical studies to date, probably because not all off-target binding
actually leads to functional effects on mRNA splicing. Not all sites
on mRNA are accessible to an AON, nor are all off-target mRNAs
in tissues that receive pharmacologic concentrations of an AON
because they are differentially and temporally expressed in different
tissues. Putative off-target interactions can be predicted using
sequence alignment algorithms and pragmatic genomic screening
strategies are in place in most companies developing AON-based
drugs to delineate potential OTEs. The Oligonucleotide Safety
Working group (OSWG) recommends assessment of OTEs for
AONs during drug discovery and development, both computationally
and experimentally,41 and such studies are currently ongoing for
tcDNA candidates targeting human dystrophin exons. Although
less relevant for future clinical evaluation, the 13-mer tcDNA used
here and targeting the mouse exon 23 has been blasted and four po-
tential targets have been identified (with a 12 nt/13 nt match) on
mouse mRNA. However, expression of these targets was not modified
after treatment with tcDNA (Figure S4).

Although these recommendations and screening are necessary, OTEs
are generally not the main concern in the antisense field. Instead,
the toxicities noted have been overwhelmingly associated with those
expected by class. Each class of AON from first to third generation has
stereotypic toxicity profiles, and these nuances are important for the
toxicologic pathologist to be aware of.30 It is indeed becoming clear
that these toxicological challenges should be addressed in the very
early stages of new AON development to ensure the clinical transla-
tion of these studies.

Here, we evaluated for the first time the toxicology profile of a
tcDNA-AON in a DMD mouse model and showed that high-dose
tcDNA treatment (200 mg/kg/week for 12 weeks) was well-tolerated
in all mice. Because AON can provoke an inflammatory reaction,36

we measured the levels of specific cytokines and chemokines
following administration of tcDNA-AON and did not detect any
acute pro-inflammatory response. We also evaluated the long-term
toxicological profile within the tissues, and histopathological findings
in tcDNA-treated animals were generally limited to minimal glomer-
ular changes and few cell necroses in proximal tubules. Serum
biochemistry analysis following 12 weeks of treatment did not reveal
any significant increase in transaminases or bilirubin and only a slight
variation in serum creatinine, which is typical of the PS-AON accu-
mulation in kidneys. To investigate the toxicological profile of tcDNA
more deeply, we measured some early biomarkers of renal toxicity at
protein and genomic levels and detected some significant upregula-
tion in several biomarkers. These results indicate some renal toxicity
due to AON accumulation in kidney tubular cells and are in concor-
dance with the duration and dose regimen of the AON treatment.20

Considering the potential to reach >200-fold in nephrotoxic models
for KIM1 for example,42 the fold changes observed here can still be
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Figure 6. Urinary KIB Levels after tcDNA Treatment

(A) KIBs were evaluated in urine collected from mdx mice

controls and treated for a period of 7 or 12 weeks with

tcDNA by multiplex assay using Luminex technology (n = 4

per group). Comparisons of statistical significance were

assessed by Kruskal-Wallis followed by Dunn’s multiple

comparison test (**p < 0.01). (B) KIB expression on the renal

cortex of mice treated with 13-mer tcDNA was analyzed by

qRT-PCR (n = 4 per group). The expression of all KIBs is

significantly upregulated compared to age-matched mdx

control (p < 0.0001), except for EGF (ns, not statistically

significant). Normalized data are mean ± SEM.
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considered moderate and in the expected range for PS-AONs.
Although these data confirm the renal toxicity associated with accu-
mulation of PS-AONs in kidneys, no unexpected class-related toxico-
logical issue emerged following tcDNA treatment.

