Lactate dehydrogenase A promotes the invasion and

proliferation of pituitary adenoma

Jiayin An¹, Yin Zhang¹, Jiaojiang He², Zhenle Zang¹, Zheng Zhou¹, Xiangdong Pei¹, Xin Zheng¹,

Weihua Zhang³, Hui Yang¹ and Song Li¹

¹ Multidisciplinary center for pituitary adenomas of Chongqing, Department of Neurosurgery,

Xinqiao Hospital, Third Military Medical University, Chongqing, China.

² Department of Neurosurgery, Lanzhou General Hospital of Chinese People's Liberation Army,

Lanzhou, China.

³ Department of Biology and Biochemistry, College of Natural Sciences and Mathematics, University of Houston, Texas, USA.

Corresponding authors:

Hui Yang; Multidisciplinary center for pituitary adenomas of Chongqing, Department of Neurosurgery Xinqiao Hospital; Third Military Medical University 183 Xinqiao Main Street, Shapingba District, Chongqing, China Phone:+86 023 68755610 Fax: +86 023 65218204 Email:huiyangxinqiao@163.com or Song Li; Multidisciplinary center for pituitary adenomas of Chongqing, Department of Neurosurgery Xinqiao Hospital; Third Military Medical University 183 Xinqiao Main Street, Shapingba District, Chongqing, China Phone:+86 023 68755610 Fax: +86 023 68755610 Fax: +86 023 65218204 Email: diisong3@163.com.

Supplementary Figure S1. Laser scanning confocal microscope examination one week after LDHA transfection with lentivirus, indicating high transfection efficiencies in GH3 cells.

Supplementary Figure S2. Cell cycle distributions of GH3 cells transfected with empty vector or LDHA over expression vector were analyzed using flow cytometry.

Supplementary Figure S3. GH3 cells were treated with oxamate (0, 60 and 100 mM) for 48 h, and cell cycle distributions were analyzed using flow cytometry.

Supplementary Figure S4. GH3 cells were pretreated with or without Licl and then treated with oxamate for 48 h, then cell cycle were analyzed using flow cytometry.

Supplementary Figure S5. A, GH3 cells were treated with oxamate (0, 60 and 100 mM) for 48 h, and cell apoptosis were analyzed using flow cytometry. B, GH3 cells were treated with oxamate (0, 60 and 100 mM) for 48 h, and intracellular ROS levels were analyzed by DCFH-DA fluorescence using flow cytometry. C, GH3 cells were treated with oxamate (0, 60 and 100 mM) for 48 h, mitochondrial membrane potential were measured by JC-1 staining using flow cytometry.

Patient clinical characteristics.					
Case	Age(yrs)	Sex	Knosp grade	Hormonal type	Ki-67
1	52	Μ	Ι	PRL	+
2	57	Μ	II	GH	-
3	38	F	II	NFPA	+
4	35	Μ	Ι	PRL	-

Supplementary Table S1 Patient clinical characterist

5	33	F	I	PRL	-
6	51	Μ	II	NFPA	-
7	49	F	II	GH	-
8	46	F	II	GH	-
9	48	F	II	GH	-
10	51	F	Ι	NFPA	-
11	61	Μ	Ι	NFPA	-
12	32	F	II	NFPA	+
13	32	Μ	II	GH	-
14	61	F	Ι	NFPA	-
15	45	F	Ι	NFPA	-
16	51	F	II	NFPA	+
17	19	F	Ι	PRL	+
18	51	F	Ι	GH	+
19	45	F	II	GH	+
20	63	Μ	II	NFPA	-
21	66	F	IV	NFPA	-
22	51	F	III	NFPA	+
23	45	F	IV	NFPA	+
24	31	F	IV	NFPA	+
25	59	Μ	III	GH	+
26	42	F	IV	GH	+
27	31	Μ	IV	PRL	-
28	57	Μ	III	NFPA	-
29	37	Μ	III	PRL	-
30	43	F	III	PRL	+
31	16	Μ	III	NFPA	+
32	63	Μ	III	NFPA	-
33	28	F	III	GH	+
34	59	F	III	NFPA	+
35	55	Μ	IV	NFPA	+
36	60	F	III	NFPA	+
37	29	F	IV	NFPA	+
38	46	F	III	GH	-
39	30	Μ	IV	GH	+
40	46	F	IV	GH	+

F, female; M, male; PRL, Prolactin; GH, growth hormone; NFPA, nonfunctioning pituitary adenoma; "+" indicates Ki-67 index≥3%; "-" indicates Ki-67 index <3%.

Case	Age	Gender	Tumor size(cm)	Knosp grade	Hormonal type
1	51	F	2.2x2.4x3.3	IV	GH
2	66	F	2.6x2.7x2.0	III	GH
3	78	М	3.6x1.5x2.5	IV	NFPA

4	43	М	2.8x2.9x2.1	IV	NFPA
	15		LIGHEISHEIT		

M: male; F: female; GH, growth hormone; NFPA, nonfunctioning pituitary adenoma

Gene name (Species)	Primer sequences (5'-3')	Tm cycles	Product (bp)
LDHA(human)	F: GGTTGGTGCTGTTGGCATGG	58-35	214
	R: TGCCCCAGCCGTGATAATGA		
β-actin (human)	F: GCACCACACCTTCTACAATGAGC	58-35	163
	R: TAGCACAGCCTGGATAGCAACG		
LDHA(rat)	F: CAAACTGCTCATCGTCTCAAACC	57-30	129
	R: ATCAGGTAACGGAACCGAGCC		
β-actin (rat)	F: GAGGGAAATCGTGCGTGAC	57-30	157
	R: GCATCGGAACCGCTCATT		

Supplementary Table S3. Primer list for qPCR