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Supplementary File S1: Reproducibility and Validation of the

Hierarchical Classification Model

The validation of a predictive model is crucial to assess its sensitivity to the training data and
its ability to predict unseen data. In order to quantify the aforementioned attributes, we
performed Leave-one-out cross-validation that partitions the data into disjoint subsets,
trains the model with all but one of these sets and assesses the model performance based
on the hold out set.

In a first assessment, the model was trained with 17 out of 18 cell line samples and
predictions where carried out on the hold out sample. The binary predictions as well as the
scores, i.e. probabilities, for being accessible and inaccessible are then compared to the
model trained with all samples by means of Pearson correlation (Fig. S1.1A). We observe
that the median correlation between the full model’s and leave-one-out predictions is 0.984
for the binary classifications (red) and 0.997 for the scores (green) while the individual
correlations are always greater than 0.95. Next, we sought whether these results can be
confirmed when the training set is partitioned by chromosome, i.e. all but one chromosome
is used for training the model while predictions are carried out on the hold out
chromosome. Here, we again distinguished the actual binary classification into accessible
and inaccessible chromatin regions and the scores for being in the respective classes. The
correlations of the binary predictions (Fig. S1.1B) and the scores (Fig. $1.1C) obtained with
the full model and the one trained with all but one chromosome validate the low sensitivity
of our model to the training samples. The median binary correlations per chromosome range
from 0.972 to 1 while the individual correlations are all greater than 0.947. Similarly, the
median correlations of scores range from 0.987 to 0.999 with individual correlations greater

than 0.98. Altogether, these results are in agreement with the previous assessment of leave-



one-out cross-validation based on samples and underline our model’s insensibility towards

the training set and supports our hypothesis that the model is not overfit.

Figure S1.1 Correlation of cross-validation samples with full model predictions

A B
1001 — 1.00 A -

A —— -
o0

0.99

0.98 1 -

0.97

0.99 -

-
[ .
P——

0.98 - I

0.97

Pearson Correlation
Pearson Correlation

0.96 - 0.96 -

0.95

0.95

Binary 4 ©
Scores

1.000 - 1.001

B 0.95

or mH
- -
-

o @

o
-

o o EH
-
-~

-
L 2l
-

-
-
:

o

©

©

o
1

0.90 -

0.85 -

o

©

©

S
1

0.80 -

Pearson Correlation
Pearson Correlation

0.75 -
0.985
0.70 °

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chrg 4 ~----
Binary
Score
Binary
Score
sion

Expres-

The correlation of different cross-validation assays with the predictions of the
full model trained with all 18 samples. (A) Pearson correlation of the binary
Leave-one-sample-out predictions with the full model and the corresponding
correlations of the scores. (B) Pearson correlation of the binary Leave-one-
chromosome-out predictions with the full model. (C) Pearson correlation of
the scores associated to the binary Leave-one-chromosome-out predictions
with the full model. (D) Reproducibility analysis results of the predictions
with different replicates. The model was trained with the first replicates (left
boxes) and second replicates (middle boxes) and the correlations of the
predictions for both replicates were assessed in both models. Correlations
based on binary predictions are shown in red and correlations based on
scores are shown in green. The blue box shows the correlation between
replicates of the same cell type of the gene expression data.



At last, we investigated the reproducibility of the predictions in different replicates of the
same cell type/line. We thus collected a second replicate for each cell line included in the
original training dataset generated in the same lab and computed the correlation of
replicates of the same cell line (Fig. $1.1D). As expected, the median correlation between
replicates is 0.97 with Hela-S3 cells being an outlier with correlation 0.7 (blue box). Of note,
the obtained dataset for HMEC cells was of poor quality showing mostly 0 FPKM for the
gene and was therefore excluded from the analysis. We then trained the model with the first
replicates, predicted the second replicates and compared the agreement with the
predictions of the first replicates (left boxes), and vice versa (middle boxes). Here, red boxes
again represent the correlations between binary accessibility predictions and green boxes
the correlations between the prediction scores. Our results show median correlations of
0.91 and 0.88, respectively, in the binary case indicating high reproducibility of the results.
Interestingly, the correlations of the scores do not show any difference (medians: 0.937),
which indicates that the threshold for binarizing the scores in both cases have to be
different. However, the optimal threshold cannot be determined for unseen data and is thus

kept at 0.5, which still results in very high correlations above 0.85 after discretization.