Altogether, these results demonstrate a typical PS-AON safety profile
for tcDNA, which enables dystrophin rescue in all tissues affected by
the lack of dystrophin (including skeletal muscles, heart, and brain)
following systemic administration. Importantly, this dystrophin
rescue translated into functional improvements in a mouse model
of DMD, especially of the respiratory system, and certain behavioral
aspects. The properties of tcDNA make them particularly attractive
for genetic diseases that are treatable by splice-switching approaches,
and clinical evaluation of tcDNA for the treatment of DMD is
currently being planned. However, the promise of tcDNA still
crucially depends on how well it will be tolerated in humans and
one should remain cautious until full reglementary toxicological
studies are completed with the clinical candidate. We cannot exclude
a possible toxicity that would be sequence specific because it has been
previously reported that the LNAs induced unexpected, sequence-
specific hepatotoxicity.34

MATERIALS AND METHODS
Antisense Oligonucleotides and Animal Experiments

Animal procedures were performed in accordance with national and
European legislation and approved by the French government (min-
istère de l’enseignement supérieur et de la recherche, Autorisation
APAFiS #6518). mdx (C57BL/10ScSc-Dmdmdx/J) and C57BL/10
mice were bred in our animal facility at the Plateform 2Care, UFR
des Sciences de la santé, Université de Versailles Saint Quentin, and
were maintained in a standard 12-hr light/dark cycle with free access
152 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
to food and water. Mice were weaned at weeks 4
to 5 postnatal, and two to five individuals were
housed per cage.

The tcDNA-AON PS M23D 13-mer (50-pC
CTCGGCTTACCT-30) targeting the donor splice
site of exon 23 of the mouse dystrophin pre-
mRNA used in this study was synthesized by
SYNTHENA. Four 6- to 8-week-old mdx mice
were injected intravenously in the retro-orbital sinus under general
anesthesia using 1.5%–2% isoflurane once a week with the 13-mer
tcDNA for a period of 12 weeks. An age-matched C57/BL10 (WT)
group andmdx group receiving an equivalent volume of sterile saline
were included as controls. 1 hr after the first injection, blood samples
were collected from all mice to measure complement C3 and cyto-
kine/chemokine levels. Additional blood samples were collected
1 week after the sixth injection (mid-treatment) and 1 week after
the end of the treatment. 1 week after the last injection, behavioral
tests were conducted and respiratory function was assessed. Mice
were then placed in metabolic cages for urine collection over a period
of 24 hr. Muscle function in situ was measured 2 weeks after the last
injection as a final experiment before sacrifice. Muscles and tissues
were then harvested and snap-frozen in liquid nitrogen-cooled iso-
pentane and stored at �80�C before further analysis. Sample sizes
and n values are indicated in each figure legend. Investigators were
blinded for RNA and protein analysis, behavioral studies, muscle
force, and respiratory function measurements.

Serum and Urine Analysis

Blood samples were collected from tail bleeds under general anes-
thesia. Analyses of serum CK, ALT, AST, ALP, bilirubin, creatinine,
urea, and albumin levels were performed by the pathology laboratory
at Mary Lyon Centre, Medical Research Council. Complement activa-
tion in mouse serum samples was measured by Microvue PS-C3
converter and SC5b-9 Plus kits (Quidel). For in vitro complement
activation studies, tcDNA was incubated with normal pooled human
serum (1:10) (Seralab) at 37�C for 45 min. Determination of comple-
ment activation was evaluated using the human SC5b-9 Plus kit
(Quidel Co). 5 mg/mL Zymosan (Complement Technology) was
used as positive control. Cytokine and chemokine levels in serum



Table 2. KIB Urinary Biomarker Levels Normalized to Creatinine in mdx Mice Treated or Not with tcDNAs During 7 or 12 Weeks

B2M (mg/mg)
Renin
(mg/mg)

Kim1
(mg/mg)

IP10
(mg/mg)

VEGF
(mg/mg)

Cystatin C
(ng/mg)

EGF
(mg/mg)

NGAL
(ng/mg)

Clusterin
(mg/mg)

OPN
(ng/mg)

mdx 50.79 ± 11.83 2.465 ± 1.31 0.25 ± 0.04 2.28 ± 0.71 0.09 ± 0.02
827.33 ±

348.01
3.28 ± 0.28

729.05 ±

249.75
4.63 ± 0.53

1,360.4 ±

369.08

tcDNA 7 weeks 30.21 ± 2.52 1.87 ± 0.26 0.65 ± 0.05 1.42 ± 0.17 0.09 ± 0.01
335.87 ±

