Supplementary Information

Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines

Rieko Oyama¹, Mami Takahashi², Akihiko Yoshida³, Marimu Sakumoto¹, Yoko Takai¹, Fusako Kito¹, Kumiko Shiozawa⁴, Zhiwei Qiao⁴, Yasuhito Arai⁵, Tatsuhiro Shibata⁵, Yoshihiro Araki⁶, Makoto Endo⁶, Akira Kawai⁶, and Tadashi Kondo^{1, 4*}

¹Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
²Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan–
³Pathology and Clinical Laboratory Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁴Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁵Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁶Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

Table S1. STR analysis	
------------------------	--

Microsatellite (Choromosome)	NCC-CDS1-X1- C1 (P14)	NCC-CDS1-X2- C1 (P35)	NCC-CDS1- X1 (PDX)	NCC-CDS1- X2 (PDX)	Tumor Tissue
Amelogenin (X Y)	X,X	X,X	X,X	X,X	X,X
TH01 (3)	7,9	7,9	7,9	7,9	7,9
D21S11 (21)	30,30	30,30	30,30	30,30	30,30
D5S818 (5)	10,12	10,12	10,12	10,12	10,12
D13S317 (13)	11,12	11,12	11,12	11,12	11,12
D7S820 (7)	12,13	12,13	12,13	12,13	12,13
D16S539 (16)	9,13	9,13	9,13	9,13	9,13
CSF1PO (5)	11,13	11,13	11,13	11,13	11,13
vWA (12)	14,16	14,16	14,16	14,16	14,16
TPOX (2)	8,8	8,8	5,8	8,8	8,8

Cells were compared to a normal and tumor tissue from the patient.

P indicates a passage number of a cell line.

KEGG Enrichment		Primary	NCC-	NCC-		1		
Rank	Pathway	tumour	CDS1-X1	CDS1-X3	X1-C1	X3-C1	Observations	
1	Proteasome	1	2	2	3	3		
2	Spliceosome	2	3	3	2	2		
3	Ribosome	3	1	1	1	1		
4	Pathogenic Escherichia coli infection	4	4	5	5	7	Consistently enriched in all samples	
5	Glycolysis / Gluconeogenesis	5	6	4	8	8		
8	Pyruvate metabolism	8	8	9	9	9		
9	Huntington's disease	9	15	13	6	6		
12	Pentose phosphate pathway	12	7	6	15	21		
14	Citrate cycle (TCA cycle)	14	5	7	4	4		
19	Glyoxylate and dicarboxylate metabolism	19	9	11	22	12		
17	Aminoacyl-tRNA biosynthesis	17		16	7	5	Consistintly enriched in all but NCC-CDS1-X1 samples	
18	Parkinson's disease	18		15	10	10		
24	Alzheimer's disease	24		20	11	13		
6	Focal adhesion	6	10	21				
25	Regulation of actin cytoskeleton	25	12				Enriched in all but xenograft tissues and cell lines	
23	Tight junction	23		14			g.	
15	Fatty acid elongation in mitochondria	15			16	16		
16	Fatty acid metabolism	16			20	11	Enriched in xenograft tissues and cell lines	
20	Methane metabolism	20				20		
29	Propanoate metabolism		11		17		Irregularly enriched in primary tumours and cell lines	
35	DNA replication			17	18			
33	Cysteine and methionine metabolism			8		19		
7	Complement and coagulation cascades	7						
10	Systemic lupus erythematosus	10						
11	Prion diseases	11						
13	Antigen processing and presentation	13					Enriched only in primary tumor tissue	
21	Valine, leucine and isoleucine degradation	21						
22	Viral myocarditis	22						
27	Gap junction		14	12				
30	Fructose and mannose metabolism		13	10			Enriched only in xenograft tissues	
31	Cell cycle		16	18				
32	Leukocyte transendothelial migration		17	25				
36	One carbon pool by folate			19				
45	Lysine degradation				13	14		
46	Valine, leucine and isoleucine biosynthesis				14	24		
48	Arginine and proline metabolism				21	22		
28	Fructose and mannose metabolism				19			
41	Oocyte meiosis				23			
44	Oxidative phosphorylation				12		Enriched only in cell lines, either consistently or irregularly	
47	Butanoate metabolism				18			
38	Cardiac muscle contraction					23		
39	Protein export					17		
51	Oxidative phosphorylation					15		
52	Selenoamino acid metabolism					25		

Table S2. KEGG pathways enriched in the proteome of different samples.

Figure S1. Sanger sequencing showed that the nucleotide sequence 5'-CGCCTC-3' was detected within *DUX4* exon 1, but not *DUX4L*, indicating that *CIC* was fused to *DUX4* (4q35). The sample names are shown on the left side of the panels.

Figure S2. Immunofluorescence study for CD99, vimentin, myogenin, and S100. (**A**) NCC-CDS1-X1-C1, (**B**) NCC-CDS1-X3-C1.

Figure S3. Phosphorylated Src expressions were analysed by Western blotting. Arrowheads indicate the SuppleTable S2, position of Src with a molecular weight of 60 kDa. Lanes 1: tumour tissue, 2: NCC-CDS1-X1 tumour tissue, 3: NCC-CDS1-X3 tumour tissue, 4: NCC-CDS1-X1-C1 cells, 5: NCC-CDS1-X3-C1 cells.