

Comparative omics and trait analyses of marine *Pseudoalteromonas* phages advance the phage OTU concept

Melissa B. Duhaime, Natalie Solonenko, Simon Roux, Nathan C. Verberkmoes, Antje Wichels⁵, Matthew B. Sullivan

* Correspondence:

Melissa B. Duhaime: duhaimem@umich.edu, Matthew B. Sullivan mbsulli@gmail.com

1 Supplementary Figures and Tables

Hairball plot of Pseudoalteromonas phage genera

Supplementary Figure 1. Hairplot representation of the Pseudoalteromonas phage clusters. Directional arrows indicate that a phage shares 40% of its proteins with the phage it is pointing to. PSA Genera Group numbers are listed in Supplementary Table 1.

Pseudoalteromonas 16S rRNA gene phylogeny

Supplementary Figure 2. 16S rRNA gene phylogeny for a subset of publicly available *Pseudoalteromonas* spp. and 6 Helgoland *Pseudoalteromonas* spp. (in red).

Supplementary Figure 3. Evaluation by ProSA software (Wiederstein and Sippl, 2007) of major capsid protein 3D model predicted by I-TASSER for: (A) PSAHS1_00030 and PSAHS5_00057, (B) PSAHS8_00019. All z-scores of predicted structures (black dot in panels A and B) fall in range of those expected based on empirical X-ray- and NMR-generated structural data.

Supplementary Figure 4. Large terminase (terL) maximum likelihood-based protein phylogeny. Large terminase nodes and groups are colored based on phage DNA packaging mechanisms (Casjens *et al.*, 2005). Phages in the VpV262-like group cluster.

Supplementary Figure 5. DNA polymerase A (DNApol) maximum likelihood-based protein phylogeny. Colorblocks indicate phage taxonomy and groups are colored based on phage DNA packaging mechanisms (Casjens *et al.*, 2005). Phages in the VpV262-like group are spread across the tree.

Supplementary Figure 6. Infection phenotype data for Helgoland *Pseudoalteromonas* phages and hosts. (A) Burst sizes, (B) latent periods, (C) one-step virus production curves.

Supplementary Table 1 (data sheet 2.csv). VirSorter output describing prophages predicted to be in *Pseudoalteromonas* phage genomes and WGS projects in GenBank. These identified prophages were used in the reciprocal best blast used in Figure 1 and Supplementary Figure 1.

Supplementary Table 2 (data sheet 3.xlsx). Annotation tables for all newly sequenced Helgoland phage isolates.

Supplementary Table 3 (data sheet 4.xlsx). Summary of mass spectroscopy-derived proteomic data for each protein (CDS) of each Helgoland phage isolate analyzed, including data for input to R script to recreate model SDS-PAGE gel in Figure 3.

Methods for Supplementary Information:

Gene phylogenies

Full-length 16S rRNA gene sequences were recovered from the sequenced host genome data using EMIRGE (Miller *et al.*, Banfield, 2011). Alignment for the 16S rRNA gene phylogeny was generated using the SINA aligner (Pruesse *et al.*, 2012). Alignments for terL and DNApol protein phylogenies were generated with T-Coffee (Notredame *et al.*, 2000) with default parameters. Maximum likelihood trees were generated with RaXML v 7.3.0 based on 100 bootraps and using the Generalized Time Reversible gamma model (Stamatakis 2006). Trees visualizations were generated in iTOL v2 (Letunic and Bork, 2016).

References for Supplementary Information:

- Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., Ford, M.E., Houtz, J.M., Hatfull, G.F., Hendrix, R. W. (2005). The generalized transducing salmonella bacteriophage ES18: Complete genome sequence and DNA packaging strategy. *J. Bacteriol.* 187, 1091-104.
- 2. Letunic, I., Bork, P. (2016). Interactive tree of life (iTol) v3: An online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44, W242-5.
- 3. Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W., Banfield, J. F. (2011). EMIRGE: Reconstruction of full-length ribosomal genes from microbial community short read sequencing data. *Genome Biol.* **12**, R44.
- 4. Notredame, C., Higgins, D. G., Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. *J. Mol. Biol.* **302**, 205-217.
- 5. Pruesse, E., Peplies, J., Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. *Bioinformatics*, **28**, 1823-1829.
- 6. Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, **22**, 2688-2690.
- 7. Wiederstein, M., Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. *Nucleic Acids Res.* **35**, W407-10.