24.04
3.19 ± 0.02

513.64 ±

38.70
12.45 ± 1.83

1,712.39 ±

452.31

tcDNA 12 weeks 12.90 ± 5.70 8.58 ± 1.51 2.25 ± 0.23 4.31 ± 0.48 0.13 ± 0.01
138.41 ±

77.20
1.25 ± 0.38

1,865.94 ±

537.07
5.89 ± 1.94

1,258.42 ±

395.59

p value (mdx
versus week 7)

>0.99 >0.99 0.472 0.866 >0.99 >0.99 0.231 0.867 >0.99 >0.99

p value (mdx
versus week 12)

0.472 <0.05 <0.05 0.866 0.472 0.231 0.231 0.866 >0.99 >0.99

Data are expressed as mean ± SEM.
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were analyzed by multiplex assays using Luminex technology. A Bio-
Plex Pro Mouse Cytokine 10-Plex Immunoassay panel (Bio-Rad) was
used to detect levels of IL-1b, IL-6, IL-10, IL-12p70, IL-13, IL-17,
IFN-g, MCP1, Rantes, and TNF-a according to the manufacturer’s
instructions. Immunoassays were read using a Bio-Plex MAGPIX
Multiplex reader, and the results were analyzed with Bio-Plex man-
ager 6.1 software (Bio-Rad).

Urine was collected using metabolic cages over 24 hr directly in
refrigerated tubes (4�C). Upon collection, urine was centrifuged at
10,000 � g for 10 min and supernatant was aliquoted and frozen
at �80�C for further analysis. Urine creatinine was measured using
the creatinine assay kit (R&D Systems) following the manufacturer’s
instructions. Total protein in urine samples was measured as previ-
ously described.36 Briefly, proteins were precipitated from urine
samples by adding 40 mL of dH2O and 200 mL of prechilled acetone
to 10 mL of urine. Samples were then incubated at �20�C for
30 min, then centrifuged at 14,000 � g, 4�C, for 15 min. Pellets
were resuspended in 40 mL of dH2O and protein concentration was
measured using the Pierce BCA assay (Thermo Scientific). Albumin
from urine samples was measured using the albumin ELISA kit
(Bethyl Laboratories) following the manufacturer’s instructions.
Acute kidney injury (AKI) biomarker levels were analyzed by multi-
plex assays using Luminex technology. The multiplex kidney injury
panels (MKI1MAG-94K and MKI2MAG-94K, Merck Millipore)
were used according to the manufacturer’s instructions to measure
levels of B2M, renin, KIM1, IP10, vascular endothelial growth factor
(VEGF), Cystatin C, epidermal growth factor (EGF), Lipocalin-2-
NGAL, Clusterin, and OPN. The results were read using a Bio-Plex
MAGPIX Multiplex reader and analyzed with the Bio-Plex manager
6.1 software (Bio-Rad).

RNA Analysis

Total RNA was isolated from intervening muscle sections collected
during cryosection using TRIzol reagent according to the manufac-
turer’s instructions (Thermo Fisher Scientific). Aliquots of 500 ng
of total RNA were used for RT-PCR analysis using the Access RT-
PCR System (Promega) in a 50-mL reaction using the external primers
Ex 20Fo (50- CAGAATTCTGCCAATTGCTGAG-30) and Ex 26Ro
(50-TTCTTCAGCTTGTGTCATCC- 30). The cDNA synthesis was
carried out at 45�C for 45 min, directly followed by the primary
PCR of 30 cycles of 95�C (30 s), 55�C (1 min), and 72�C (2 min).
2 mL of these reactions were then re-amplified in nested PCRs by
22 cycles of 95�C (30 s), 55�C (1 min), and 72�C (2 min) using the
internal primers Ex 20Fi (50- CCCAGTCTACCACCCTATCAG
AGC-30) and Ex 26Ri (50- CCTGCCTTTAAGGCTTCCTT-30).
PCR products were analyzed on 2% agarose gels. Exon 23 skipping
was also measured by Taqman qRT-PCR, as previously described,13,43