Supplementary File S2: Prediction of Chromatin Accessibility from
Transcriptomics and Hi-C Data

The hierarchical classification tree model presented in the main text predicts accessible and
inaccessible gene-coding regions solely based on transcriptomics data. However, the model
is generally able to incorporate an arbitrary number of predictors for enhancing its
predictive power. We thus asked whether we are able to improve the predictive power of
our method by incorporating chromatin interaction data from Hi-C experiments’. These
experiments are able to capture 3D chromatin interactions that are possibly far away in 1D
genomic distances and can be readily used to divide the genome into two compartments
harboring active and inactive regions, respectively’. In particular, the compartmentalization
is achieved by dividing the genome into windows of a certain size, creating an interaction
matrix of the signal data and performing principal component analysis (PCA) on the
interaction matrix. The sign of the first principal component can then be used to classify the
different compartments, i.e. all regions having the same sign belong to the same
compartment.

For predicting the chromatin accessibility, as detailed in the main manuscript, we collected
Hi-C datasets of 10 different cell lines, which are also included in the 18 training datasets
used in the main text, segmented the genome into bins of 50kb and computed the first
principal component on the resulting interaction matrix (see Methods section below for
details). Genes are then associated to the value of the first principal component of the
region they are overlapping the most with. In addition to the raw gene expression values
and the Mahalanobis distances to accessible and inaccessible genes, the values of the first
principal component are included as a predictor for the hierarchical classification tree

model.



After training the model with this dataset, we assessed the F; - score of the predictions with
respect to the gold standard dataset described in the main text and compared them to the
scores obtained with the full model of 18 datasets not including Hi-C experiments (see Fig.
S2.1). The results show average improvements of 0.03 in the classification of lowly
expressed genes, i.e. when considering expression cutoffs of 0.01 and below, but at the
same time on average 0.02 lower scores for genes that are clearly expressed, i.e. expression
cutoff above 2 FPKM. Here, the black and red lines show the F; - scores for the predictions
with and without Hi-C data, respectively. However, the interpretation of the results has to
be taken with care since the size of the training dataset is much smaller when using Hi-C
data and thus might be a possible explanation of the small differences. Nevertheless, the
results already suggest that the incorporation of chromatin interaction data helps the model

to more accurately classify accessible and inaccessible gene-coding chromatin regions.

Figure S2.2. Comparison of the model trained with and without Hi-C data
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Comparison of F;-scores after applying lower expression cutoffs in four gold standard
datasets of our predictions with (black line) and without (red line) using Hi-C data. Only
genes that are more expressed than the cutoff were taken into account for the
calculation of F;-scores (0 cutoff representing all genes). While using Hi-C data shows
on average 0.03 higher scores for the whole dataset, the performance is slightly
decreased (on average 0.02 lower scores) when considering only clearly expressed
genes.

Methods

Hi-C data acquisition and analysis
We collected 10 publicly available Hi-C datasets for cell types and cell lines already included

in the main training dataset. An overview of the datasets can be found in Table S2.1. Raw
reads were downloaded in fastq format and aligned to the hg19 reference genome using
Bowtie 2 with the —very-sensitive option. Aligned reads were subsequently filtered for
alignments with MAPQ value greater than 30 and uniquely mapping reads. Further
processing was performed using HOMER®. Tag directories were created for each dataset and
filtered for uninformative reads. Specifically, we removed reads that (i) are likely continuous
genomic fragments or re-ligation events (-removePEbg), (ii) have a 5-fold higher tag density
than the average in a 10kb window (-remove spikes 10000 5), (iii) are not in the vicinity of
the restriction site used for the assay (-restrictionSite AAGCTT) and (iv) form a self ligation
with adjacent restriction sites. Finally, principal component analysis was performed using
the tag directories as input with a resolution of 50kb (-res 50000) and a window size of

100kb for the background model (-superRes 100000).

Table S2.1. Hi-C datasets used for the analysis

Cell line Availability

A549 Encode project (ENCSR662QKG)

GM12878 SRA (SRR1658570)

H1-hESC SRA (SRR1030718, SRR1030719,
SRR1030720, SRR1030721)

HMEC SRA (SRR1658680)




HUVEC SRA (SRR1658712)

IMR90 SRA (SRR1658673)

K562 SRA (SRR1658693)

MCF7 SRA (SRR1909070)

NHEK SRA (SRR1658689)

SK-N-SH (RA) SRA (SRR2106508, SRR2106509,
SRR2106510)

Hi-C datasets used in the training dataset with corresponding accession numbers in
either the ENCODE project (A549 only) or the sequence read archive (SRA). SRA
accessions are given per run and can be searched for at

https: //www.ncbi.nlm.nih.gov




Supplementary Figure S1: Validation of de novo predicted accessible

genes
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Percentage of validated accessible genes that are predicted by the model and
not detected by peak calling methods. Validation was performed on the basis of
the TFBS ChIP-seq experiments in the gold standard datasets from ENCODE.
Bars represent the percentage of genes showing a binding event, and as such
are deemed to be accessible, of all predicted accessible genes that are not
detected by peak callers. Between 49% (A549) and 69% of de novo predictions
could be validated (median 62%, dashed line).