using Taqman assays that were designed against the exon 4-5 or exon
22-24 templates using the Custom Assay Design Tool (Life Technol-
ogies) (assay exon 4-5: forward: 50-GGCACTGCGGGTCTTACA-30;
reverse: 50-CATCCACTATGTCAGTGCTTCCTAT 30; probe: 50-TT
CACTAAATCAACATTATTTTTC-30; assay exon 22-24: forward:
50- CTGAATATGAAATAATGGAGGAGAGACTCG-30; reverse:
50-CTTCAGCCATCCATTTCTGTAAGGT-30; probe: 50-ATGTGA
TTCTGTAATTTCC-30). An inventoried 18S assay was utilized as
an endogenous control (Life Technologies). 50 ng of cDNA was
used as input per reaction, and all assays were carried out in triplicate.
Assays were performed under fast cycling conditions on a Bio-Rad
CFX96 Touch Real-Time PCR Detection System, and all data were
analyzed using the comparative Ct method. For a given sample, the
delta-Ct values of the exon 4-5 and exon 22-24 assays were used to
calculate a relative abundance of total dystrophin and exon-23-skip-
ped dystrophin mRNA, respectively. Exon 23 skipping was then ex-
pressed as a percentage against total dystrophin, as indicated by the
exon 4-5 expression level.

Background levels of exon skipping detected in non-treatedmdx con-
trols (0.06% for TA, 0.12% for gastrocnemius, 0.20% for quadriceps,
0.09% for triceps brachialis, 0.004% for biceps brachialis, 0.01% for
diaphragm, 0.004% for heart, 0.23% for cortex, 0.66% for hippocam-
pus, and 0.27% for cerebellum) were deducted from the presented
values.

Total RNA was also isolated from renal cortex samples as previously
described,20 and qRT-PCR was performed on KIB genes IFN-g,
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IL-6, Granzyme B (Gzmb), IP-10, TNF, chemokine ligand 2 (Ccl2),
Ccl3, B2M, KIM1, Renin 1 (Ren1), and EGF and off-target genes
Kremen1, Hopx, Ucn3, and Kif13a. After cDNA synthesis, real-
time PCR was performed using the SYBR Green PCR Master Mix
Protocol (Bio-Rad) in triplicate with a hotstart Taq polymerase. A
10-min denaturation step at 94�C was followed by 40 cycles of
denaturation at 94�C for 10 s and annealing/extension at 60�C
for 30 s. Primer PCR efficiency for each gene was determined using
a standard dilution series (100–107 copies/mL), which subsequently
enabled us to calculate the copy numbers from the Ct values.
mRNA levels were normalized to GAPDH, and fold changes
were calculated according to the -DDCt method. The different
primers sequences are described in the Supplemental Information
(Table S1).

Western Blot and Immunohistochemistry Analysis

Protein extracts were obtained from pooled muscle sections treated
with 125 mmol/L sucrose, 5 mmol Tris-HCl, pH 6.4, 6% of MOPS
SDS Running buffer (Thermo Fisher Scientific), 10% SDS, 10% glyc-
erol, and 5% b-mercaptoethanol. The samples were purified with the
Compt-Able Protein Assay preparation reagent set (Thermo Fisher
Scientific), and the total protein concentration was determined with
the BCA Protein Assay Kit (Thermo Fisher Scientific). Samples
were denatured at 95�C for 5 min, and 100 mg of protein were loaded
onto Mini-Protean TGX stain-free gels 4%–15% (Bio-Rad) following
the manufacturer’s instructions. Dystrophin protein was detected by
probing the membrane with 1:50 dilutions of NCL-DYS1 primary
monoclonal antibody (NCL-DYS1; Novocastra), and vinculin was de-
tected as the internal control with the hVin-1 primary antibody
(Sigma; 1:10,000), followed by incubation with a sheep anti-mouse
secondary antibody (horseradish peroxidase conjugated; 1:15,000).
Bands were visualized using the Odyssey CLx system (LI-COR Biosci-
ences). The quantification has been done using the standard curve
with 0%, 5%, 10%, and 20% of correspondingWT tissues and normal-
ized to internal control (vinculin).

Sections of 10 mm were cut from at least two-thirds of the muscle
length of the various tissues (TA, gastrocnemius, quadriceps femoris,
biceps brachialis, triceps brachialis, diaphragm, and cardiac muscle)
at 100-mm intervals. The intervening muscle sections were collected
for RNA analysis and western blot analysis. The cryosections were
examined for dystrophin expression using the rabbit polyclonal anti-
body dystrophin (dilution 1:500; cat. number RB-9024-P, Thermo
Fisher Scientific), which was then detected by goat-anti-rabbit immu-
noglobulin Gs (IgGs) Alexa 488 (dilution 1:1000, Thermo Fisher
Scientific).

Brain fresh-frozen cryosections of 30 mm were collected onto
Superfrost+ slides, thawed for 2 min at room temperature (RT), fixed
in acetone/methanol (1:1) for 5 min at �20�C, washed in PBS, incu-
bated first in a blocking solution for 45 min (10% normal goat serum,
0.3% Triton X-100, and 1% BSA), then overnight at 4�Cwith a mono-
clonal anti-dystrophin primary antibody (DYS1 Leica; dilution: neat)
and washed and incubated with secondary antibody Alexa 647 (1:400,
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1 hr, RT). Controls prepared by omitting the primary antibody
showed no specific staining. Images were taken at equivalent locations
and exposure times using a laser scanning confocal microscope (Zeiss
LSM 700, � 40 objective). Stacks of seven to eight images (1,024 �
1,024 pixels) spaced by 1 mm were recorded at a magnification of
156 nm/pixel.

Formalin-fixed kidneys and livers were paraffin-embedded, and 4-mm
longitudinal and sagittal sections cut and stained with H&E or peri-
odic acid shift (PAS) as previously described.44

Quantification of tcDNA by LC-MS/MS

Intervening sections were collected during cryosection of the frozen
muscles and tissues and were homogenized to a concentration of
50 mg/mL in proteinase K buffer (100 mmol/L Tris-HCl, pH 8.5,
200 mmol/L NaCl, 5 mmol/L EDTA, and 0.2% SDS) containing
2 mg/mL of proteinase K (Invitrogen), followed by incubation for
2 hr (liver) or 4 hr (kidney, heart, and skeletal muscle) rotating at
55�C in a hybridization oven. Next, the samples were centrifuged
for 15 min at maximum speed and the supernatant was used in
the assay. Quantification of tcDNA was performed by LC-MS/MS
analysis on a Dionex UltiMate 3000 RS HPLC system (Thermo
Fisher Scientific) coupled to a Q Exactive Hybrid quadrupole-Orbi-
trap mass spectrometer (Thermo Fisher Scientific) as previously
described.13

Muscle Function Analysis

Muscle function ofmdxmice was evaluated by measuring TA muscle
contraction in situ in response to nerve stimulation. Mice were anes-
thetized using pentobarbital (60 mg/kg intraperitoneally). Body tem-
perature was maintained at 37�C using radiant heat. The knee and
foot were fixed with pins and clamps, and the distal tendon of the
muscle was attached to the lever arm of a servo-motor system
(305B; Dual-Mode Lever; Aurora Scientific) using a silk ligature.
The sciatic nerve was crushed proximally and stimulated distally
by a bipolar silver electrode using supramaximal 0.1 ms duration
square-wave pulses. We measured the absolute maximal isometric
tetanic force (P0) generated during isometric contractions in response
to electrical stimulation (frequency of 75–150 Hz, stimulation train of
500 ms). P0 was determined at L0 (length at which maximal tension
was obtained during the tetanus). Absolute maximal isometric force
was normalized to muscle mass as an estimate of specific maximal
force (sP0), that is, specific force.

Fragility was estimated from the force decline resulting from length-
ening contraction-induced injury. The sciatic nerve was stimulated
for 700 ms (150 Hz stimulation frequency). A maximal isometric
contraction of the TA muscle was initiated during the first 500 ms.
Then, muscle lengthening (10% L0) at a velocity of 5.5 mm/s was
imposed during the last 200 ms. All isometric contractions were
made at an initial length L0. Nine lengthening contractions of the
TA muscles were performed, each separated by a 60 s rest period.
Maximal isometric force was measured 1 min after each lengthening
contraction and expressed as a percentage of the initial maximal
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isometric force. As an indicator of active muscle stiffness, we
measured the increase in force during the stretch of the first length-
ening contraction. This force was expressed as a percentage of P0.

Respiratory Function

The respiratory function of mice was evaluated by whole-body
plethysmography using an EMKA Technologies plethysmograph,
as previously described,13 and essentially as recommended by
TREAT-NMD (http://www.treat-nmd.eu/downloads/file/sops/dmd/
MDX/DMD_M.2.2.002.pdf).

Briefly, unrestrained conscious mice were placed in calibrated animal
chambers and the pressure difference between the reference and an-
imal chambers was measured using a pressure transducer. Mice were
allowed to acclimate in the chambers for 45 min at a stable tempera-
ture and humidity. Data were then collected every 5 s using the iox2
software (version 2.8.0.19; EMKA Technologies). TI was defined as
the start of inspiration to the end of inspiration and the expiration
time (TE) was defined as the start of expiration to the end of expira-
tion. The relaxation time (RT) was defined as the time from the start
of expiration to the time when 65% of the total expiratory pressure
occurred. Pause and penh were defined and calculated by
the following formulas: pause = (TE � RT)/RT and penh = (PEP/
PIP) � pause, where PEP is peak expiratory pressure and PIP is
peak inspiratory pressure. The value of each parameter was calculated
from an average of 60 recordings of 5 s representing a total of 5 min.
Inclusion criteria for each recording were >8 respiration events by 5 s
and >80% of success rate as measured by the iox software.

Restraint-Induced Unconditioned Fear

Mice were handled firmly but gently using the scruff method, as
for standard examination or intraperitoneal injection in laboratory
mice. The mouse was restrained by a trained experimenter grasping
the scruff and back skin between the thumb and index finger while
securing the tail between the third and little fingers and tilting the an-
imal upside down so that the ventral part of its body faced the exper-
imenter. After 15 s, the mouse was released to a new cage (16� 28 cm,
with 12 cm high walls; illumination:�100 lx) and then video-tracked
for 5 min using the ANY-maze software (Stoelting). All mice were
tested between 10:00 am and 1:00 pm. Unconditioned fear responses
induced by this acute stress were characterized by periods of tonic
immobility (freezing) during the 5-min recording period in the novel
cage. Complete immobilization of the mouse, except for respiration,
was regarded as a freezing response. This was typically quantified
as episodes of immobility lasting at least 1 s, with a 90% immobility
sensitivity (10% bodymotion allowed). In all experiments, the percent
time the mouse was freezing was calculated for group comparisons.
Horizontal (i.e., the distance traveled) and vertical activity (number
of ups) was also recorded. The investigator was blinded to the group
allocations during the experiments.

Statistical Analysis

Data were analyzed by GraphPad Prism5 software and shown as the
mean ± SEM. n refers to the number of mice per group. Comparisons
of statistical significance were assessed by non-parametric Mann-
Whitney U tests for the comparison of two groups or Kruskal-Wallis
for the comparison of three or more groups, followed by Dunn’s mul-
tiple comparison test. Significant levels were set at *p < 0.05; **p <
0.01; and ***p < 0.001.
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Fig. S1. Evaluation of 13mer-tcDNA following intramuscular injection. Adult mdx mice were 

injected intramuscularly (IM) in the tibialis anterior (TA) muscle with 30 µg of tcDNA-13mer or 

tcDNA-15mer (previously described) and muscles were collected 3 weeks after the injection for 

analysis (n=3 per group). (A) Detection of exon 23–skipped dystrophin mRNA in mdx muscles 

after IM delivery of tcDNA 13mer or tcDNA-15mer for comparison.  The lower 688-bp fragment 

corresponding to the exon 23–skipped mRNA is detected by nested RT-PCR. (B) Western blot 

showing dystrophin expression in TA muscles injected with 30ug of tcDNA-13mer or tcDNA-

15mer compared to mdx control (Ctl) and WT control mice. 100 µg of total protein were loaded 

for all samples. (C) Dystrophin immunostaining on transverse sections from mdx treated muscles. 

Nuclei, blue (DAPI); Dystrophin, green.  

 

 

 

Fig. S2. In vitro complement activation analysis. SC5b-9 levels were measured in normal human 

serum samples at 45 minutes after PBS or tcDNA incubation. Zymosan was used as a positive 

control. (Data are expressed as means ± SEM). P <0.05 are significant (Mann-Whitney U tests). 



 



Fig. S3. Creatinine normalized renal injury biomarkers in 6 and 20 week-old WT and mdx 

mice. (Data are expressed as means ± SEM). P <0.05 are significant (Mann-Whitney U tests). 

 

 

 

 

 



 



Fig. S4. Hybridization mediated-Off Target effects (OTEs) on mRNA mouse transcript. (A) 

Nucleotide blast analysis identifies 4 mRNA targets, Kremen1, Kif13a, Hopx and Ucn3 t with 

(12nt/13nt) homology (100% homology 12/12). The tcDNA hybridization can only occur on 

Kremen1 mRNA as the strand are Plus/Minus. (B) Sequence alignement of Kremen1 gene with 

the tcDNA sequence to visualize the localization of hybridization (last exon). Hybridization of 

12nt on 13nt (the last nucleotide (T) of the tcDNA sequence does not match.  (C) Expression of 

Kremen1 and Kif13a in the kidney of mdx control and tcDNA-treated mdx. Kidney was chosen to 

evaluate OTEs because of the high expression of the 2 target genes and the high amount of tcDNA 

detected in kidneys following 12 weeks of injections at 200mg/kg/wk as shown in figure 1D. No 

significant differences are observed following the treatment. Data are mean ±SEM (n=3 for mdx 

control and n=4 for tcDNA mouse). Primers were also designed to evaluate the expression of Hopx 

and Ucn3, but their expression levels were below the detection threshold limit and could therefore 

not be analysed.  

 

 

 

 

 

 

 

 



Gene Name Forward Reverse 

IFNg GCGTCATTGAATCACACCTG TGAGCTCATTGAATGCTTGG 

IL6 CAAAGCCAGAGTCCTTCAGAG GCCACTCCTTCTGTGACTCC 

Gzmb TCGACCCTACATGGCCTTAC TCCTTCACAGTGAGCAGCAG 

IP10 AAGTGCTGCCGTCATTTTCT CCTATGGCCCTCATTCTCAC 

TNF CCACCACGCTCTTCTGTCTA AGGGTCTGGGCCATAGAACT 

Ccl2 CCCAATGAGTAGGCTGGAGA TCTGGACCCATTCCTTCTTG 

Ccl3 ATGAAGGTCTCCACCACTGC GATGAATTGGCGTGGAATCT 

B2m GAGCCCAAGACCGTCTACTG GCTATTTCTTTCTGCGTGCAT 

Kim1 AGCTACAGGAAGACCCACGA TGTCACAGTGCCATTCCAGT 

Ren1 ATCTTTGACACGGGTTCAGC TGATCCGTAGTGGATGGTGA 

EGF GAACTGTCAGCCAGGTCCTC CACCAATTGCTGGTGATTTG 

Kremen1 GCGAGCACAATTATTGCAGA TGGGTTTCCATGATCCTTGT 

Hopx GCCAGCAGGCTATTTAAGCA GGGTGCTTGTTGACCTTGTT 

Ucn3 AAGCTGCAACCCTGAACAGT AGTAGGTGGGCATCAGCATC 

Kif13a TGGGAAGAGAAGCTGAGGAA TGACGAGGTAGCACTTGTCG 

 

Table S1. RT-qPCR primer sequences 


	Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model
	Introduction
	Results
	Efficacy of 13-mer tcDNA-AON
	Functional Rescue
	CNS Effect
	General Tolerability and Safety Profile
	Evaluation of Kidney Toxicity: Urinalysis and Genomic Biomarkers

	Discussion
	Materials and Methods
	Antisense Oligonucleotides and Animal Experiments
	Serum and Urine Analysis
	RNA Analysis
	Western Blot and Immunohistochemistry Analysis
	Quantification of tcDNA by LC-MS/MS
	Muscle Function Analysis
	Respiratory Function
	Restraint-Induced Unconditioned Fear
	Statistical Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


